自动控制原理习题答案6
《自动控制原理》习题及答案

精心整理
《自动控制原理》试题及答案
1、若某串联校正装置的传递函数为(10s+1)/(100s+1),则该校正装置属于(B )。
3分
2、在对控制系统稳态精度无明确要求时,为提高系统的稳定性,最方便的是(A)3分
3、在系统中串联PD调节器,以下那一种说法是错误的(D)3分
A
B
C
D
4
5、I
6
7、
8
9、
10、
11、若某最小相位系统的相角裕度γ>0,则下列说法正确的是( )。
2分
12、某环节的传递函数是G(s)=5s+3+2/s,则该环节可看成由(D )环节组成。
2分
13、主导极点的特点是(A )2分
14、设积分环节的传递函数为G(s)=K/s,则其频率特性幅值A(ω)=()2分
15、某环节的传递函数为K/(Ts+1),它的对数幅频率特性随K值增加而()2分
16、某系统的传递函数是G(s)=1/(2s+1),则该可看成由(C )环节串联而成2分
17、若系统的开环传递函数在s右半平面上没有零点和极点,则该系统称作(B)2分
18、
19、
20、
21、
22、
23、
24、
25、
26、若系统增加合适的开环零点,则下列说法不正确的是(B ) 2分
27、当二阶系统的根分布在根平面的虚轴上时,系统的阻尼比为(B)3分
28、控制系统的稳态误差ess反映了系统的(A)2分
29、当二阶系统特征方程的根为具有负实部的复数根时,系统的阻尼比为(C)3分
30、二阶系统当0<ζ<1时,如果增加ζ,则输出响应的最大超调量将(B)3分。
自动控制原理 孟华 第6章习题答案(含过程)

第六章习题 6-1.解:方法一:原系统的截止频率为44.16rad/s ,相稳定裕度为180°-90°-arctan4.416=12.76°截止频率和相角裕度均不满足要求,需加入串联超前校正,选择校正网络的传递函数为TsaTsKs G c ++=11)(取校正后系统的截止频率s rad c /52=ω,相角裕度︒=50γ。
则Ta c 1=ω,6.2lg 10lg 20=+a K ,︒=+-+︒5011arctan11a a 由上述3式的64.0,01.0,4.4===K T a)101.0)(11.0()104.0(128)()(+++=s s s s s G s G c校正后系统的截止频率为s rad c /53=ω,相角裕度︒=5.49γ,满足要求。
方法二:按二阶系统最佳模型设计,设校正后系统的开环传递函数为)1()(+=Ts s Ks G则闭环系统的传递函数为222222//1/)(nn n s s T K Ts s TK K s Ts K s ωζωωφ++=++=++= 令50=K ,707.0=ζ由T n /12=ζω,T K n /2=ω,得01.0=T 。
即)101.0(50)()(+=s s s G s G c ,101.011.041)(++=s s s G c 。
易验证该校正环节满足要求。
6-2.解:本题可首先检验系统得性能指标,针对系统在性能上的缺陷并结合校正网络的作用,选用合适的校正网络,再按相应的步骤确定校正网络的参数。
(1) 根据稳定误差要求,确定系统的K 值。
K s s Ks s G s s K s s v 100)14.0(100lim )(lim lim 0=+⋅==→→%110011≤==KK e ss 求得1≥K 。
(2) 利用已确定的K ,计算未校正系统的相角裕度。
取1=K ,则 )14.0(100)(+=s s s G c其渐近对数幅频特性可表示为⎪⎩⎪⎨⎧><=)25(04.0100lg20)25(100lg 20)(2ωωωωωL由0)(='ωL 求得 s rad 50='ω此时系统的相角裕度为︒<︒='-︒-︒='456.26)04.0arctan(90180cωγ 显然,系统在稳态误差满足指标要求的情况下,相角裕度不满足要求。
自动控制原理课后答案第6章

图 6-1 串联校正
为了减少校正装置的输出功率,降低系统功率损耗和成本,串联校正装置一般装设在前 向通道综合放大器之前,误差测量点之后的位置。串联校正的特点是结构简单,易于实现, 但需附加放大器,且对于系统参数变化比较敏感。 串联校正按照校正装置的特点分为超前校正、滞后校正和滞后-超前校正。校正后系统开 环传递函数为
6.1.2
常用的校正方法
在线性控制系统中,常用的校正设计方法有分析法和综合法两类。分析法又称试探法。 用分析法设计校正装置比较直观,在物理上易于实现,但设计过程带有试探性,要求设计者 有一定的工程经验。综合法又称为期望频率特性法。这种设计方法物理意义明确,但校正装 置传递函数可能较为复杂,在物理上不易于实现。 按照校正装置在系统中的位置,以及它和系统固有部分的联结方式不同,通常可分为串 联校正、反馈校正和复合校正等。 1.串联校正 串联校正是指校正装置 Gc(s)接在系统的前向通道中,与固有部分 Go(s)成串联连接的方 式,如图 6-1 所示。
5
a) 增加低频增益
b) 改善中频段斜率 图 6-4 校正前后对数幅频特性
c) 兼有两种补偿
以上三种情况需要不同的校正装置来实现。总之,校正后的控制系统应具有足够的稳定 裕量,满意的动态响应和稳态精度。但是。当难以使系统所有指标均达到较高的要求时,则 只能根据不同类型系统的要求,有侧重地解决。
6.2
1. 校正装置 控制系统的校正装置可以是电气的、机械的或其它性质的物理元部件。常用的电气校正 装置分为有源和无源两种。 常见的无源校正装置有 RC 双端口电路网络、微分变压器等。这种校正网络原理、线路 简单,容易理解,且无需外加直流电源;但其缺点是本身没有增益,负载效应明显,因此, 在接入系统时为消除负载效应,一般需增设隔离放大器。有源校正装置是以运算放大器为核 心元件的有源电路网络。由于运算放大器本身具有高输入阻抗和低输出阻抗的特点及较强的 带负载能力,接入系统时不需外加隔离放大器,而且这种校正网络调节使用方便,因此被广 泛应用于工程实际中。 2. 校正目标 频域法校正主要是改善系统的开环对数幅频特性曲线形状,其目标就是通过增设适当的 校正环节,使校正后系统开环对数幅频特性曲线的三个频段都能满足要求。即: (1) 低频段要有一定的高度和斜率,以满足稳态精度的要求,因此校正后的系统应该是 Ⅰ型或Ⅱ型系统。 (2) 中频段的截止频率 ωc 要足够大,以满足动态快速性的要求;中频段的斜率要求为 -20dB/edc,并有足够的宽度,即 H = 4~20,以满足相对稳定性的要求。 (3) 高频段要有较大的负斜率,一般应≤-40dB/edc,以满足抑制高频噪声的要求。 这样,从系统开环对数幅频特性曲线来看,需要进行校正的情况通常可分为如下三种基 本类型。 (1) 如果一个系统是稳定的,而且有满意的动态性能,但稳态误差过大时,必须增加低 频段增益以减小稳态误差,如图 6-4 a 中虚线所示,同时尽可能保持中频段和高频段不变。 (2) 如果一个系统是稳定的,且具有满意的稳态精度,但其动态响应较差时,则应改变 特性的中频段和高频段,如图 6-4 b 中虚线所示,以改变截止频率和相位裕量。 (3) 如果一个系统无论其稳态还是动态响应都不满意,就是说整个特性都需要加以改 善,则必须通过增加低频增益并改变中频段和高频段的特性,如图 6-4 c 中虚线所示,这样系 统就可以满足稳态和动态性能指标的要求。
自动控制原理习题及答案

一、简答题1. 被控对象、被控量、干扰各是什么?答:对象:需进行控制的设备或装置的工作进程。
被控量:被控对此昂输出需按控制要求变化的物理量。
干扰:对生产过程产生扰动,使被控量偏离给定值的变量。
2. 按给定信号分类,控制系统可分为哪些类型?答:恒值控制系统、随动控制系统、程序控制系统。
3. 什么是系统的静态?答:被控量不随时间改变的平衡状态。
4. 什么是系统的动态?答:被控量随时间变化的不平衡状态。
5. 什么是系统的静态特性?答:系统再平衡状态下输出信号与输入信号的关系。
6. 什么是系统的动态特性?答:以时间为自变量,动态系统中各变量变化的大小、趋势以及相互依赖的关系。
7. 控制系统分析中,常用的输入信号有哪些?答:阶跃、斜坡、抛物线、脉冲。
8. (3次)传递函数是如何定义的?答:线性定常系统在零初始条件下输出响应量的拉氏变换与输入激励量的拉氏变换之比。
9. 系统稳定的基本条件是什么?答:系统的所有特征根必须具有负的实部的实部小于零。
10. 以过渡过程形式表示的质量指标有哪些?答:峰值时间t p 、超调量δ%、衰减比n d 、调节时间t s 、稳态误差e ss 。
11. 简述典型输入信号的选用原因。
答:①易于产生;②方便利用线性叠加原理;③形式简单。
12. 什么是系统的数学模型?答:系统的输出参数对输入参数的响应的数学表达式。
13. 信号流图中,支路、闭通路各是什么?答:支路:连接两节点的定向线段,其中的箭头表示信号的传送方向。
闭通路:通路的终点就是通路的起点,且与其他节点相交不多于一次。
14. 误差性能指标有哪些?答:IAE ,ITAE ,ISE ,ITSE二、填空题1. 反馈系统又称偏差控制,起控制作用是通过给定值与反馈量的差值进行的。
2. 复合控制有两种基本形式,即按参考输入的前馈复合控制和按扰动输入的前馈复合控制。
3. 某系统的单位脉冲响应为g(t)=10e -0.2t +5e -0.5t ,则该系统的传递函数G(s)为ss s s 5.052.010+++。
(完整版)自动控制原理课后习题及答案

第一章绪论1-1 试比较开环控制系统和闭环控制系统的优弊端.解答: 1 开环系统(1)长处 :构造简单,成本低,工作稳固。
用于系统输入信号及扰动作用能早先知道时,可获得满意的成效。
(2)弊端:不可以自动调理被控量的偏差。
所以系统元器件参数变化,外来未知扰动存在时,控制精度差。
2闭环系统⑴长处:不论因为扰乱或因为系统自己构造参数变化所惹起的被控量偏离给定值,都会产生控制作用去消除此偏差,所以控制精度较高。
它是一种按偏差调理的控制系统。
在实质中应用宽泛。
⑵弊端:主要弊端是被控量可能出现颠簸,严重时系统没法工作。
1-2什么叫反应?为何闭环控制系统常采纳负反应?试举例说明之。
解答:将系统输出信号引回输入端并对系统产生控制作用的控制方式叫反应。
闭环控制系统常采纳负反应。
由1-1 中的描绘的闭环系统的长处所证明。
比如,一个温度控制系统经过热电阻(或热电偶)检测出目前炉子的温度,再与温度值对比较,去控制加热系统,以达到设定值。
1-3试判断以下微分方程所描绘的系统属于何种种类(线性,非线性,定常,时变)?2 d 2 y(t)3 dy(t ) 4y(t ) 5 du (t ) 6u(t )(1)dt 2 dt dt(2) y(t ) 2 u(t)(3)t dy(t) 2 y(t) 4 du(t) u(t ) dt dtdy (t )u(t )sin t2 y(t )(4)dtd 2 y(t)y(t )dy (t ) (5)dt 2 2 y(t ) 3u(t )dt(6)dy (t ) y 2 (t) 2u(t ) dty(t ) 2u(t ) 3du (t )5 u(t) dt(7)dt解答: (1)线性定常(2)非线性定常 (3)线性时变(4)线性时变(5)非线性定常(6)非线性定常(7)线性定常1-4 如图 1-4 是水位自动控制系统的表示图, 图中 Q1,Q2 分别为进水流量和出水流量。
控制的目的是保持水位为必定的高度。
《自动控制原理》课后习题答案

掌握自动控制系统的一般概念(控制方式,分类,性能要求)给定输入量: 给定值Ug 被控制量: 加热炉的温度扰动量:加热炉内部温度不均匀或坏境温度不稳定等外部因素 被控制对象:加热器控制器:放大器、发动机和减速器组成的整体 (2)工作原理:给定值输入量Ug 和反馈量Ur 通过比较器输出 U机的转速n ,再通过减速器与调压器调节加热器的电压U 来控制炉温。
T7.(1)结构框图 略给定输入量:输入轴θr 被控制量:输出轴θc扰动量:齿轮间配合、负载大小等外部因素 被控制对象:齿轮机构 控制器: 液压马达 (2)工作原理:θUe Ug θc掌握系统微分方程,传递函数(定义、常用拉氏变换),系统框图化简;1.(a)⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=dtdu C i R u i i u iR u t ct ct t r )(02)(0)(01)()2......()1(.......... 将(2)式带入(1)式得:)()(01)(021)(0t r t t t u dtdu C R u R R u =++拉氏变换可得)()(01)(0221s r s s U CsU R u R R R =+⎪⎪⎭⎫ ⎝⎛+整理得21212)()(0)(R R Cs R R R U U G S r S s ++==1.(b)⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=dtdi L u R u i i u iR u Lt o t Lt t r )(2)(0)(01)()2........()1......(.......... 将(2)式代入(1)式得)()(0221)(01t r t t u u R R R dt u L R =++⎰ 拉氏变换得)()(0221)(01s r s s U U R R R U Ls R =++ 整理得LsR R R R LsR U U G s r s s )(21212)()(0)(++==2.1)微分方程求解法⎪⎪⎪⎩⎪⎪⎪⎨⎧+=-=+=-31224203221211111Rudt du c Ruu R u R u Rudt du c R u u c c c c c c c c r中间变量为1c u,2c u及其一阶导数,直接化简比较复杂,可对各微分方程先做拉氏变换⎪⎪⎪⎩⎪⎪⎪⎨⎧+=-=+=-3122423221211111RUU sc R U U RU R U RUU sc R U U c c c c c c c c r移项得⎪⎪⎪⎩⎪⎪⎪⎨⎧++==++=2432432211211)11()111(c c c c rU R R sc RU R RU U U R R sc R U可得11121432432143214320)111()11(RR sc R R R R sc R R R R R R R R sc R R sc Ur U ++++=++++=2)复阻抗法⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧+=+++=++=2211232223234212121111*11*11sc R sc z U sc R sc z U sc R sc R R z sc R sc R R z r解得:1112143243RR sc R R R R sc R R Ur U ++++=3.分别以m 2,m 1为研究对象(不考虑重力作用)⎪⎪⎩⎪⎪⎨⎧--=---=11212121121222222)()()(ky dty y d c dt y d m dty y d cdt dy c t f dt y d m 中间变量含一阶、二阶导数很难直接化简,故分别做拉氏变换⎪⎩⎪⎨⎧--=---=112112112122222)()()(kY Y Y s c Y s m Y Y s c sY c s F Y s m 消除Y1中间变量21211222))1(()(Yk s c s m sc s c s c s m s F s++-++=10.系统框图化简:o (s)o (s)o (s)1.综合点前移,分支点后移o (s)1231133221231133221133()()()()()(1()())(1()())()()()()()1()()()()()()()()()()o i X s G s G s G s X s G s H s G s H s G s H s G s G s G s G s H s G s H s G s H s G s H s G s H s =+++=++++11.系统框图化简:2.交换综合点,合并并联结构3.化简12341234243114412123123212343231344()()()()()()1()()()()(()/()()()/()()()/()())()()()1()()()()()()()()()()()()()()(o i X s G s G s G s G s X s G s G s G s G s H s G s H s H s G s G s H s G s G s G s G s G s G s G s G s H s G s G s G s G s H s G s G s H s G s G s H =+--+=+--+)s第三章掌握时域性能指标,劳斯判据,掌握常用拉氏变换-反变换求解时域响应,误差等2.(1)求系统的单位脉冲响应12()()()TsY(s)+Y(s)=KX(s)X(s)=1Y(s)=1()=20e t tTT y t y t Kx t K Ts k w t eT•--+=+=已知系统的微分方程为:对微分方程进行零初始条件的拉氏变换得当输入信号为单位脉冲信号时,所以系统输出的拉式变换为:进行拉式反变换得到系统的时域相应2.(2)求系统的单位阶跃响应,和单位斜坡响应22()()()TsY(s)+Y(s)=KX(s)X(s)=5Y(s)=1111110()10-10e ;1X(s)=Y(s)=t T y t y t Kx t KTK Ts Ts Ts sK s s s y t s •-+=+++=-=-=已知系统的微分方程为:对微分方程进行零初始条件的拉氏变换得当输入信号为单位阶跃信号时,所以系统输出的拉式变换为:进行拉式反变换得到系统的时域相应当输入信号为单位阶跃信号时,所以系统输出的拉式变换为:22222110550111()510t+5e ;t K K KT T K Ts s s s Ts s s Ts y t -=-+=-++++=-+进行拉式反变换得到系统的时域相应9.解:由图可知该系统的闭环传递函数为22()(22)2b kG s s k s kτ=+++又因为:2%0.20.52222r n n t k kσξωτω⎧⎪==⎪-⎪==⎨⎪=+⎪⎪=⎩ 联立1、2、3、4得0.456; 4.593;10.549;0.104;n K ξωτ==== 所以0.76931.432p ds nt s t sπωξω====10.解:由题可知系统闭环传递函数为210()1010b kG s s s k=++ 221010n nk ξωω=⎧⎪⎨=⎪⎩ 当k=10时,n ω=10rad/s;ξ=0.5;所以有%16.3%0.3630.6p s n e t s t sπξσξω-⎧⎪==⎪⎪⎪==⎨⎪⎪⎪==⎪⎩当k=20时,n ω=14.14rad/s;ξ=0.35;所以有%30.9%0.2430.6ps n e t s t sπξσξω-⎧⎪==⎪⎪⎪==⎨⎪⎪⎪==⎪⎩当0<k<=2.5时,为过阻尼和临界阻尼,系统无超调,和峰值时间;其中调整时间不随k 值增大而变化;当k>2.5时,系统为欠阻尼,超调量σ%随着K 增大而增大,和峰值时间pt 随着K 增大而减小;其中调整时间s t 不随k 值增大而变化;14.(1)解,由题可知系统的闭环传递函数为32560-1403256000056014014k 00()1440kb k k k s s s ks kG s s s s k->><<∴=+++∴⎧⎨⎩∴劳斯表系统稳定的充要条件为:14.(2)解,由题可知系统的闭环传递函数为320.60.8832430.60.80010.20.80.210.8k 00(1)()(1)k b k k k kk s s s ks k s G s s s k s k-->>>>-∴+=++-+∴⎧⎪⎨⎪⎩∴劳斯表系统稳定的充要条件为:20.解:由题可知系统的开环传递函数为(2)()(3)(1)k k s G s s s s +=+-当输入为单位阶跃信号时,系统误差的拉氏变换为11()111()lim limlim ()0k ss k ss ss s s k s ss G s E G s ssE G s e →→→+=+===∞∴=又根据终值定理e 又因为25.解:由题可知系统的开环传递函数为1212()(1)(1)k k k G s T s T s =++当输入为给定单位阶跃信号时1()i X s s=,系统在给定信号下误差的拉氏变换为1101211211()111()lim limlim ()11k ss k ss ss s s k s ss G s E G s ssE G s k k e k k →→→+=+===∴=+又根据终值定理e 又因为当输入为扰动信号时1()N s s=,系统扰动信号下误差的拉氏变换为221210122212212121()111()lim limlim ()111k ss k ss ss s s k s ss ss ss ss k G s k T s E G s ssE G s k k k e k k k e e e k k →→→-+-+=+===-∴=+-∴=+=+又根据终值定理e 又因为第四章 根轨迹法掌握轨迹的概念、绘制方法,以及分析控制系统4-2 (2)G(s)=)15.0)(12.0(++s s s K;解:分析题意知:由s(0.2s+1)(0.5s+1)=0得开环极点s 1=0,s 2=-2,s 3=-5。
(完整版)自动控制原理习题及答案.doc

第一章 习题答案1-1 根据题1-1图所示的电动机速度控制系统工作原理图(1) 将a,b 与c ,d 用线连接成负反馈状态;(2) 画出系统方框图。
解 (1)负反馈连接方式为:d a ↔,c b ↔;(2)系统方框图如图解1—1 所示。
1—2 题1—2图是仓库大门自动控制系统原理示意图。
试说明系统自动控制大门开闭的工作原理,并画出系统方框图。
题1-2图 仓库大门自动开闭控制系统解 当合上开门开关时,电桥会测量出开门位置与大门实际位置间对应的偏差电压,偏差电压经放大器放大后,驱动伺服电动机带动绞盘转动,将大门向上提起。
与此同时,和大门连在一起的电刷也向上移动,直到桥式测量电路达到平衡,电动机停止转动,大门达到开启位置。
反之,当合上关门开关时,电动机带动绞盘使大门关闭,从而可以实现大门远距离开闭自动控制。
系统方框图如图解1—2所示。
1—3 题1-3图为工业炉温自动控制系统的工作原理图。
分析系统的工作原理,指出被控对象、被控量和给定量,画出系统方框图。
题1-3图 炉温自动控制系统原理图解 加热炉采用电加热方式运行,加热器所产生的热量与调压器电压c u 的平方成正比,c u 增高,炉温就上升,c u 的高低由调压器滑动触点的位置所控制,该触点由可逆转的直流电动机驱动。
炉子的实际温度用热电偶测量,输出电压f u 。
f u 作为系统的反馈电压与给定电压r u 进行比较,得出偏差电压e u ,经电压放大器、功率放大器放大成a u 后,作为控制电动机的电枢电压。
在正常情况下,炉温等于某个期望值T °C,热电偶的输出电压f u 正好等于给定电压r u .此时,0=-=f r e u u u ,故01==a u u ,可逆电动机不转动,调压器的滑动触点停留在某个合适的位置上,使c u 保持一定的数值.这时,炉子散失的热量正好等于从加热器吸取的热量,形成稳定的热平衡状态,温度保持恒定。
当炉膛温度T °C 由于某种原因突然下降(例如炉门打开造成的热量流失),则出现以下的控制过程: 控制的结果是使炉膛温度回升,直至T °C 的实际值等于期望值为止。
《自动控制原理》第六章习题答案

119第六章习题及解答6-1 试求下列函数的z 变换T ta t e =)()1(()()223e t t e t=- 21)()3(ss s E +=)2)(1(3)()4(+++=s s s s s E解 (1)∑∞=---=-==0111)(n nnaz z azza z E(2)[]322)1()1(-+=z z z T t Z由移位定理:[]333323333232)()()1()1(TTTTTTte z ez zeT ze ze zeT et Z -----+=-+=(3)22111)(ssss s E +=+=2)1(1)(-+-=z Tz z z z E (4)21)(210++++=s c s c sc s E21)1(3lim212)2(3lim23)2)(1(3lim221100=++=-=-=++==+++=-→-→→s s s c s s s c s s s c s s s2211223+++-=s s s)(22)1(23)(2TT e z ze z z z z z E ---+---=6-2 试分别用部分分式法、幂级数法和反演积分法求下列函数的z 反变换。
120()()()()11012E z z z z =-- 211213)()2(---+-+-=z zz z E 解 (1))2)(1(10)(--=z z zz E① 部分分式法)12(10210110)()2(10)1(10)(210110)2)(1(10)(-=⨯+⨯-=-+--=-+--=---=nnnT e z zz z z E z z z z zz E② 幂级数法:用长除法可得+-+-+-=+++=+-=--=---)3(70)2(30)(10)(7030102310)2)(1(10)(*3212T t T t T t t e z z z z z z z z z z E δδδ③ 反演积分法[][])()12(10)()12(10210110)(210110lim)(Re 10210lim)(Re 0*221111nT t t e nT e z zzz E s z z z z E s n nnnnnz z n nz z n --=-=⨯+⨯-=⨯=-=⋅-=-=⋅∑∞=→→-→→-δ(2) 2221)1()13(12)13(213)(-+-=+-+-=+-+-=--z z z z z z z zz zz E① 部分分式法∑∑∞=∞=---=-⎥⎦⎤⎢⎣⎡--=⨯--=----=----=--=0*222)()32()(32)()(132)(13)1(2)(13)1(2)1(31)(n n nT t n nT t nT Tt e t t Tt e z z z z z E z z z z zz E δδ121② 幂级数法:用长除法可得--------=-----=+-+-=---)3(9)2(7)(5)(3)(9753123)(*32122T t T t T t t t e zzzz z z z z E δδδδ③ 反演积分法[][]12111)3(lim!11)(Re )(-→→-⋅+-=⋅=n s z n zz zdzd z z E s nT e[]32)1(3lim 11--=++-=-→n nzz n n ns∑∞=---=*)()32()(n nT t n t e δ6-3 试确定下列函数的终值()()()11112E z Tzz =--- )208.0416.0)(1(792.0)()2(22+--=z z z zz E解 (1)∞=--=---→21111)1()1(lim zTz z e z ss(2)1208.0416.01792.0208.0416.0792.0lim)()1(lim 2211=+-=+-=-=→→z z zz E z e z z ss6-4 已知差分方程为c k c k c k ()()()-+++=4120初始条件:c(0)=0,c(1)=1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n
m
n−m
=
(0 − 0.001 − 4 − 5) − (−0.03) ≈ −2.99 4−3
渐近线与实轴的夹角
θ=
± (2k + 1)π ± (2k + 1)π = = ±60o ,180o n−m 4 −1 (k = 0,1)
系统的根轨迹如图 6.2(b)所示。
引入开环偶极子的滞后校正对根轨迹不产生显著影响,既能保证系统瞬态特性又 满足了稳态性能指标。 K 题 6.5 单位负反馈系统的对象传递函数为 G p ( s) = ,设计相位超前校正, s ( s + 4) 使校正后系统的超调量不大于10% ,上升时间不大于 2 秒,单位斜坡函数的稳态误差 不大于 0.5 。 解:采用根轨迹校正方法。 (1) 根据期望动态性能指标确定闭环主导极点的位置。为使 δ % ≤ 10% 并留有余 2 地(以确保在其他极点的作用下性能指标仍能得到满足) ,选阻尼比 ξ = 。由于 2 ξ = cos θ , 主导极点应位于如图 6.3 所示的θ = 45o 的射线上。 再运用二阶系统调节时 3 间的近似公式 ts = ,可选择ωn = 3 ,以保证 ts ≤ 2s 并留有余地。因此主导极点为
ww
w. 课后 kh 答案 da 网 w. co m
p1 p3
× ×
Im
×
×
Re
p2
图 6.2 题 6.4 用图
ξωn
3 2 3 2 ±j 。 2 2 (2) 画出未校正系统的根轨迹图,如图 6.3 中的实线所示。由图可见,根轨迹不 通过期望主导极点,因此不能通过调节开环放大系数来满足动态性能指标。 − p1,2 = −ξωn ± jωn 1 − ξ 2 = −
ww
w. 课后 kh 答案 da 网 w. co m
p2×
图 6.3 题 6.5 用图
zc
×
45 ×
Re
∠( p1 + zc ) − ∠( p1 + pc ) = α = 3.4o
由此可见, 只要从图中的– p1 点作夹角为 3.4o 的两条射线, 它们和实轴相交的两点
11.1× 6 = 2.22 4 × 7.5 单位斜坡函数的稳态误差 e(∞) = 1/ K ′ = 0.45 < 0.5 ,因此满足稳态性能指标。校
w. 课后 kh 答案 da 网 w. co m
题 6.4 单位负反馈系统的对象传递函数为 G p ( s ) =
K , 设计相位滞后 s ( s + 4)( s + 5)
条件可算出– p1 点的根轨迹增益为 K g = 20.6 ,因此系统的速度误差系数
kv =
稳态性能指标不符合要求。
Kg 4×5
p1 ×
pc
Im
(3) 为了使系统根轨迹向左偏移,进行相位超前校正。校正装置环节为 s + zc Gc ( s ) = | z c |<| p c | s + pc 校正后系统的开环传递函数为 K g ( s + zc ) G ( s ) = Gc ( s )G p ( s ) = s ( s + 4)( s + pc ) 为了使期望主导极点位于根轨迹上,根据相角条件应有 ∠( p1 + zc ) − ∠p1 − ∠( p1 + 4) − ∠( p1 + pc ) = (2k + 1)π 由图可知, ∠p1 = 135o , ∠( p1 + 4) = 48.4o ,代入上式,并取 k = 1 可得:
ww
校正使阻尼比为 0.7,稳态速度误差系数为 30。 解:采用根轨迹校正方法。 (1) 作系统根轨迹如图 6.2(a)所示,并在图中作θ = cos −1 ξ = 45o 的两条射线 OA 和 OB , 分别与根轨迹交于– p1 和– p2 点。 测得– p1 和– p2 的实部为–1.2, 因此– p1 和– p2 0.33 的参数为ξ = 0.7 ,ωn = = 1.71 ,即– p1 和– p2 满足期望主导极点的要求。用幅值 0.5
第 6 章 控制系统的设计
6.1 学习要点
1 控制系统校正的概念,常用的校正方法、方式; 2 各种校正方法、方式的特点和适用性; 3 各种校正方法、方式的一般步骤。
题 6.1 校正有哪些方法?各有何特点? 答:控制系统校正有根轨迹方法和频率特性方法。 根轨迹法是一种直观的图解方法, 它显示了当系统某一参数(通常为开环放大系数) 从零变化到无穷大时,如何根据开环零极点的位置确定全部闭环极点的位置。因此, 根轨迹校正方法是根据系统给定的动态性能指标确定主导极点位置,通过适当配置开 环零极点,改变根轨迹走向与分布,使其通过期望的主导极点,从而满足系统性能要 求。 频率特性是系统或元件对不同频率正弦输入信号的响应特性。频域特性简明地表 示出了系统各参数对动态特性的影响以及系统对噪声和参数变化的敏感程度。因此, 频率特性校正方法是根据系统性能要求,通过适当增加校正环节改变频率特性形状, 使其具有合适的高频、中频、低频特性和稳定裕量,以得到满意的闭环品质。由于波 德图能比较直观的表示改变放大系数和其他参数对频率特性的影响,所以,在用频率 法进行校正时,常常采用波德图方法。 系统校正要求通常是由使用单位和被控对象的设计单位以性能指标的形式提出。 性能指标主要有时域和频域两种提法。 针对时域性能指标, 通常用根轨迹法比较方便; 针对频域性能指标, 用频率法更为直接。 根轨迹法是一种直接的方法, 常以超调量δ % 和调节时间 ts 作为指标来校正系统。 频域法是一种间接的方法, 常以相位裕量γ (ωc ) 和 速度误差系数 kv 作为指标来校正系统。
即是所求的校正环节的零点– zc 和极点– pc 。 这样的作图不是惟一的, 可按如下方法作 图:从– p1 点作平行于实轴的射线 p1 A ,再作 ∠Ap1 B 的角平分线 p1C ,然后作 p1 D 和
p1 E ,它们和 p1C 的夹角均为α / 2 = 1.7o , p1 D 和 p1 E 与实轴的交点即为所求的极点 – pc 和零点– zc 。如图 6.3 所示, − zc = −6, − pc = −7.5 ,校正环节为 s+6 Gc ( s ) = s + 7.5 (4) 检验稳态指标。由幅值条件可知 | p1 + zc | Kg =1 | p1 || p1 + 4 || p1 + pc | 求得 K g = 11.1 ,由此得开环放大系数 K′ =
⊗
控制器
对 象
输出
反馈校正
图6.1 串联校正和反馈校正
串联校正方式因其实现简单而最为常见。反馈校正除能获得串联校正类似的校正 效果外,还具有串联校正所不具备的特点: (1)在局部反馈校正中,信号从高能级被 引向低能级,因此不需要经过放大; (2)能消除外界扰动或反馈环内部系统参数波动 对系统控制性能的影响,提供系统更好的抗干扰能力。 题 6.3 串联超前、串联滞后与串联滞后–超前校正各有何适应条件? 答: (1) 串联超前校正通常是在满足稳态精度的条件下, 用来提高系统动态性能的一 种校正方法。从波德图来看,为满足控制系统的稳态精度要求,往往需要增加系统的 开环增益,这样就增大了幅值穿越频率,相应地减小了相位裕量,易导致系统不稳定。 因而在系统中加入一个相位超前的校正装置,使之在穿越频率处相位超前,以增加相 位裕量。这样既能使开环增益足够大,满足稳态精度的要求,又能提高系统的稳定性。 串联超前校正适合需要附加相角位移在 0∼65°范围的系统。 超前校正的结果可以使系统的闭环频带宽度 BW 增加,从而使动态响应加快;不 改变低频段对正弦输入的稳态误差性能;超前校正装置所要求的时间常数是容易满足 的。但可能带来因闭环频带宽度 BW 加宽引入高频噪声,需要增加增益等问题。 (2)滞后校正有两种作用。一般地,如果稳态性能满足要求,而其动态性能不满 足要求,并希望降低频带宽时,可用滞后校正来降低其穿越频率,以满足其动态性能 指标。这种滞后校正的结果可以增加系统的相对稳定性,有利于提高系统放大系数以 满足稳态精度的要求。由于高频段的衰减,系统的抗高频扰动能力也增强了。但同时 由于频带宽度变窄,瞬态响应将变慢。 如果一个反馈控制系统的动态性能是满意的,为了改善其稳态性能,而又不致影 响其动态性能,可以采用滞后较正。此时就要求在频率特性低频段提高其增益,而在 幅值穿越频率附近仍保持其相位移大小几乎不变。 这两种作用中,前者是降低了幅值穿越频率并衰减了高频段,后者是提高低频段 增益。但就滞后校正本身而言,其主要作用是在高频段造成衰减,以使系统获得充分 的相位裕量。 (3)滞后-超前校正幅频特性的前段是相位滞后部分,具有使高频段增益衰减的 作用,所以容许在低频段提高增益,以改善系统的稳态特性。幅频特性的后段是相位 超前部分,因增加了相位超前角度,从而使相位裕量增大,改善了系统的动态响应。 因此,滞后-超前校正常适用于系统对稳态精度和动态性能都有进一步改善的情况。
ww
题 6.2 校正有哪些方式?各有何特点? 答:校正有串联校正方式和反馈校正方式。 校正装置串联在系统前向通道中的连接方式称为串联校正。校正装置接在系统的 局部反馈通道中的连接方式称为反馈校正。如图 6.1 所示。
干扰 参考输入
w. 课后 kh 答案 da 网 w. co m
⊗
串联校正
6.2 思考与习题祥解
= 1.03 < 30
Im
j2 5
பைடு நூலகம்闭环极点
A
s + zc | z c |>| p c | s + pc 根据第一步的计算, 应将系统开环放大系数提高 30 倍。 所引入的校正环节应满足 | zc |= 30 | pc | , 为 确 保 校 正 环 节 对 根 轨 迹 不 产 生 显 著 影 响 , 选 择 Gc ( s ) =
正后系统的根轨迹图示于图 6.4 中。