最新七年级数学上册一元一次方程中考真题汇编[解析版]

合集下载

部编数学七年级上册专题08解一元一次方程(40题)专项训练(解析版)含答案

部编数学七年级上册专题08解一元一次方程(40题)专项训练(解析版)含答案

专题08 解一元一次方程(40题) 专项训练1.(2022·河南周口·七年级期末)解方程:(1)2(3)37(1)3x x x +-=--; (2)3151123y y +-=+2.(2022·江苏扬州·七年级期末)解下列方程:(1)4x ﹣3=2(x ﹣1)(2)152126x x -+-=3.(2022·河北保定·七年级期末)解方程:(1)2(1)129x x --=; (2)13124x x +--=1.【答案】(1)2x =-;(2)1x =-.【分析】(1)依次去括号,移项,合并同类项,系数化为1,即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.(1)解:去括号得:22129x x --=,移项得:29212x x -=+,合并同类项得:714x -=,系数化为1得:2x =-,(2)方程两边同时乘以4得:2(1)(31)4x x +--=,去括号得:22314x x +-+=,移项得:23412x x -=--,合并同类项得:1x -=,系数化为1得:1x =-.【点睛】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.4.(2022·浙江丽水·七年级期末)解下列方程(1)3x +1=-2 (2)13132y y -+=-5.(2022·黑龙江·七年级期末)解下列方程:(1)862(64)x x x =--(2)231147x x +--=【答案】(1)x =2 (2)x =-2【分析】(1)先去括号,移项,合并同类项,系数化为1可得(2)去分母,去括号,移项,合并同类项,系数化为1可得(1)解:去括号得:8x =6x +8x -12移项得:8x -6x -8x =-12合并同类项得:-6x =-12系数化为1得:x =2(2)解:去分母得:7(x +2)-4(3x -1)=28去括号得:7x+14-12x +4=28移项得:7x -12x =28-14-4合并同类项得:-5x =10系数化为1得:x =-2【点睛】本题考查了解一元一次方程,熟练掌握解题步骤并小心计算是解题关键.6.(2022·福建泉州·七年级期末)解方程:714(10)3x x --=-.【答案】10x =【分析】按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可.【详解】解:去分母得:()()371210x x --=-,去括号得:3712120x x -+=-,移项得:1212037x x --=---,合并同类项得:13130x -=-,系数化为1得:10x =.【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤是解题的关键.7.(2022·河北·涿州市七年级期末)解一元一次方程(1)0.50.7 6.5 1.3x x -=-(2)1123x x --=8.(2022·陕西渭南·七年级期末)解方程:5144123x x x --+=-.9.(2022·四川眉山·七年级期末)解方程:213134x x -+-=10.(2022·河南郑州·七年级期末)解下列方程:(1)2(32)14x -=(2)13735x x x -+-=-【答案】(1)3x =(2)7x =【分析】(1)先去括号,再移项,合并同类项,化系数为 1;(2)先去分母,再去括号,移项,合并同类项,化系数为 1.(1)解:去括号,可得:6414x -=,移项,合并同类项:618x =,系数化为1,可得:3x =;(2)解:去分母,可得:155(1)7153(3)x x x --=´-+,去括号,可得:155510539x x x -+=--,移项,合并同类项,可得:1391x =,系数化为1,可得:7x =.【点睛】本题考查解一元一次方程,掌握解一元一次方程的方法是解题关键.11.(2022·新疆塔城·七年级期末)解方程:(1)()73326x x -+=(2)16136x x x -+-=-【答案】(1)6x =- (2)2x =【分析】(1)先去括号,再移项,合并同类项,最后化系数为1即可;(2)先去分母,再去括号,移项、合并同类项,最后化系数为1.(1)解:7966x x --=212x -=6x =-.(2)解:()()62166x x x --=-+714x -=-2x =.【点睛】此题考查了解一元一次方程,涉及去分母、去括号、移项,合并同类项、化系数为1等知识,解题的关键是掌握相关知识.12.(2022·福建泉州·七年级期末)解方程:2141126x x +--=.【答案】x =1【分析】按照去分母、去括号、移项、合并同类项、系数化为1的步骤解一元一次方程即可求解.【详解】去分母,得:3(2x +1)﹣(4x ﹣1)=6,去括号,得:6x +3﹣4x +1=6,移项,得:6x ﹣4x =6﹣3﹣1,合并同类项,得:2x =2,系数化为1,得:x =1;【点睛】本题考查了解一元一次方程,掌握解一元一次方程的步骤是解题的关键.13.(2022·四川广安·七年级期末)解方程:(1)()43204x x --=(2)2151136x x +--=14.(2022·黑龙江绥化·期末)解方程.(1)32185525x += (2)311043x x -=15.(2022·四川广元·七年级期末)解方程:21252x x x +--=-.16.(2022·河北承德·七年级期末)解下列方程:①2342x x -=- ②123123x x +--=.17.(2022·黑龙江牡丹江·七年级期末)解方程:312123x x x ---+=.18.(2022·安徽阜阳·七年级期末)2121134-+=-x x .19.(2022·贵州毕节·七年级期末)解方程:(1)2(3)3(1)6x x -+-=(2)123126x x +--=【答案】(1)3x = (2)0x =20.(2022·黑龙江大庆·期末)解方程:(1)3(x ﹣2)=2﹣5(x ﹣2); (2)223146x x +--=21.(2022·河南许昌·七年级期末)解方程:(1)83(21)172(3)--=++x x(2)14527-+-=-x x x22.(2022·宁夏·七年级期末)解下列方程:(1)5(2)3(21)7x x +--=(2)123123x x +--=23.(2022·陕西·西安七年级期末)解方程:(1)3x ﹣2(10﹣x )=5;(2)123146x x +--=.【答案】(1)x =5; (2)x =-3【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.(1)解:去括号得:3x -20+2x =5,移项合并得:5x =25,解得:x =5;(2)去分母得:3x +3-4x +6=12,移项合并得:-x =3,解得:x =-3;【点睛】此题考查了解一元一次方程,熟练掌握解方程的基本步骤是解本题的关键.24.(2022·辽宁·朝阳七年级期末)解方程:(1)2(21)37x x -=-; (2)341125x x -+-=.25.(2022·海南·七年级期末)解下列方程:(1)()()4321x x -+=-; (2)2543137x x +--=.26.(2022·安徽·七年级期末)解方程:123152x x -+-=27.(2022·山东聊城·七年级期末)解下列一元一次方程:(1)()()73124x x -+=- (2)121123x x --+=【答案】(1)4x =-(2)5x =【分析】(1)根据去括号,移项,合并同类项的步骤解一元一次方程即可;(2)根据去分母,去括号,移项,合并同类项的步骤解一元一次方程即可;28.(2022·湖南永州·七年级期末)解方程:(1)()()31241x x +=-; (2)5121136x x +--=.29.(2022·云南临沧·七年级期末)解方程:(1)4x -4=6-x(2)142123x x ---=【答案】(1)2(2)-1【分析】(1)根据解方程的步骤求解即可;(2)根据解方程的步骤求解即可.(1)解:4x -4=6-x ,移项得4x +x =6+4,合并同类项得5x =10,系数化1得x =2;(2)解:去分母得 3(x -1)-2(4x -2)=6,去括号得 3x -3-8x +4=6,移项合并得 -5x =5,系数化1得 x =-1;【点睛】本题考查了一元一次方程的解法,解题的关键是熟练掌握解方程的步骤.30.(2022·山东聊城·七年级期末)解下列方程:(1)32(3)23(21)--=--x x(2)332164x x +-=-31.(2022·福建龙岩·七年级期末)解方程:(1)6742x x -=-;(2)3157146y y --=+.32.(2022·山东威海·期末)解方程:(1)42(4)2(1)x x -+=-; (2)121(7)(5)352x x +=--; (3)0.30.40.50.220.20.3x x --+=.33.(2022·山东烟台·期末)解方程:(1)0.170.210.70.03x x--=(2)31423x x--+=∴x =7.【点睛】本题考查一元一次方程的应用,熟练掌握一元一次方程的解法是解题关键.34.(2022·山东济南·期末)解方程:(1)51263x x x +--=- (2)20.820.50.4x x --=35.(2022·吉林四平·七年级期末)某同学解方程12324x x +-=+的过程如下,请仔细阅读,并解答所提出的问题:解:去分母,得()()2123x x +=-+.(第一步)去括号,得2223x x +=-+.(第二步)移项,得2223x x +=-+.(第三步)合并同类项,得33x =.(第四步)系数化为1,得1x =.(第五步)(1)该同学解答过程从第___________步开始出错,错误原因是____________________;(2)写出正确的解答过程.【答案】(1)一,漏乘不含分母的项(2)见解析.【分析】(1)观察第一步,可得结论;(2)按解一元一次方程的一般步骤求解即可.(1)解:方程去分母,得2(x +1)=(2-x )+12,所以该同学从第一步就出错了,错误的原因是去分母时,不含分母的项漏乘了.故答案为:一,漏乘不含分母的项;(2)解:去分母,得2(x +1)=(2-x )+12,去括号,得2x +2=2-x +12,移项,得2x +x =2-2+12,合并同类项,得3x =12,系数化为1,得x =4.【点睛】本题主要考查了解一元一次方程,掌握解一元一次方程的一般步骤是解决本题的关键.36.(2022·河南开封·七年级期末)下面是某同学解方程的过程,请认真阅读并完成相应的任务:解方程:51263x x x +--=-解:去分母,得()()125621x x x -+=--………………第一步去括号,得125622x x x -+=-+ ……………………第二步移项,得621252x x x --+=--+ ……………………第三步合并同类项,得515x -=- ………………………………第四步系数化为1,得3x = ………………………………………第五步(1)任务一:填空:①以上解方程步骤中,第一步去分母的依据是___.②第___步开始出现错误,这一步错误的原因是.(2)任务二:请写出本题正确的解题过程.(3)任务三:请你根据平时的学习经验,在解方程时还需注意的事项提一条合理化建议.【答案】(1)①等式的基本性质二;②二,去括号时没有变符号;(2)1x =(3)去分母时要注意每一项都要乘到,(答案不唯一,合理就行)【分析】(1)观察这位同学解方程的步骤,利用等式的基本性质及去括号可进行求解;(2)根据一元一次方程的解法可直接进行求解;37.(2022·吉林长春·七年级期末)阅读下面方程的求解过程:解方程:31421 25x x-+=-解15x﹣5=8x+4﹣1,(第一步)15x﹣8x=4﹣1+5,(第二步)7x=8,(第三步)78x=.(第四步)上面的求解过程从第 步开始出现错误;这一步错误的原因是 ;此方程正确的解为 .38.(2022·山东滨州·七年级期末)学习了一元一次方程的解法后,老师布置了这样一道计算题3157146x x ---=,甲、乙两位同学的解答过程分别如下:甲同学:解方程3157146x x ---=.解:3157121121246x x --´-´=´ 第①步3(31)122(57)x x --=- 第②步3112107x x --=- 第③步3107112x x -=-++ 第④步76x -= 第⑤步67x =-. 第⑥步乙同学:解方程3157146x x ---=.解:31571211246x x --´-=´ 第①步3(31)12(57)x x --=- 第②步3311014x x --=- 第③步3101413x x -=-++ 第④步710x -=- 第⑤步107x =-. 第⑥步老师发现这两位同学的解答过程都有错误,请回答以下问题:(1)甲同学的解答过程从第__________步开始出现错误(填序号);(2)乙同学的解答过程从第__________步开始出现错误(填序号);错误的原因是_________________________.(3)请写出正确的解答过程.【答案】(1)③(2)①,错用等式的性质2(方程两边漏乘)(3)1x =-【分析】准确运用一元一次方程的解法步骤:去分母、去括号、移项、合并同类项、化系数为1,即可得出答案.39.(2022·浙江台州·七年级期末)解方程:213x +﹣1016x +=1.甲、乙两位同学的解答过程如下甲同学:解:213x +×6﹣1016x +×6=1第①步2(2x +1)﹣10x +1=1⋯⋯第②步4x +2﹣10x +1=1⋯⋯第③步4x ﹣10x =1﹣2﹣1⋯⋯第④步﹣6x =﹣2⋯⋯第⑤步x =13……第⑥步乙同学:解:426x +﹣1016x +=1⋯⋯第①步421016x x +-+=1⋯⋯第②步636x -+=1⋯⋯第③步﹣6x +3=6⋯⋯第④步﹣6x =3⋯⋯第⑤步x =﹣12⋯⋯第⑥步老师发现这两位同学的解答过程都有错误.(1)请你指出甲、乙两位同学分别从哪一步开始出错,甲:第 步,乙:第 步(填序号);(2)请你写出正确的解答过程.40.(2022·浙江宁波·七年级期末)在解方程231136x x -=-时,小元同学的解法如下: 41(31)x x =--……第①步4131x x =--……第②步70x =……第③步0x =……第④步小元同学的解法正确吗?若不正确,请指出他在第 步开始出现错误,并写出正确的解题过程:【答案】小元同学的解法不正确,①,正确的解题过程见解析【分析】他在第①步开始出现错误,应该是:4x =6-(3x -1),根据解一元一次方程的一般步骤,写出正确的解题过程即可.【详解】解:小元同学的解法不正确,他在第①步开始出现错误,正确的解题过程如下:去分母得:46(31)x x =--,去括号得:4631x x =-+移项合并同类项得:77x = 解得:1x =【点睛】此题主要考查了解一元一次方程,解题的关键是熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.。

最新人教版初中数学七年级数学上册第三单元《一元一次方程》测试(包含答案解析)

最新人教版初中数学七年级数学上册第三单元《一元一次方程》测试(包含答案解析)

一、选择题1.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ).A .4B .8C .±4D .±82.某公司今年2月份的利润为x 万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)( )A .(x ﹣8%)(x+10%)B .(x ﹣8%+10%)C .(1﹣8%+10%)xD .(1﹣8%)(1+10%)x 3.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( )A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x ) 4.下列去括号正确的是( )A .112222x y x y ⎛⎫ =⎭-⎪⎝--- B .()12122x y x y ++=+- C .()16433232x y x y --+=-++ D .()22x y z x y z +-+=-+ 5.把有理数a 代数410a +-得到1a ,称为第一次操作,再将1a 作为a 的值代入410a +-得到2a ,称为第二次操作,...,若a =23,经过第2020次操作后得到的是( )A .-7B .-1C .5D .116.下列各式中,符合代数书写规则的是( )A .273xB .14a ⨯C .126p -D .2y z ÷ 7.下列去括号运算正确的是( )A .()x y z x y z --+=---B .()x y z x y z --=--C .()222x x y x x y -+=-+D .()()a b c d a b c d -----=-+++ 8.下列说法正确的是( )A .单项式34xy -的系数是﹣3B .单项式2πa 3的次数是4C .多项式x 2y 2﹣2x 2+3是四次三项式D .多项式x 2﹣2x +6的项分别是x 2、2x 、6 9.下列式子中,是整式的是( )A .1x +B .11x +C .1÷xD .1x x+ 10.古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13=3+10B .25=9+16C .36=15+21D .49=18+31 11.若252A x x =-+,256B x x =--,则A 与B 的大小关系是( ) A .A B > B .A B = C .A B < D .无法确定 12.下列各对单项式中,属于同类项的是( )A .ab -与4abcB .213x y 与212xyC .0与3-D .3与a二、填空题13.多项式2213383x kxy y xy --+-中,不含xy 项,则k 的值为______. 14.当k =_________________时,多项式()221325x k xy y xy +----中不含xy 项.15.在一列数a 1,a 2,a 3,a 4,…a n 中,已知a 1=2,a 2111a =-,a 3211a =-,a 4311a =-,…a n n 111a -=-,则a 2020=___. 16.a -b ,b -c ,c -a 三个多项式的和是____________17.合并同类项(1)21123x x x --=____________________;(按字母x 升幂排列) (2)3222232223x y x y y x x y --+=_____________________;(按字母x 降幂排列) (3)222234256a b ab a b =_____________________;(按字母b 降幂排列) 18.王马虎同学在做有理数的加减法时,将一个100以内的含两位小数的数看错了,他将小数点前后的两位数看反了(比如56.78错看成了78.56),然后用看错的数字减3.5,发现差恰好就是原正确数字的2倍,则正确的结果应该是_____.19.多项式3x |m |y 2+(m +2)x 2y -1是四次三项式,则m 的值为______.20.请根据给出的x ,-2,y 2组成一个单项式和一个多项式________________三、解答题21.计算:(1)()()312⨯-+-(2)2235223x x x x -+-+-22.我们将不大于2020的正整数随机分为两组.第一组按照升序排列得到121010a a a <<<,第二组按照降序排列得到121010b b b >>>, 求112210101010a b a b a b -+-++-的所有可能值.23.学习了整式的加减运算后,张老师给同学们布置了一道课堂练习题“当2a =-,2018b =,求222221(324)2(23)2()12a b ab a a b a ab a b -+--++-的值”.小明做完后对同桌说:“老师给的条件2018b =是多余的,这道题不给b 的值,照样可以求出结果来”.同桌不相信他的话.亲爱的同学们,你相信小明的说法吗?24.(规律探究题)用计算器计算下列各式,将结果填写在横线上.99999×11=__________;99999×12=__________;99999×13=__________;99999×14=__________.(1)你发现了什么?(2)不用计算器,你能直接写出99999×19的结果吗?25.已知,,a b c 在数轴上的位置如图所示,解答下列问题.(1)化简:||||||a b c b b a +--+-;(2)若a 的绝对值的相反数是2,b --的倒数是它本身,24c =,求2()a b c a b c -++-+-的值.26.化简并求值:已知2232A a b ab abc =-+,小明错将“2A B -”看成“2A B +”,算得结果22434C a b ab abc =-+.(1)计算B 的表达式;(2)小强说正确结果的大小与c 的取值无关,对吗?请说明理由.(3)若18a =,15b = ,求正确结果的代数式的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据单项式的定义可得8mx y 和36n x y 是同类项,因此可得参数m 、n ,代入计算即可. 【详解】解:由8mx y 与36n x y 的和是单项式,得 3,1m n ==.()()333164m n +=+=,64的平方根为8±.故选D .【点睛】本题主要考查单项式的定义,关键在于识别同类项,根据同类项计算参数. 2.D解析:D【分析】首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润.【详解】解:由题意得3月份的产值为(1﹣8%)x ,4月份的产值为(1﹣8%)(1+10%)x . 故选:D .【点睛】本题考查了列代数式,正确理解增长率以及下降率的定义是关键.3.B解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x ),五月份的产量是100(1+x )2.故答案选B.考点:列代数式.4.D解析:D【分析】根据整式混合运算法则和去括号的法则计算各项即可.【详解】 A. 112222x y x y ⎛⎫ =⎭-⎪⎝--+,错误; B. ()12122x y x y ++=++,错误; C. ()136433222x y x y --+=-+-,错误; D. ()22x y z x y z +-+=-+,正确;故答案为:D .【点睛】本题考查了整式的混合运算,掌握整式混合运算法则和去括号的法则是解题的关键. 5.A解析:A【分析】先确定第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可.【详解】解:第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;第7次操作,a 7=|-7+4|-10=-7;…第2020次操作,a 2020=|-7+4|-10=-7.故选:A .【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.6.A解析:A【分析】根据代数式的书写要求判断各项.【详解】A 、273x 符合代数书写规则,故选项A 正确. B 、应为14a ,故选项B 错误; C 、应为136p,故选项C 错误; D 、应为2y z,故选项D 错误; 故选:A .【点睛】此题考查代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.7.D解析:D【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【详解】A. ()x y z x y z --+=-+-,故错误;B. ()x y z x y z --=-+,故错误;C. ()222x x y x x y -+=--,故错误;D. ()()a b c d a b c d -----=-+++,正确.故选:D【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.8.C解析:C【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【详解】解:A 、单项式34xy -的系数是34-,此选项错误; B 、单项式2πa 3的次数是3,此选项错误;C 、多项式x 2y 2﹣2x 2+3是四次三项式,此选项正确;D 、多项式x 2﹣2x+6的项分别是x 2、﹣2x 、6,此选项错误;故选:C .【点睛】本题考查了单项式及多项式的定义,解题的关键是牢记单项式的系数、次数及多项式的次数、项数,难度不大.9.A解析:A【分析】根据整式的定义即单项式和多项式统称为整式,找出其中的单项式和多项式即可.【详解】解:A. 1x +是整式,故正确; B. 11x +是分式,故错误; C. 1÷x 是分式,故错误;D.1xx是分式,故错误.故选A.【点睛】本题主要考查了整式,关键是掌握整式的概念.10.C解析:C【分析】本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为12n(n+1)和12(n+1)(n+2),所以由正方形数可以推得n的值,然后求得三角形数的值.【详解】∵A中13不是“正方形数”;选项B、D中等式右侧并不是两个相邻“三角形数”之和.故选:C.【点睛】此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.11.A解析:A【分析】作差进行比较即可.【详解】解:因为A-B=(x2-5x+2)-( x2-5x -6)=x2-5x+2- x2+5x +6=8>0,所以A>B.故选A.【点睛】本题考查了整式的加减和作差比较法,若A-B>0,则A>B,若A-B<0,则A<B,若A-B=0,则A=B.12.C解析:C【分析】根据同类项的定义逐个判断即可.【详解】A.﹣ab与4abc所含字母不相同,不是同类项;B .213x y 与12x y 2所含相同字母的指数不相同,不是同类项; C .0与﹣3是同类项;D .3与a 不是同类项.故选C .【点睛】本题考查了同类项,能熟记同类项的定义是解答本题的关键. 二、填空题13.【分析】根据不含xy 项即xy 项的系数为0求出k 的值【详解】解:原式∵不舍项∴故答案为【点睛】本题考查了多项式要求多项式中不含有那一项应让这一项的系数为0 解析:19【分析】根据不含xy 项即xy 项的系数为0求出k 的值.【详解】 解:原式2213383x k xy y ⎛⎫=+--+ ⎪⎝⎭,∵不舍xy 项,∴1303k -=,19k =, 故答案为19. 【点睛】 本题考查了多项式,要求多项式中不含有那一项,应让这一项的系数为0.14.3【分析】先合并同类项然后使xy 的项的系数为0即可得出答案【详解】解:=∵多项式不含xy 项∴k-3=0解得:k=3故答案为:3【点睛】本题考查了多项式的知识属于基础题解答本题的关键是掌握合并同类项的解析:3【分析】先合并同类项,然后使xy 的项的系数为0,即可得出答案.【详解】解:()221325x k xy y xy +----=()22335x k xy y +---, ∵多项式不含xy 项,∴k-3=0,解得:k=3.故答案为:3.【点睛】本题考查了多项式的知识,属于基础题,解答本题的关键是掌握合并同类项的法则. 15.【分析】首先分别求出n=234…时的情况观察它是否具有规律再把2020代入求解即可【详解】∵a1=2∴a21;a3;a42;…发现规律:每3个数一个循环所以2020÷3=673…1则a2020=a1解析:【分析】首先分别求出n=2、3、4…时的情况,观察它是否具有规律,再把2020代入求解即可.【详解】∵a 1=2,∴a 2111a ==--1;a 32111a 2==-;a 4311a ==-2;…, 发现规律:每3个数一个循环,所以2020÷3=673…1,则a 2020=a 1=2.故答案为:2.【点睛】本题考查了找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.而具有周期性的题目,找出周期是解题的关键.16.0【解析】(a-b )+(b-c )+(c-a )=a-b+b-c+c-a=a-a+b-b+c-c=0故答案为0 解析:0【解析】(a-b )+(b-c )+(c-a )=a-b+b-c+c-a=a-a+b-b+c-c=0,故答案为0.17.【分析】(1)先合并同类项再将多项式按照字母x 的次数由小到大重新排列即可;(2)先合并同类项再将多项式按照字母x 的次数由大到小重新排列即可;(3)先合并同类项再将多项式按照字母b 的次数由大到小重新排 解析:256x x -+ 32222x y x y -- 221022b ab a -- 【分析】 (1)先合并同类项,再将多项式按照字母x 的次数由小到大重新排列即可;(2)先合并同类项,再将多项式按照字母x 的次数由大到小重新排列即可;(3)先合并同类项,再将多项式按照字母b 的次数由大到小重新排列即可.【详解】解:(1)2222111155232366x x x x x x x x x x ⎛⎫--=-+=-=-+ ⎪⎝⎭; 故答案为:256x x -+; (2)解:322223223222232x y x y y x x y x y x y --+=--; 故答案为:32222x y x y --;(3)解:222222223425621021022a b ab a b a b ab b ab a +--+=-+-=--; 故答案为:221022b ab a --.【点睛】此题考查整式的降幂及升幂排列,合并同类项法则,将多项式按照某个字母重新排列时注意该项的次数及符号,利用交换律将多项式重新排列.18.32【分析】根据用看错的数字减35发现差恰好就是原正确数字的2倍利用有理数的加减混合运算即可求解【详解】∵100以内的含两位小数的数看错了根据归纳猜想得:原数为1432看错的两位数为32143214解析:32.【分析】根据用看错的数字减3.5,发现差恰好就是原正确数字的2倍,利用有理数的加减混合运算即可求解.【详解】∵100以内的含两位小数的数看错了,根据归纳猜想得:原数为14.32,看错的两位数为32.14,32.14﹣3.5=28.64,14.32×2=28.64.∴32.14﹣3.5=2×14.32.故答案为14.32.【点睛】本题考查有理数的加减混合运算,解题的关键是利用探究猜想的方法进行计算.19.2【分析】根据四次三项式的定义可知该多项式的最高次数为4项数是3所以可确定m的值【详解】解:∵多项式3x|m|y2+(m+2)x2y-1是四次三项式∴+2=4∴m=2故答案为2【点睛】本题考查了与多解析:2【分析】根据四次三项式的定义可知,该多项式的最高次数为4,项数是3,所以可确定m的值.【详解】解:∵多项式3x|m|y2+(m+2)x2y-1是四次三项式,m+≠∴m+2=4,20∴m=2.故答案为2.【点睛】本题考查了与多项式有关的概念,解题的关键理解四次三项式的概念,多项式中每个单项式叫做多项式的项,有几项叫几项式,这些单项式中的最高次数,就是这个多项式的次数.20.-2xy2;-2x+y2;【分析】根据单项式的定义和多项式的定义即可得出答案单项式的定义:数或字母的积组成的式子叫做单项式单独的一个数或字母也是单项式几个单项式的和叫做多项式每个单项式叫做多项式的项解析:-2xy 2;-2x+y 2;【分析】根据单项式的定义和多项式的定义即可得出答案.单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.【详解】由x 、-2、y 2组成一个单项式,这个单项式可以为-2xy 2,由x 、-2、y 2组成一个二项式,这个二次项式可以为-2x+y 2.故答案为:-2xy 2;-2x+y 2;【点睛】此题考查单项式,多项式,解题关键在于掌握其定义.三、解答题21.(1)5-;(2)241x x --【分析】(1)直接根据有理数的混合运算法则即可求解.(2)直接根据整式的加减混合运算法则即可求解.【详解】解:(1)原式(3)(2)=-+-5=-;(2)原式2(32)(51)(23)x x =---+-241x x =--.【点睛】此题主要考查有理数的加减运算和整式的加减运算,熟练掌握运算法则是解题关键. 22.1020100【分析】由题意知,对于代数式的任何一项:|a k -b k |(k=1,2,…1010),较大的数一定大于1010,较小的数一定不大于1010,即可得出结论.【详解】解:(1)若a k ≤1010,且b k ≤1010,则a 1<a 2<…<a k ≤1010,1010≥b k >b k+1>…>b 1010,则a 1,a 2,…a k ,b k ,……,b 1010,共1011个数,不大于1010不可能;(2)若a k >1010,且b k >1010,则a 1010>a 1009>…>a k+1>a k >1010及b 1>b 2>…>b k >1010,则b 1,……,b k ,a k ……a 1010共1011个数都大于100,也不可能;∴|a 1-b 1|,……,|a 1010-b 1010|中一个数大于1010,一个数不大于1010,∴|a 1-b 1|+|a 2-b 2|+…+|a 1010-b 1010|=1020100.【点睛】本题考查数字问题,考查学生的计算能力,属于中档题.23.-21【分析】首先化简代数式,通过去括号、合并同类项,得出结论即含有b 的代数式相加为0,即可说明.【详解】解()()222221324223212a b ab a a b a ab a b ⎛⎫-+--++- ⎪⎝⎭ =222223244621a b ab a a b a ab a b -+-+++-=101a -当2a =-时原式=()1021⨯--=-21.【点睛】考查整式的化简求值,熟练掌握去括号法则以及合并同类项法则是解题的关键. 24.1099989;1199988;1299987;1399986;(1)如果n 是11,12,13,…,20中的任何一个数,则:99999×n =(n -1)9998(20-n ),其中(n -1)9998(20-n )是1个7位数,前2位是n -1,个位是20-n ,中间4个数字总是9998;(2)99999×19=1899981【分析】用计算器分别进行计算,再根据结果找出规律,最后根据规律即可直接写出99999×19的结果.【详解】解:99999×11=1099989;99999×12=1199988;99999×13=1299987;99999×14=1399986.故答案为:1099989;1199988;1299987;1399986.(1)通过计算观察可发现以下规律:如果n 是11,12,13,…,20中的任何一个数,则:99999×n =(n -1)9998(20-n ),其中(n -1)9998(20-n )是1个7位数,前2位是n -1,个位是20-n ,中间4个数字总是9998.(2)根据以上规律可直接写出:99999×19=1899981.【点睛】此题考查了计算器−有理数,解题的关键是通过用计算器计算,找出规律,通过规律进行解答.25.(1)2a b c -+;(2)-9(1)由数轴上的位置,先判断0,0,0+>-<-<a b c b b a ,再根据绝对值的意义进行化简,即可得到答案.(2)由绝对值的意义,倒数的定义,平方根的定义,先求出a 、b 、c 的值,再代入计算,即可得到答案.【详解】解:(1)由数轴可得:0c b a <<<,∴0,0,0+>-<-<a b c b b a ,∴原式2a b c b b a a b c =++--+=-+.(2)由题意,∵若a 的绝对值的相反数是2,b --的倒数是它本身,24c =,∴2,1,2a b c ==-=-,∴2()2a b c a b c a b c a b c -++-+-=-++--+=224149a b c -++=---=-.【点睛】本题考查了数轴的定义,绝对值的意义,倒数的定义,平方根的定义等知识,解题的关键是利用数轴正确判断0c b a <<<,从而进行解题.26.(1)2222a b ab abc -++;(2)小强的说法对,正确结果的取值与c 无关,理由见解析;(3)0.【分析】(1)由2A+B=C 得B=C-2A ,将C 、A 代入根据整式的乘法计算可得B ;(2)将A 、B 代入2A-B ,根据整式的加减运算法则进行化简,由化简后的代数式中无字母c 可知其值与c 无关;(3)将a 、b 的值代入计算即可.【详解】解:(1)∵2A B C +=,∴2B C A =-.B 22224342(32)a b ab abc a b ab abc =-+--+2222434642a b ab abc a b ab abc =-+-+-2222a b ab abc =-++;(2)222222(32)(22)A B a b ab abc a b ab abc -=-+--++222264222a b ab abc a b ab abc =-++--2285a b ab =-.因正确结果中不含c ,所以小强的说法对,正确结果的取值与c 无关;(3)将18a =, 15b =代入(2)中的代数式,得: 22221111858()5()8585a b ab -=⨯⨯-⨯⨯0= . 【点睛】本题主要考查整式的乘法,熟练掌握整式的乘法法则是解题的关键.。

人教初中数学七年级上册第三章《一元一次方程》测试卷解析及答案-七上3

人教初中数学七年级上册第三章《一元一次方程》测试卷解析及答案-七上3

人教版数学七年级上册第3单元《一元一次方程》测试答案一.选择题:本大题有10个小题,每小题3分,共30分。

在每小题给出的四二.填空题:本大题有6个小题,每小题4分,共24分。

11. 3x-2=0 12. 21 13.1520333010=+--x x 14. -1 15. 19 16. 17%三.解答题:本大题有7个小题,共66分。

解答应写出文字说明、证明过程或演算步骤。

17.(本小题满分6分)解:16323221-⨯=+-x x x3x-4x+6x=24-6 ··············(2分) 5x=18 ··············(2分) x=518··············(2分) 18.(本小题满分8分)解:265)43(51-=-x x6(3x-4)=25x-60 ··············(2分)18x-24=25x-60 ··············(2分) 18x-25x=-60+24-7x=-36 ··············(2分) x=736··············(2分) 19. (本小题满分8分) 解:把x=34-代入5x-1=□x+3, ···········(2分)得:=--132034-□+3, ··············(2分) 解得:□=8 ············(3分,只写答案2分) 答:他把□处看成了8. ··············(1分) 20. (本小题满分10分)解:设先安排x 人进行整理,根据题意可得: ·······(1分)1230630=⨯++x x ···········(5分) 解得:x=6 ···················(2分) 答:先安排6人进行整理。

部编数学七年级上册专题07一元一次方程实际应用的六种考法(解析版)(人教版)含答案

部编数学七年级上册专题07一元一次方程实际应用的六种考法(解析版)(人教版)含答案

专题07 一元一次方程实际应用的六种考法1. 数字问题例.(1)把100拆分成2个数的和,使得第一个数加3,第二个数减3,得到的结果相等.则拆分成的这两个数分别是 和 ;(2)把100拆分成2个数的和,使得第一个数乘2.第二个数除以2,得到的结果相等.则拆分成的这两个数分别是 和 ;(3)把100拆分成4个数的和,使得第一个数加5,第二个数减5,第三个数乘5,第4个数除以5,得到的的结果都相等,问拆分成的这四个数分别是多少.【答案】(1)47,53;(2)20, 80;(3)809,1709,259,6259.【详解】解:(1)设第一个数为x ,则第二个数是(100﹣x ),由题意得:x +3=100﹣x ﹣3,解得x =47.所以100﹣x =100﹣47=53.答:拆分成的这两个数分别是47和53.故答案为:47,53;(2)设第一个数为y ,则第二个数是(100﹣y ),由题意得:2y =(100﹣y )÷2,解得y =20.所以100﹣y =100﹣20=80.答:拆分成的这两个数分别是20和80;故答案为:20,80;(3)设相等的数为z ,则其余数分别为z ﹣5,z +5,5z ,5z ,由题意得:z ﹣5+z +55z ++5z =100,解得:z 1259=,则z ﹣5809=,z +51709=,2559z =,5z 6259=.故拆分成的这四个数分别是809,1709,259,6259.【变式训练1】将连续的奇数1,3,5,7,9,……排成如图所示的数表.(1)写出数表所表示的规律;(至少写出4个)(2)若将方框上下左右移动,可框住另外的9个数.若9个数之和等于297,求方框里中间数是多少?【答案】(1)见解析(2)方框里中间数是33【解析】(1)解:规律有:①第一列个位数都是1,②每行只有5个奇数,③每行相邻两个数的和是2的倍数,④每列相邻的两个数相差10.(2)解:设方框里中间数为x ,则另外8个数为2x -,2x +,10x -,10x +,12x -,12x +,8x -,8x +,由题意得,221010121288297x x x x x x x x x -+-+-+++-+++-+++=9297x =,33x =,则方框里中间数是33.【变式训练2】如图所示的10×5(行×列)的数阵,是由一些连续奇数组成的.(1)形如图框中的四个数,设第一行的第一个数为x ,用含x 的式子表示另外三个数;(2)若这样框中的四个数的和是200,求出这四个数;(3)是否存在这样的四个数,它们的和为296?为什么?【答案】(1)x +2,x +8,x +10;(2)45,47,53,55(3)不存在,理由见解析【解析】(1)解:设第一行第一个数为x ,则其余3个数依次为x +2,x +8,x +10;(2)解:根据题意得:x +x +2+x +8+x +10=200,解得:x =45.则这四个数依次为45,47,53,55.答:这四个数依次为45,47,53,55;(3)解:不存在.理由如下:由题意得x +x +2+x +8+x +10=296∴4x +20=296,解得:x =69.∵当x =69时,这个数在第六行最后一个数的位置,不符合题意故不存在这样的四个数,它们的和为296.【变式训练3】将连续的偶数0,2,4,6,8,…排成如图所示的数表.(1)十字形框内的五个数之和是中间数的______;若设十字形框内的五个数中最中间一个数是x ,用代数式表示十字形框内五个数之和为______;(2)若将十字形框上下左右移动,可框住另外五个数,这五个数还有上述规律吗?直接写出答案,不需要证明;(3)十字形框能否框到五个数,使这五个数之和等于2400呢?若能,请写出这五个数,若不能,请说明理由.【答案】(1)5倍,5x ;(2)有;(3)不存在5个数之和为2400【解析】(1)(4+14+24+12+ 16)÷14=5,x +(x - 10)+(x + 10)+(x -2)+(x +2)= 5x(2)符合规律,设中间数字为x ,则上面数字的为x - 10,下面数字为x + 10,左边数字为x - 2,右边数字为x + 2,即[x +(x - 10)+(x + 10)+(x -2)+(x +2)]÷x =5,x +(x - 10)+(x + 10)+(x -2)+(x +2)= 5x ∴仍符合规律;(3)若五个数之和等于2400,则52400x =,解得:480x =,∴十字据中中间的数为480,由数表可知,数字480位于数表的最边上一列,不可能处于十字框中间,所以不存在5个数之和为2400.2.配套问题例.列方程解应用题某啤酒公司的啤酒车间先将散装啤酒灌装成瓶装啤酒,再将瓶装啤酒装箱出车间.该车间有灌装、装箱生产线共21条,每条灌装生产线每小时装350瓶,每条装箱生产线每小时装450瓶.某日,生产前车间内已有未装箱的瓶装啤酒5200瓶,8:00开始,车间内的生产线全部投入生产.(1)若当日到10:00时,该车间内未装箱的瓶装啤酒达到5500瓶.设灌装生产线有x条,当日到10:00时,灌装生产线共装多少瓶啤酒(用含x的代数式表示)?该车间内灌装生产线有多少条?(2)若该日车间工作8小时,灌装生产线设计多少条时?该日车间内的瓶装啤酒恰好全部装箱?【答案】(1)灌装生产线共装(350×2x)瓶啤酒,灌装生产线有12条;(2)灌装生产线设计13条时,该日车间内的瓶装啤酒恰好全部装箱.【解析】(1)解:当日到10:00时,灌装生产线共装(350×2x)瓶啤酒,根据题意,得5200+350×2x=450×2(21-x)+5500,解这个方程,得:x=12答:灌装生产线共装(350×2x)瓶啤酒,灌装生产线有12条;(2)解:设灌装生产线设计y条时,该日车间内的瓶装啤酒恰好全部装箱,根据题意,得5200+350×8y=450×8(21-y),解这个方程,得:y=11.答:灌装生产线设计11条时,该日车间内的瓶装啤酒恰好全部装箱.【变式训练1】小林到某纸箱厂参加社会实践,该厂计划用50张白板纸制作某种型号的长方体纸箱.如图,每张白板纸可以用A,B,两种方法剪裁,其中A种裁法:一张白板纸裁成4个侧面;B种裁法:一张白板纸裁成2个侧面与4个底面.且四个侧面和两个底面恰好能做成一个纸箱.设按A种方法剪裁的有x张白板纸.(1)按B种方法剪裁的有______张白板纸;(用含x的代数式表示)(2)将50张白板纸裁剪完后,可以制作该种型号的长方体纸箱多少个?【答案】(1)()50x -;(2)40个【解析】(1)解:按A 种方法剪裁的有x 张白板纸,则按B 种方法剪裁的有()50x -张白板纸,故答案为:()50x -;(2)解:由四个侧面和两个底面恰好能做成一个纸箱.\ ()()24250=4450x x x ⨯+-⨯-⎡⎤⎡⎤⎣⎦⎣⎦,整理得: 20600x =, 解得:x =30,(30×4+20×2)÷4=40,∴最多可以制作40个纸箱.【变式训练2】某服装厂要生产同一种型号的服装,已知3m 长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套.(1)现库存有布料300m ,应如何分配布料做上衣和做裤子才能恰好配套?可以生产多少套衣服?(2)如果恰好有这种布料227m ,最多可以生产多少套衣服?本着不浪费的原则,如果有剩余,余料可以做几件上衣或裤子?(本问直接写出结果)【答案】(1)做上衣用布料180m ,则做裤子用布料120m ,可以生成120套衣服(2)最多可以生产90套衣服,余料可以做2条裤子【解析】(1)设做上衣用布料m x ,则做裤子用布料()300m x -,由题意得,()3300233x x -=,解得:180x =,则300120x -=可以生产21801203⨯=套衣服;答:用180m 布做上衣,120m 布做裤子才能恰好配套,可以生产120套衣服;(2)∵做一件上衣用32m 布,做一条裤子用1m 布, ∴一套服装用2.5m 布,∵227÷2.5=90...2,∴227m 布可以做90套衣服余2m ,∵本着不浪费的原则,∴余下的2m 布可以做2条裤子,答:布料227m ,最多可以生产90套衣服,余料可以做2条裤子.【变式训练3】某工厂接受了15天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工8个G型装置或4个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G 型装置的加工,且每人每天只能加工4个G型装置.请问至少需要补充多少名新工人?【答案】(1)工厂每天能配套组成64套GH型电子产品;(2)至少应招聘40名新工人.【解析】(1)解:设安排x名工人生产G型装置,则安排(80﹣x)名工人生产H型装置,根据题意得:84(80)43x x-=,解得:x=32,∴88326444x⨯==.答:按照这样的生产方式,工厂每天能配套组成64套GH型电子产品.(2)解:设招聘a名新工人加工G型装置仍设x名工人加工G型装置,(80-x)名工人加工H型装置,根据题意,()8448043x a x+-=,整理可得,320310ax-=,另外,注意到()4801200315x-,即x≤20,于是3203≤2010a-,解得:a≥40,答:至少应招聘40名新工人.3. 销售利润问题例.甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润率定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店老板共获利157元.甲、乙两件服装的成本各为多少元?【解答】解:设甲服装的成本是x元,则乙服装的成本是(500﹣x)元,依题意有0.9×(1+50%)x+0.9×(1+40%)(500﹣x)﹣500=157,解得x=300,500﹣x=200.答:甲服装的成本为300元,乙服装的成本为200元.【变式训练1】“虎年大吉,岁岁平安”,为了喜迎新春,某水果店在春节期间推出水果篮和坚果礼盒,每个水果篮的成本为200元,每盒坚果礼盒的成本为150元,每个水果篮的售价比每盒坚果礼盒的售价多100元,售卖1个水果篮获得的利润和售卖2盒坚果礼盒获得的利润相同.(1)求每个水果篮和每盒坚果礼盒的售价;(2)在年末时,该水果店购进水果篮1250个和坚果礼盒1200盒,进行“新春特惠”促销活动.水果店规定,每人每次最多购买水果篮1个或坚果礼盒1盒,每个水果篮在售价的基础上打九折后再参与店内“每满100元减m元”的活动,每盒坚果礼盒直接参与店内“每满100元减m元”的活动.售卖结束时,坚果礼盒全部售卖完,售卖过程中由于部分水果变质导致水果篮有50个没办法售出.若该水果店获得的利润率为20%,求m的值.【答案】(1)每个水果篮的售价为300元,每盒坚果礼盒的售价为200元.(2)m的值为10.【解析】(1)设每盒坚果礼盒的售价为x元,则每个水果篮的售价为(x+100)元,依题意得:2(x-150)=x+100-200,解得:x=200,∴x+100=300.答:每个水果篮的售价为300元,每盒坚果礼盒的售价为200元.(2)∵300×0.9=270(元),∴每个水果篮的活动价为(270-2m)元.∵每盒坚果礼盒的售价为200元,∴每盒坚果礼盒的活动价为(200-2m)元.依题意得:(1250-50)(270-2m)+1200(200-2m)-1250×200-1200×150=(1250×200+1200×150)×20%,解得:m=10.答:m的值为10.【变式训练2】某工厂有甲、乙两个车间,甲车间生产A产品,乙车间生产B产品,去年两个车间生产产品的数量相同且全部售出.已知A产品的销售单价比B产品的销售单价高100元,1件A产品与1件B产品售价和为300元.(1)A、B两种产品的销售单价分别是多少元?(2)今年,该工厂计划依托工业互联网将乙车间改造为专供用户定制B产品的生产车间.预计A产品在售价不变的情况下产量将在去年的基础上增加a%;B产品产量将在去年的基础上减少a%,但B产品的销售单价将提高2a%.则今年A、B两种产品全部售出后总销售额将在去年的基础上增加2%3a.求a的值.【答案】(1)A产品的销售单价为200元,B产品的销售单价为100元;(2)50【解析】(1)解:设B产品的销售单价为x元,则A产品的销售单价为(100)x+元,.依题意得:100300x x ++=, 解得:x =100,∴x +100=200. .答:A 产品的销售单价为200元,B 产品的销售单价为100元(2)解:设去年每个车间生产产品的数量为t 件,依题意得:200(1+a %)t +100(1+2a %)(1-a %)t =300(1+2%3a )t 设%a m =,则原方程可化简为2m 2-m =0,解得:112m =,20m =(不合题意,舍去), ∴a =50.答:a 的值为50.【变式训练3】某超市计划购进甲、乙两种型号的节能灯共1000只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如果进货款恰好为37000元,那么可以购进甲型节能灯多少只?(2)超市为庆祝元旦进行大促销活动,决定对乙型节能灯进行打折销售,要求全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折?【解答】解:(1)设商场购进甲型节能灯x 只,则购进乙型节能灯(1000﹣x )只,由题意,得25x +45(1000﹣x )=37000,解得:x =400购进乙型节能灯1000﹣x =1000﹣400=600(只)答:购进甲型节能灯400只,购进乙型节能灯600只进货款恰好为37000元.(2)设乙型节能灯需打a 折,0.1×60a ﹣45=45×20%,解得a =9,答:乙型节能灯需打9折.【变式训练4】武汉大洋百货经销甲、乙两种服装,甲种服装每件进价500元,售价800元;乙种服装商品每件售价1200元,可盈利50%.(1)每件甲种服装利润率为 ,乙种服装每件进价为 元;(2)若该商场同时购进甲、乙两种服装共40件,恰好总进价用去27500元,求商场销售完这批服装,共盈利多少?(3)在元旦当天,武汉大洋百货实行“满1000元减500元的优惠”(比如:某顾客购物1200元,他只需付款700元).到了晚上八点后,又推出“先打折”,再参与“满1000元减500元”的活动.张先生买了一件标价为3200元的羽绒服,张先生发现竟然比没打折前多付了20元钱问大洋百货商场晚上八点后推出的活动是先打多少折之后再参加活动?【解答】解:(1)∵甲种服装每件进价500元,售价800元,∴每件甲种服装利润率为800−500500×100%=60%.∵乙种服装商品每件售价1200元,可盈利50%.∴乙种服装每件进价为1200150%=800(元),故答案为:60%,800;(2)设甲种服装进了x 件,则乙种服装进了(40﹣x )件,由题意得,500x +800(40﹣x )=27500,解得:x =15.商场销售完这批服装,共盈利15×(800﹣500)+25×(1200﹣800)=14500(元).答:商场销售完这批服装,共盈利14500元.(3)设打了y 折之后再参加活动.①3200×y 10−2×500=3200﹣3×500+20.解得:y =8.5.②3200×y 10−500=3200−3×500+20,解得y =8(不合题意,舍去).③3200×y 10=3200−3×500+20,解得y =5.9(不合题意,舍去).答:先打八五折再参加活动.4. 工程问题例.某工程队承包德阿公路绵竹市境内一段长为1755米的道路改造工程,由甲、乙两个施工小队分别从南、北两端同时施工.已知甲队比乙队平均每天多施工3米,经过5天施工后,两个小队共完成施工路段135米.(1)求甲、乙两个小队平均每天各施工多少米?(2)为加快进度,通过改进施工技术,在剩余的工程中,甲队平均每天能比原来多施工1米,乙队平均每天能比原来多施工2米,甲、乙同时按此施工,能够比原来提前多少天完成道路改造任务?【答案】(1)甲施工小队平均每天施工15米,乙施工小队平均每天施工12米.(2)能够比原来提前6天完成道路改造任务.【解析】(1)解:设乙施工小队平均每天施工x 米,则甲施工小队平均每天施工()3x +米.根据题意得:55(3)135x x ++=.解得:12x =.所以315x +=.答:甲施工小队平均每天施工15米,乙施工小队平均每天施工12米.(2)解:改进施工技术后,甲施工小队平均每天施工15116+=米;乙施工小队平均每天施工12214+=米.则改进施工技术后,剩余的工程还需:(1755135)(1614)54-¸+=天;按原施工进度,剩余的工程还需:(1755135)(1512)60-¸+=天.所以少用的天数为:60546-=天.答:能够比原来提前6天完成道路改造任务.【变式训练1】某校职工周转房已经落成,有一些结构相同的房间需要粉刷墙面.已知3名一级技工去粉刷8个房间,结果有30m 2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间,另外又多粉刷20m 2墙面.每名一级技工比二级技工一天多粉刷12m 2墙面.(1)求每个房间需要粉刷的墙面面积;(列方程解决问题)(2)若粉刷1m 2墙面给付一级技工6元费用,给付二级技工5.5元费用,问一级技工和二级技工每人每天各挣多少工钱?【答案】(1)每个房间需要粉刷的墙面面积为392m (2)一级技工每人每天挣564元,二级技工每人每天挣451元.【解析】(1)设每个房间需要粉刷的墙面面积为x 2m ,由题意得:83010201235x x -+-=,解得:39x =,∴每个房间需要粉刷的墙面面积为392m ;(2)∵每个房间需要粉刷的墙面面积为392m ,∴一名一级技工一天粉刷的面积为830839309433x -⨯-==2m ,一名二级技工一天粉刷的面积为10201039208255x +⨯+==2m ,∴946564⨯=(元),82 5.5451⨯=(元),∴一级技工每人每天挣564(元),二级技工每人每天挣451(元).【变式训练2】湖北荆宜高速公路是“国家高速公路网规划”中的建设工程,该工程预算国拨总投资为24亿元,分土建、路面、设施三个建设项目,路面投资占土建投资的45,设施投资比土建投资少40%、由于物价的上涨,工程建设实际总投资随之增长,路面投资的增长率是土建投资增长率的2.5倍,设施投资的增长率达到路面投资增长率的2倍,(1)三个项目的预算投资分别是多少亿元?(2)由于合理施工,使公路提前半年通车,每月可通行车辆100万辆,每辆车的平均收益为40元.这样,可将提前半年通车收益的70%用于该工程建设的实际投资,减少了国拨投资,使预算国拨总投资减少的百分率与土建投资的增长率相同,该工程的实际总投资是多少亿元?【答案】(1)土建、路面、设施三个项目的预算投资分别是10亿元,8亿元,6亿元(2)该工程的实际总投资是25.2亿元【解析】(1)解:设土建为x 亿元,则路面为45x 亿元,设施为(1﹣40%)x 亿元,∴x +45x +(1﹣40%)x =24,∴x =10,∴485x =,(1﹣40%)x =6.答:土建、路面、设施三个项目的预算投资分别是10亿元,8亿元,6亿元(2)解:设土建投资增长率为x ,则路面投资的增长率是2.5x ,设施投资的增长率是2×2.5x =5x ,预算国拨总投资减少的百分率为x .国拨总投资:24×(1﹣x ),该工程的实际各项投资之和是10×(1+x )+8×(1+2.5x )+6×(1+5x ),∵70%×40×100×6=16800(万元)=1.68亿元,∴24×(1﹣x )+1.68=10×(1+x )+8×(1+2.5x )+6×(1+5x ),解得:x =0.02=2%24×(1﹣x )+1.68=25.2(亿元)答:该工程的实际总投资是25.2亿元.5. 行程问题例.甲骑摩托车从A 地去B 地,乙开汽车从B 地去A 地,同时出发,匀速行驶,各自到达终点后停止,甲、乙两人间的距离为(km)s )与甲行驶的时间为(h)t 之间的关系如图所示.(1)以下是点M 、点N 、点P 所代表的实际意义,请将M 、N 、P 填入对应的横线上.①甲到达终点_________.②甲乙两人相遇_________.③乙到达终点_________.(2)AB两地之间的路程为_________千米;(3)求甲、乙各自的速度;(4)如果乙到达A地后立刻原路原速返回到B地,在甲到达B地的过程中,甲出发_________小时,甲乙相距100千米.【答案】(1)①P;②M;③N;(2)240;(3)甲的速度40千米/小时,乙的速度80千米/小时(4)76或3.5或176【解析】(1)解:由图象可得,出发2小时,甲乙在途中相遇;出发3小时乙到达A地;6小时甲到达B地;故答案为:①P;②M;③N;(2)解:由图象可得,AB两地之间路程为240千米;故答案为:240;(3)解:甲的速度为:240÷6=40千米/小时,乙的速度为:240÷2-40=80千米/小时,答:甲的速度40千米/小时,乙的速度80千米/小时;(4)解:令甲出发t小时,甲乙相距100千米,由题意,得相遇前:80t+40t+100=240,解得t=76,相遇后:40t-100=80t-240或80(t-2)+40(t-2)=100,解得t=3.5或t=176,故答案为:76或3.5或176.【变式训练1】为抗击疫情,支援B市,A市某蔬菜公司紧急调运两车蔬菜运往B市.甲、乙两辆货车从A 市出发前往B市,乙车行驶途中发生故障原地维修,此时甲车刚好到达B市.甲车卸载蔬菜后立即原路原速返回接应乙车,把乙车的蔬菜装上甲车后立即原路原速又运往B市.乙车维修完毕后立即返回A市.两车离A市的距离y(km)与乙车所用时间x(h)之间的函数图象如图所示.(1)甲车速度是_______km/h ,乙车出发时速度是_______km/h ;(2)求乙车返回过程中,乙车离A 市的距离y (km )与乙车所用时间x (h )的函数解析式(不要求写出自变量的取值范围);(3)乙车出发多少小时,两车之间的距离是120km ?请直接写出答案.【答案】(1)100 60;(2)1001200y x =-+;(3)3,6.3,9.1【解析】(1)解:根据图象可得,甲车5h 的路程为500km ,∴甲的速度为:500÷5=100km/h ;乙车5h 的路程为300km ,∴乙的速度为:300÷5=60km/h ;故答案为:100;60;(2)设()0y kx b k =+¹,由图象可得经过点(9,300),(12,0)点,代入得9300120k b k b +=ìí+=î,解得1001200k b =-ìí=î,∴y 与x 的函数解析式为1001200y x =-+;(3)解:设乙出发的时间为t 时,相距120km ,根据图象可得, 当0<t <5时,100t -60t =120,解得:t =3;当5<t <5.5时,根据图象可得不满足条件;当5.5<t <8时,500-100(t -5.5)-300=120,解得:t =6.3;当8<t <9时,100(t -8)=120,解得:t =9.2,不符合题意,舍去;当9<t <12时,100×(9-8)+100(t -9)+100(t -9)=120,解得:t =9.1;综上可得:乙车出发3h 、6.3h 与9.1h 时,两车之间的距离为120km .【变式训练2】随着互联网的普及和城市交通的多样化,人们出行的时间与方式有了更多的选择,某市有出租车、滴滴快车等网约车,收费标准见下图.出租车起步价:14元里程费:超过3公里的部分2.4元/公里(不足1公里按1公里计)滴滴快车起步价:12元里程费:2.5元/公里时长费:0.4元/分钟(滴滴快车行驶的平均速度为40公里/时)(1)若乘坐这两种网约车的里程数都是9公里,则发现乘坐出租车最节省钱,求乘坐出租车费用为多少元?(2)若从甲地到乙地,乘坐滴滴快车比出租车多用15元,求甲、乙两地间的里程数.【答案】(1)出租车的费用为28.8元.(2)甲地到乙地的路程为14公里.【解析】(1)解:()14+2.49328.8´-=(元), 答:出租车的费用为28.8元.(2)解:设甲地到乙地的路程为x 公里,当3x £时,12+2.5600.41415,40x x +´´=+ 解得:1703,31x => 所以不符合题意舍去,当3x >时,则()14+2.431512 2.5600.4,40x x x -+=++´´ 解得:14,x =答:甲地到乙地的路程为14公里.【变式训练3】A 、B 两地相距480km ,C 地在A 、B 两地之间.一辆轿车以100km /h 的速度从A 地出发匀速行驶,前往B 地.同时,一辆货车以80km /h 的速度从B 地岀发,匀速行驶,前往A 地.(1)当两车相遇时,求轿车行驶的时间;(2)当两车相距120km 时,求轿车行驶的时间;(3)若轿车到达B 地后,立刻以120km /h 的速度原路返回,再次经过C 地,两次经过C 地的时间间隔为2.2h ,求C 地距离A 地路程.【解答】解:(1)设两车相遇时,轿车行驶的时间为t 小时,由题意可得100t +80t =480。

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习试题三(含答案) (77)

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习试题三(含答案) (77)

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习试题三(含答案)解方程(1)2x+9=5x+2(2)1﹣2(1﹣x)=3(2x+3)【答案】(1)x=73;(2)x=﹣52.【解析】【分析】解一元一次方程过程中,移项要先改变符合,系数化1时,要根据等式性质2,方程两边同时乘以一次项系数的倒数或者除以一次项系数.【详解】(1)移项,得:2x﹣5x=2﹣9,合并同类项,得:﹣3x=﹣7,系数化为1,得:x=73;(2)去括号,得:1﹣2+2x=6x+9,移项,得:2x﹣6x=9﹣1+2,合并同类项,得:﹣4x=10,系数化为1,得:x=﹣52.【点睛】本题考查整式的加减、解一元一次方程.易错点是移项和系数化1,掌握解方程的一般步骤是关键.62.小明去文具店购买2B铅笔,店主说:“如果多买一些,给你打8.5折”.小明测算了一下,如果买100支,比按原价购买可以便宜27元,求每支铅笔的原价是多少.【答案】每支铅笔的原价是1.8元.【解析】【分析】设每支铅笔的原价是x元,根据按8.5折买比按原价购买100支可以便宜27元,列方程求解.【详解】设每支铅笔的原价是x元,根据题意得:100x–100×0.85x=27,解得x=1.8.答:每支铅笔的原价是1.8元.【点睛】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.63.某市出租车收费标准是:起步价10元,可乘3千米,3千米到5千米,每千米1.3元,超过5千米,每千米2.4元x x>千米的路程,则小李所支付的费用是多少(用(1)若小李乘坐了()5代数式表示)?(2)若小马乘坐的路程为15千米,则小马应付的费用是多少?(3)若小张租一次车付了24.6元,求小张租车所走的路程.【答案】见解析【解析】【分析】(1)根据题意可以知道前3千米支付10元,3千米到5千米支付1.3×(5-3)元,超过5千米支付的费用为2.4(x-5),从而可以求得问题的答案;(2)把小马乘坐的路程数据代入(1)的代数式可求小马应付的费用是多少;(3)可以判断出24.6元车费是否在这个范围内,用x>5的关系式计算即可求解.【详解】(1)小李所支付的费用是10+2.6+2.4(x-5)元;(2)10+2.6+2.4×(15-5)=10+2.6+24=36.6(元)答:小马应付的费用是36.6元;(3)依题意有10+2.6+2.4(x-5)=24.6,解得x=10.答:小张租车所走的路程是10千米.【点睛】本题考查一元一次方程的应用,列代数式和代数式的求值,解题的关键是明确题意,根据题意列出符合要求的代数式.64.某公园门票价格规定如下:七年级两个班共101人去公园玩儿,其中一班人数不足50人,经计算,如果两个班都以班为单位购票,则一共应付1207元,问:(1)两班各有多少学生?(2)如果两班联合起来作为一个团体购票,可省多少钱?(3)如果一班单独组织去公园玩儿,如果你是组织者,将如何购票更省钱?【答案】(1)七年级一班有48人,二班有53人;(2)两个班联合起来购票可省298元;(3)如果一班单独组织去公园玩儿,购票51张更省钱.【解析】【分析】(1)根据题意可以列出相应的方程,从而可以解答本题;(2)根据题意和表格中的数据,可以解答本题;(3)根据题意,可以分两种情况讨论,即可解答本题.【详解】(1)设七年级一班有x人,13x+11(101–x)=1207,解得x=48,∴101–x=53,答:七年级一班有48人,二班有53人;(2)1207–101×9=1207–909=298(元),答:两个班联合起来购票可省298元;(3)一班按实际人数购票花费为:48×13=624(元),一班购买51张票的花费为:11×51=561(元),∵561<624,∴购买51张票更合算.答:如果一班单独组织去公园玩儿,购票51张更省钱.【点睛】本题考查一元一次方程的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用方程的思想解答.65.某服装厂生产一款T恤和帽子,T恤每件定价200元,每顶帽子定价40元,厂方在开展促销活动期间,向客户提供两种优惠方案.①买一件T恤送一顶帽子;②T恤和帽子都按定价的九折付款.现某客户要到该服装厂购买T恤40件,帽子x顶(x>40),(1)请用含x的代数式表示:若该客户按方案①购买,需付款__________元;若该客户按方案②购买,需付款__________元;(2)当x为多少时,方案①和方案②需支付的费用一样?【答案】(1)(40x+6400);(36x+7200);(2)当x为200时,方案①和方案②需支付的费用一样.【解析】【分析】(1)根据两种优惠方案,即可找出按方案①购买及按方案②购买所需钱数;(2)由两种方案付款金额相同,即可得出关于x的一元一次方程,解之即可得出结论.【详解】解:(1)该客户按方案①购买,需付款200×40+40(x–40)=(40x+6400)元;该客户按方案②购买,需付款0.9×(200×40+40x)=(36x+7200)元.故答案为(40x+6400);(36x+7200).(2)根据题意得:40x+6400=36x+7200,解得x=200.答:购买T恤200件时,两种方案付款金额相同.【点睛】本题考查了一元一次方程的应用、列代数式以及代数式求值,解题的关键是:(1)根据两种优惠方案,列出代数式;(2)根据两种方案付款金额相同,列出关于x的一元一次方程.,求这个数.66.某数的2倍减去–3.6所得的差是–35【答案】-2.1【解析】【分析】设该数是x,根据题意得到方程:2x–(–3.6)=–3,解方程即可.5【详解】设这个数是x,依题意得:2x–(–3.6)=–3,5,2x+3.6=–352x=–4.2,x=–2.1.答:所求的数是–2.1.【点睛】考查了一元一次方程的应用,解题的关键是读懂题意,弄清楚题干中的等量关系,列出方程并解答.67.列一元一次方程解应用题:某商场以每件120元的价格购进某品牌的衬衫500件,以标价每件为180元的价格销售了400件,为了尽快售完,衬衫,商场进行降价销售,若商场销售完这批衬衫要达到盈利42%的目标,则每件衬衫降价多少元?【答案】每件衬衫降价48元.【解析】【分析】根据题意可以列出相应的方程,从而可以求得每件衬衫降价多少元.【详解】设每件衬衫降价x元,(180–120)×400+(500–400)(180–x–120)=120×500×42%解得x=48.答:每件衬衫降价48元.【点睛】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程.68.一个两位数,十位数字是个位数字的两倍,将这个两位数的十位数字与个位数字对调后得到的两位数比原来的两位数小27,求这个两位数.解:设原来两位数的个位数字为x,则十位数字为__________,这个两位数是__________,根据题意得:(请完成后面的解答过程)【答案】2x;20x+x;后面解答见试题解析.【解析】【分析】设原来两位数的个位数字为x,根据题意列出方程解答即可.【详解】设原来两位数的个位数字为x,可得十位数字为2x,所以这个两位数是20x+x,根据题意可得:20x+x=10x+2x+27,解得:x=3,所以这个两位数是63.故答案为:2x;20x+x.【点睛】此题主要考查了一元一次方程的应用,根据题意得出正确等量关系是解题关键.69.列一元一次方程解应用题:学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共80千克,了解到这些蔬菜的种植成本共180元,还了解到如下信息:(1)求采摘的黄瓜和茄子各多少千克?(2)这些采摘的黄瓜和茄子可赚多少元?【答案】(1)采摘的黄瓜30千克,茄子50千克;(2)可赚110元.【解析】【分析】(1)设采摘的黄瓜x千克,则茄子(80﹣x)千克,根据题意可得等量关系:黄瓜的成本+茄子的成本=180元,根据等量关系列出方程,再解即可;(2)根据(1)中的结果计算出黄瓜的利润和茄子的利润,再求和即可.【详解】(1)设采摘的黄瓜x千克,则茄子(80﹣x)千克,由题意得:2x+2.4(80﹣x)=180解得:x=30.当x=30时,80﹣30=50(千克).答:采摘的黄瓜30千克,则茄子50千克;(2)(3﹣2)×30+(4﹣2.4)×50=30+80=110(元).答:采摘的黄瓜和茄子可赚110元.【点睛】本题考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.70.如表为某市居民每月用水收费标准,(单位:元/m3).(1)某用户1月用水10立方米,共交水费26元,则a= 元/m3;(2)在(1)的条件下,若该用户2月用水25立方米,则需交水费元;(3)在(1)的条件下,若该用户水表3月份出了故障,只有70%的用水量记入水表中,该用户3月份交了水费81.6元.请问该用户实际用水多少立方米?【答案】(1)a=2.6;(2)需交水费70.5元;(3)该用户实际用水40立方米.【解析】【分析】(1)由单价=总价÷数量就可以得出结论;(2)设该用户2月份水费=0<x≤20的水费+x大于20部分的水费,列出算式计算即可求解;(3)设该用户实际用水m吨,由70%的水量的水费为81.6元=单价×数量建立方程求出其解即可.【详解】(1)a=26÷10=2.6(元/m3);(2)2.6×20+(2.6+1.1)×(25-20)=52+3.7×5=52+18.5=70.5(元).答:需交水费70.5元;(3)设该用户实际用水m立方米,由题意,得2.6×20+(2.6+1.1)×(70%m-20)=81.6,解得:m=40.故该用户实际用水40立方米.【点睛】本题考查了单价×数量=总价的数量关系的运用,列一元一次方程解实际问题的运用,一元一次方程的解法的运用,解答时由单价×数量=总价的关系建立方程是关键.。

最新人教版初中数学七年级数学上册第三单元《一元一次方程》测试题(答案解析)

最新人教版初中数学七年级数学上册第三单元《一元一次方程》测试题(答案解析)

一、选择题1.单项式21412n a b --与83m ab 是同类项,则57(1)(1)n m +-=( ) A .14 B .14- C .4 D .-4 2.如图,a ,b 在数轴上的位置如图所示:,那么||||a b a b -++的结果是( )A .2b -B .2bC .2a -D .2a3.设a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式﹣x 3y 的系数和次数,则a ,b ,c ,d 四个数的和是( )A .1B .2C .3D .44.已知整数1234,,,a a a a ……满足下列条件:12132430,1,2,3a a a a a a a ==-+=-+=-+……,依次类推,则2019a 的值为( ) A .2018 B .2018- C .1009- D .1009 5.我们知道,用字母表示的代数式是具有一般意义的.请仔细分析下列赋予3a 实际意义的例子中不正确的是( )A .若葡萄的价格是3 元/kg ,则3a 表示买a kg 葡萄的金额B .若a 表示一个等边三角形的边长,则3a 表示这个等边三角形的周长C .某款运动鞋进价为a 元,若这款运动鞋盈利50%,则销售两双的销售额为3a 元D .若3和a 分别表示一个两位数中的十位数字和个位数字,则3a 表示这个两位数 6.一列数123,,n a a a a ⋅⋅⋅,其中11a =-,2111a a =- ,3211a a =- ,……,111n n a a -=- ,则1232020a a a a ⨯⨯⋅⋅⋅⨯=( ) A .1 B .-1 C .2020 D .2020- 7.下列式子中,是整式的是( )A .1x +B .11x +C .1÷xD .1x x+ 8.点O ,A ,B ,C 在数轴上的位置如图所示,其中O 为原点,2BC =,OA OB =,若C 点所表示的数为x ,则A 点所表示的数为( )A .2x -+B .2x --C .2x +D .-2 9.已知多项式()210m xm x +--是二次三项式,m 为常数,则m 的值为( ) A .2- B .2 C .2± D .3±10.﹣(a ﹣b +c )变形后的结果是( )A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c11.下列说法:①在数轴上表示a -的点一定在原点的左边;②有理数a 的倒数是1a ;③一个数的相反数一定小于或等于这个数;④如果a b >,那么22a b >;⑤235x y 的次数是2;⑥有理数可以分为整数、正分数、负分数和0;⑦27m ba -与2abm 是同类项.其中正确的个数为( )A .1个B .2个C .3个D .4个12.下列说法错误的是( )A .23-2x y 的系数是32-B .数字0也是单项式C .-x π是二次单项式D .23xy π的系数是23π 二、填空题13.在同一平面中,两条直线相交有一个交点,三条直线两两相交最多有3个交点,四条直线两两相交最多有6个交点……由此猜想,当相交直线的条数为n 时,最多可有的交点数m 与直线条数n 之间的关系式为:m =_____.(用含n 的代数式填空) 14.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为__元.15.关于x 的二次三项式的一次项的系数为5,二次项的系数是-3,常数项是-4.按照x 的次数逐渐减小排列,这个二次三项式为____.16.22223124,4135-=-225146-=,……221012m m -=+m =_____________ 17.多项式||1(2)32m x m x --+是关于x 的二次三项式,则m 的值是_________. 18.在括号内填上恰当的项:22222x xy y -+-=-(_____________________). 19.王马虎同学在做有理数的加减法时,将一个100以内的含两位小数的数看错了,他将小数点前后的两位数看反了(比如56.78错看成了78.56),然后用看错的数字减3.5,发现差恰好就是原正确数字的2倍,则正确的结果应该是_____.20.观察单项式:x -,22x ,33x -,44x ,…,1919x -,2020x , …,则第2019个单项式为______.三、解答题21.观察下列各式:(1)-a +b =-(a -b);(2)2-3x =-(3x -2);(3)5x +30=5(x +6);(4)-x -6=-(x +6).探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知a 2+b 2=5,1-b =-2,求-1+a 2+b +b 2的值.22.已知2223,A x xy y B x xy()1若()2230x y ++-=,求2A B -的值()2若2A B -的值与y 的值无关,求x 的值23.用代数式表示:(1)比x 的平方的5倍少2的数;(2)x 的相反数与y 的倒数的和;(3)x 与y 的差的平方;(4)某商品的原价是a 元,提价15%后的价格;(5)有一个三位数,个位数字比十位数字少4,百位数字是个位数字的2倍,设x 表示十位上的数字,用代数式表示这个三位数.24.用代数式表示:某厂的产量每年增长15%,如果第一年的产量是a ,那么第二年的产量是多少?25.观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,通过观察,用你所发现的规律确定22017的个位数字.26.已知22332A x y xy =+-,2222B xy y x =--.(1)求23A B -.(2)若|23|1x -=,29y =,且||x y y x -=-,求23A B -的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】直接利用同类项的概念得出n ,m 的值,即可求出答案.【详解】21412n a b --与83m ab 是同类项, ∴21184n m -=⎧⎨=⎩解得:121m n ⎧=⎪⎨⎪=⎩ 则()()5711n m +-=14- 故答案选B.【点睛】本题考查的知识点是同类项,解题的关键是熟练的掌握数轴同类项. 2.A解析:A【分析】根据数轴上点的位置判断出绝对值里边式子的正负,原式利用绝对值的代数意义化简,计算即可得到结果.【详解】解:根据题意得:b <a <0,且|a |<|b |,∴a -b >0,a +b <0,∴原式=a -b -a -b =-2b .故选:A .【点睛】此题主要考查了数轴以及绝对值,熟练掌握绝对值的性质是解本题的关键.3.D解析:D【分析】根据题意求得a ,b ,c ,d 的值,代入求值即可.【详解】∵a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式-x 3y 的系数和次数, ∴a=0,b=1,c=-1,d=4,∴a ,b ,c ,d 四个数的和是4,故选:D .【点睛】本题考查了有理数、整式的加减以及单项式的系数和次数,,认真掌握有理数的分类是本题的关键;注意整数、0、正数之间的区别,0既不是正数也不是负数,但是整数. 4.C解析:C【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于-12(n-1),n 是偶数时,结果等于-2n ,然后把n 的值代入进行计算即可得解.【详解】解:123450|01|1|12|1|13|2|24|2a a a a a ==-+=-=--+=-=--+=-=--+=-678|25|3|36|3|37|4a a a =--+=-=-+=-=--+=-⋯⋯∴201920181009a a ==-,故选择C【点睛】本题考查了数字变化规律,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.5.D解析:D【分析】根据单价×数量=总价,等边三角形周长=边长×3,售价=进价+利润,两位数的表示=十位数字×10+个位数字进行分析即可.【详解】A 、根据“单价×数量=总价”可知3a 表示买a kg 葡萄的金额,此选项不符合题意;B 、由等边三角形周长公式可得3a 表示这个等边三角形的周长,此选项不符合题意;C 、由“售价=进价+利润”得售价为1.5a 元,则2×1.5a =3a (元),此选项不符合题意;D 、由题可知,这个两位数用字母表示为10×3+a =30+a ,此选项符合题意.故选:D .【点睛】本题主要考查了列代数式,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系.6.A解析:A【分析】首先根据11a =-,可得()21111,1112a a ===---32112,1112a a ===--43111112a a ===---,…,所以这列数是-1、12、2、−1、12、2…,每3个数是一个循环;然后用2020除以3,求出一共有多少个循环,还剩下几个数,从而可得答案.【详解】 解: 11a =-,()21111,1112a a ===--- 32112,1112a a ===-- 43111112a a ===---, 所以这列数是-1、12、2、−1、12、2…,发现这列数每三个循环, 由202036731,÷= 且()1231121,2a a a ⨯⨯=-⨯⨯=- 所以:()()123206732011 1.a a a a =-⨯-⨯⨯⋅⨯=⋅⋅故选A .【点睛】 本题主要考查了探寻数列规律问题,同时考查了有理数的加减乘除乘方的运算,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:这列数是-1、12、2、−1、12、2…,每3个数是一个循环. 7.A解析:A【分析】根据整式的定义即单项式和多项式统称为整式,找出其中的单项式和多项式即可.【详解】解:A. 1x +是整式,故正确; B. 11x +是分式,故错误; C. 1÷x 是分式,故错误; D.1x x+是分式,故错误. 故选A.【点睛】 本题主要考查了整式,关键是掌握整式的概念.8.A解析:A【分析】由BC=2,C 点所表示的数为x ,求出B 表示的数,然后根据OA=OB ,得到点A 、B 表示的数互为相反数,则问题可解.【详解】解:∵BC=2,C 点所表示的数为x ,∴B 点表示的数是x-2,又∵OA=OB ,∴B 点和A 点表示的数互为相反数,∴A 点所表示的数是-(x-2),即-x+2.故选:A .【点睛】此题考查用数轴上的点表示数的方法和数轴上两点间的距离以及相反数的性质,解答关键是应用数形结合思想解决问题.9.A解析:A【分析】根据已知二次三项式得出m-2≠0,|m|=2,从而求解即可.【详解】 解:因为多项式()210m x m x +--是二次三项式,∴m-2≠0,|m|=2,解得m=-2,故选:A.【点睛】本题考查了二次三项式的定义,掌握多项式的项和次数的定义是本题的解题关键. 10.B解析:B【分析】根据去括号法则解题即可.【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c故选B .【点睛】本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.11.A解析:A【分析】根据字母可以表示任意数可判断①,根据特殊例子0没有倒数可判断②,根据负数的相反数可判断③,根据特殊例子a=1,b=-2,可判断④,根据单项式次数的定义可判断⑤,根据有理数的分类判断⑥,根据同类项的概念判断⑦.【详解】字母可以表示任意数,当a <0时,-a >0,故①错误;0没有倒数,故②错误;负数的相反数是正数,正数大于负数,故③错误;若a=1,b=-2,a b >,但是22a b <,故④错误;235x y 的次数是3,故⑤错误; 0属于整数,故⑥这种分类不正确;27m ba -与2abm 是同类项,⑦正确,故选A.【点睛】本题考查有理数和代数式的相关概念,熟记这类知识点是解题的关键.12.C解析:C【分析】根据单项式的有关定义逐个进行判断即可.【详解】 A. 23-2x y 的系数是32-,故不符合题意; B. 数字0也是单项式 故不符合题意;C. -x π是一次单项式 ,故原选项错误D. 23xy π的系数是23π,故不符合题意. 故选C .【点睛】本题考查对单项式有关定义的应用,能熟记单项式的有关定义是解此题关键.二、填空题13.【分析】根据题意3条直线相交最多有3个交点4条直线相交最多有6个交点5条直线相交最多有10个交点而3=1+26=1+2+310=1+2+3+4故可猜想n 条直线相交最多有1+2+3+…+(n-1)=个解析:()12n n - 【分析】根据题意,3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n 条直线相交,最多有1+2+3+…+(n-1)=()12n n -个交点.【详解】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点.而3=1+2,6=1+2+3,10=1+2+3+4,∴可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12 n n-个交点.即()12n nm-=故答案为:()12n n-.【点睛】本题主要考查了相交线,图形的规律探索,此题着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.14.08a【解析】试题分析:根据题意得:a•(1+20)×90=108a;故答案为108a考点:列代数式解析:08a【解析】试题分析:根据题意得:a•(1+20%)×90%=1.08a;故答案为1.08a.考点:列代数式.15.-3x2+5x-4【分析】由于多项式是由单项式组成的而多项式的次数是多项式中次数最高的项的次数而关于x的二次三项式的二次项系数是-3一次项系数是5常数项是-4根据前面的定义即可确定这个二次三项式【详解析:-3x2+5x-4【分析】由于多项式是由单项式组成的,而多项式的次数是“多项式中次数最高的项的次数”,而关于x的二次三项式的二次项系数是-3,一次项系数是5,常数项是-4,根据前面的定义即可确定这个二次三项式.【详解】∵关于x的二次三项式,二次项系数是-3,∴二次项是-3x2,∵一次项系数是,∴一次项是5x,∵常数项是-4,∴这个二次三项式为:-3x2+5x-4.故答案为:-3x2+5x-4【点睛】本题考查了多项式的知识,多项式是由单项式组成的,本题首先要确定是由几个单项式组成,要记住常数项也是一项,单项式前面的符号也应带着.16.9【分析】根据观察可知:将代入即可得出答案【详解】解:……故答案为:【点睛】主要考查了学生的分析总结归纳能力规律型的习题一般是从所给的数据和运算方法进行分析从特殊值的规律上总结出一般性的规律 解析:9【分析】3n +,将210n +=代入即可得出答案. 【详解】解:==……,13n +210n +=8n ∴=19m n ∴=+=故答案为:9.【点睛】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.17.【分析】直接利用二次三项式的次数与项数的定义得出m 的值【详解】∵多项式是关于x 的二次三项式∴且∴故答案为:【点睛】本题主要考查了多项式正确利用多项式次数与系数的定义得出m 的值是解题关键解析:2-【分析】直接利用二次三项式的次数与项数的定义得出m 的值.【详解】∵多项式||1(2)32m x m x --+是关于x 的二次三项式, ∴||2m =,且()20m --≠, ∴2m =-.故答案为:2-.【点睛】本题主要考查了多项式,正确利用多项式次数与系数的定义得出m 的值是解题关键. 18.【分析】根据添括号的法则解答【详解】解:故答案是:【点睛】本题考查了去括号与添括号添括号法则:添括号时如果括号前面是正号括到括号里的各项都不变号如果括号前面是负号括号括号里的各项都改变符号添括号与去 解析:222x xy y -+【分析】根据添括号的法则解答.【详解】解:222222(2)x xy y x xy y -+-=--+.故答案是:222x xy y -+.【点睛】本题考查了去括号与添括号,添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.添括号与去括号可互相检验. 19.32【分析】根据用看错的数字减35发现差恰好就是原正确数字的2倍利用有理数的加减混合运算即可求解【详解】∵100以内的含两位小数的数看错了根据归纳猜想得:原数为1432看错的两位数为32143214解析:32.【分析】根据用看错的数字减3.5,发现差恰好就是原正确数字的2倍,利用有理数的加减混合运算即可求解.【详解】∵100以内的含两位小数的数看错了,根据归纳猜想得:原数为14.32,看错的两位数为32.14,32.14﹣3.5=28.64,14.32×2=28.64.∴32.14﹣3.5=2×14.32.故答案为14.32.【点睛】本题考查有理数的加减混合运算,解题的关键是利用探究猜想的方法进行计算. 20.【分析】根据题目内容找到单项是的系数规律和字母的指数规律从而求解【详解】解:由题意可知:第一个单项式为;第二个单项式为;第三个单项式为…∴第n 个单项式为即第2019个单项式为故答案为:【点睛】本题考 解析:20192019x -【分析】根据题目内容找到单项是的系数规律和字母的指数规律,从而求解.【详解】解:由题意可知:第一个单项式为11(1)1x -⨯⨯;第二个单项式为22(1)2x -⨯⨯;第三个单项式为33(1)3x -⨯⨯… ∴第n 个单项式为(1)n n n x -⨯⨯即第2019个单项式为201920192019(1)20192019x x -⨯⨯=-故答案为:20192019x -【点睛】本题考查数的规律探索,找到单项式的系数规律和字母指数规律是本题的解题关键.三、解答题21.见解析,7.【解析】试题分析:注意观察等号两边的变化,等号右边添加了括号,然后观察符号的变化即可;根据已知条件将要求的式子通过添括号进行变形,然后再代入求值即可.试题添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.∵a 2+b 2=5,1-b =-2,∴-1+a 2+b +b 2=(a 2+b 2)-(1-b)=5-(-2)=7.【点睛】本题是阅读理解题,主要是通过阅读发现添括号时符号的变化规律,解题的关键是要注意符号的变化问题.22.(1)-9;(2)x=-1【分析】(1)根据去括号,合并同类项,可得答案;(2)根据多项式的值与y 无关,可得y 的系数等于零,根据解方程,可得答案.【详解】(1)A-2B=(2x 2+xy+3y )-2(x 2-xy )=2x 2+xy+3y-2x 2+2xy=3xy+3y .∵(x+2)2+|y-3|=0,∴x=-2,y=3.A-2B=3×(-2)×3+3×3=-18+9=-9.(2)∵A-2B 的值与y 的值无关,即(3x+3)y 与y 的值无关,∴3x+3=0.解得x=-1.【点睛】此题考查整式的加减,解题关键在于掌握去括号,括号前是正数去括号不变号,括号前是负数去括号都变号.23.(1)5x 2-2;(2)-x +1y;(3)(x -y )2;(4)(1+15%)a ;(5)200(x -4)+10x +(x -4).【分析】(1)明确是x 的平方的5倍与2的差;(2)先求出x 的相反数与y 的倒数,然后相加即可;(3)注意是先做差后平方;(4)注意是提价后的价格而非所提的价格;(5)注意正确表示百位,十位,个位上的数.【详解】(1)5x 2-2;(2)-x +1y; (3)(x -y )2;(4)(1+15%)a ;(5)200(x -4)+10x +(x -4) .【点睛】本题考查了列代数式,能够根据运算顺序正确书写,同时注意数位的意义,注意“多,少,积,差”等关键字的把握.24.15a【分析】设第一年的产量为a ,以15%的速度增长,表示在m 的基础上增长a 的15%.【详解】解:根据题意,得设第一年的产量为a ,以15%的速度增长,∴第二年的产量为a (1+15%)=1.15a .【点睛】本题考查了列代数式,解答本题的关键是读懂题意,找到所求的量的等量关系. 25.22017的个位数字是2.【分析】根据已知的等式观察得到规律:24n+1的个位数字是2,24n+2的个位数字是4,24n+3的个位数字是8,24n+4的个位数字是6(n 为自然数),每四个一循环,由此得到答案.【详解】观察可知:24n+1的个位数字是2,24n+2的个位数字是4,24n+3的个位数字是8,24n+4的个位数字是6(n 为自然数),每四个一循环,∵22017=450412⨯+,∴22017的个位数字是2.【点睛】此题考查数字的规律,有理数乘方计算的实际应用,观察已知中等式的特点总结规律,并运用规律解答问题是解题的关键.26.(1)2212127x y xy +-;(2)114或99.【分析】(1)把22332A x y xy =+-,2222B xy y x =--代入23A B -计算即可;(2)根据|23|1x -=,29y =,且||x y y x -=-求出x 和y 的值,然后代入(1)中化简的结果计算即可.【详解】解:(1)()()2222232332322A B x y xy xy y x -=+----2222664366x y xy xy y x =+--++2212127x y xy =+-;(2)由题意可知:231x -=±,3=±y ,∴2x =或1,3=±y ,由于||x y y x -=-,∴2x =,3y =或1x =,3y =.当2x =,3y =时,23114A B -=.当1x =,3y =时,2399A B -=.所以,23A B -的值为114或99.【点睛】本题考查了整式的加减运算,绝对值的意义,以及分类讨论的数学思想,熟练掌握整式的加减运算法则是解(1)的关键,分类讨论是解(2)的关键.。

人教版七年级上册数学 一元一次方程单元测试卷 (word版,含解析)

人教版七年级上册数学 一元一次方程单元测试卷 (word版,含解析)

一、初一数学一元一次方程解答题压轴题精选(难)1.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)|4﹣(﹣2)|的值.(2)若|x﹣2|=5,求x的值是多少?(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,写出求解的过程.【答案】(1)解:∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴|4﹣(﹣2)|=6.(2)解:|x﹣2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,∵﹣3或7与2两数在数轴上所对应的两点之间的距离是5,∴若|x﹣2|=5,则x=﹣3或7.(3)解:∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴使得|x﹣4|+|x+2|=6成立的整数是﹣2和4之间的所有整数(包括﹣2和4),∴这样的整数是﹣2、﹣1、0、1、2、3、4.【解析】【分析】(1)根据4与-2两数在数轴上所对应的两点之间的距离是6,可得|4-(-2)|=6.(2)根据|x-2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,可得x=-3或7.(3)因为4与-2两数在数轴上所对应的两点之间的距离是6,所以使得|x-4|+|x+2|=6成立的整数是-2和4之间的所有整数(包括-2和4),据此求出这样的整数有哪些即可.2.如图1,已知,在内,在内,.(1)从图1中的位置绕点逆时针旋转到与重合时,如图2,________ ;(2)若图1中的平分,则从图1中的位置绕点逆时针旋转到与重合时,旋转了多少度?(3)从图2中的位置绕点逆时针旋转,试问:在旋转过程中的度数是否改变?若不改变,请求出它的度数;若改变,请说明理由.【答案】(1)100(2)解:∵平分,∴,设,则,,由,得:,解得:,∴从图1中的位置绕点逆时针旋转到与重合时,旋转了12度;(3)解:不改变①当时,如图,,,∵,,∴;② 时,如图,此时,与重合,此时,;③当时,如图,,,;综上,在旋转过程中,的度数不改变,始终等于【解析】【解答】(1)解:由题意:∠EOF= ∠AOB+ ∠COD=80°+20°=100°【分析】(1)根据∠EOF=∠BOE+∠BOF计算即可;(2)设,得,,再根据列方程求解即可;(3)分三种情形分别计算即可;3.某商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.(1)若该商场同时购进甲、乙两种商品共100件,恰好用去2700元,求能购进甲、乙两种商品各多少件?(2)按规定,甲种商品的进货不超过50件,甲、乙两种商品共100件的总利润不超过760元,请你通过计算求出该商场所有的进货方案;(3)在“五一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销活动:打折前一次性购物总金额优惠措施不超过300元不优惠超过300元且不超过400元售价打九折超过400元售价打八折200元,第二天只购买乙种商品打折后一次性付款324元,那么这两天他在该商场购买甲、乙两种商品各多少件?【答案】(1)解:设:购进甲商品x件,购进乙商品(100-x)件。

一元一次方程压轴训练(单元复习 含参数问题、换元法、新定义型)(解析版)—2025学年七年级数学上册

一元一次方程压轴训练(单元复习 含参数问题、换元法、新定义型)(解析版)—2025学年七年级数学上册

一元一次方程压轴训练(含参数问题、换元法、新定义型)目录压轴题型一 利用一元一次方程的定义求字母参数 (1)压轴题型二 已知一元一次方程的解求代数式的值 (3)压轴题型三 利用一元一次方程的解相同求字母参数 (5)压轴题型四 含字母参数方程的解为整数解的问题 (9)压轴题型五 换元法求一元一次方程的解 (12)压轴题型六 新定义型一元一次方程的求解问题 (14)例题:(23-24七年级上·天津河西·期末)方程()1230a a x--+=是关于x 的一元一次方程,则a =01 压轴总结02 压轴题型巩固训练1.(23-24六年级上·山东泰安·期末)若()1140m m x +-+=是关于x 的一元一次方程,则m 的值为( )A .1±B .1C .1-D .任何实数2.(23-24七年级上·天津津南·期末)若方程()2350m m x--+-=是关于x 的一元一次方程,则m = .3.(23-24七年级上·山东滨州·期末)若()2316m m x++=是关于x 的一元一次方程,则m 的值为 .∴2m =-,故答案为:2-.4.(23-24七年级上·全国·单元测试)若关于x 的方程()21120m mxm x -+--=是一元一次方程,则m 的值为 .【答案】1或0【知识点】一元一次方程的定义【分析】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.根据一元一次方程的一般形式即可判定有3种情况,分别讨论①当0m ¹且10m -¹时,②当0m =且10m -¹时,③当10m -=时是否满足该方程为一元一次方程即可.【详解】解:Q 关于x 的方程()21120m mx m x -+--=是一元一次方程,可考虑三种情况,①当0m ¹且10m -¹时,即0m ¹且1m ¹,则211m -=,解得:1m =,此时1m ¹,故排除;②当0m =且10m -¹时,即0m =且1m ¹,\0m =,符合条件;③当10m -=即1m =时,211m -=,符合条件;综上:m 的值为1或0,故答案为:1或0.压轴题型二 已知一元一次方程的解求代数式的值例题:(24-25九年级上·全国·课后作业)已知关于x 的一元一次方程()146m x n ++=的解是1x =,则23m n +-的值为 .【答案】0【知识点】方程的解【分析】本题考查一元一次方程的解、代数式求值,根据一元一次方程的解求得23m n +=,进而代值求解即可.【详解】解:把1x =代入方程()146m x n ++=中得,246m n +=,∴23m n +=,∴23m n +-33=-0=.故答案为:0.巩固训练1.(23-24七年级上·浙江杭州·阶段练习)若关于x 的方程()322x a x b +=-的解是6x =-,则a b +的值是 .2.(23-24七年级上·江苏徐州·期末)若0.5x =是关于x 的方程2350ax b --=的解,则代数式3910a b --=.【答案】5【知识点】方程的解、已知式子的值,求代数式的值【分析】本题考查一元一次方程,解题的关键是正确理解一元一次方程的解的概念,本题属于基础题型.将0.5x =代入原方程即可求出35a b -=,然后将其整体代入求值.【详解】解:将0.5x =代入原方程可得:35a b -=,∴()3910331015105a b a b --=--=-=,故答案为:53.(23-24七年级上·广东佛山·期末)若2x =是方程4a bx -=的解,则632023b a -++的值为 .【答案】2035【知识点】方程的解、已知式子的值,求代数式的值【分析】本题考查一元一次方程的解,解题的关键是把解代入方程中,得到代数式.把2x =代入方程,得出24a b -=,进而可得6312b a -+=,然后整体代入计算即可.【详解】解:∵2x =是方程4a bx -=的解,∴24a b -=,∴3612a b -=,即6312b a -+=,∴6320231220232035b a -++=+=,故答案为:2035.4.(2024七年级·全国·竞赛)已知p q 、都是质数,且关于x 的一元一次方程5117px q +=的解为1,则528p q ++= .压轴题型三 利用一元一次方程的解相同求字母参数例题:(23-24七年级下·福建泉州·期末)如果关于x 的方程324x -=和方程2314a x +-=的解相同,那么a 的值为.【答案】3【知识点】解一元一次方程(三)——去分母、解一元一次方程(一)——合并同类项与移项、方程的解【分析】本题考查了一元一次方程的解以及解一元一次方程,先解出324x -=的x 值,再代入1.(23-24七年级下·河南南阳·阶段练习)已知关于x 的方程431+=+x m x 与方程3261x m x +=+的解相同,则方程的解为 .2.(22-23七年级上·重庆九龙坡·期末)已知方程321x m x +=+和方程231123x m x +-=+的解相同,则代数式32m -的值为 .3.(23-24七年级下·福建泉州·阶段练习)若关于x 的方程25x a +=的解和关于x 的方程与41232x --=的解相同,求字母a 的值.4.(23-24七年级上·湖南长沙·期末)方程70x -=与方程()5221x x k x -+=-的解相同,求代数式253k k -+的值.压轴题型四 含字母参数方程的解为整数解的问题例题:已知方程(2)2x x a --=的解是正数,则a 的最小整数解是( )A .1B .2C .3D .4【答案】C【分析】依次去括号、移项、合并同类项、系数化1解方程,求得2=-x a ,再根据方程的解是正数,求出2a >,即可得到a 的最小整数解.【详解】解:(2)2x x a --=,去括号,得:22x x a -+=,移项,得:22x x a -=-,合并同类项,得:2x a -=-,系数化1,得:2x a =-,Q 方程(2)2x x a --=的解是正数,20a \->,2a \>,a \的最小整数解是3,故选:C.【点睛】本题考查了根据一元一次方程的解的情况求参数,熟练掌握一元一次方程的解法是解题关键.巩固训练压轴题型五 换元法求一元一次方程的解例题:(23-24七年级上·浙江嘉兴·期末)已知a 为实数,关于x 的方程20242024x a x +=的解为5x =,则关于y 的方程2404820242024y a y -++=的解为y = .1.(23-24七年级上·江苏南通·期末)若关于x 的一元一次方程2023242024x m x +=-的解为4x =-,则关于y 的一元一次方程()202351422024y m y --=-解为y = .【答案】1【知识点】方程的解2.(23-24七年级上·湖北武汉·期末)如果关于x的方程1202422024x x m+=+的解2024x=,则关于y的方程1120242220242024y y m++=++的解y=.压轴题型六 新定义型一元一次方程的求解问题巩固训练。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答:经过 、 、11 或 19 秒,A、B 两点之间相距 4 个单位长度. 【解析】【分析】(1)根据已知:动点 A、B 的运动速度比之是 3∶ 2,因此设点 B 的速度 为 2x 个单位长度/秒,则点 A 的速度为 3x 个单位长度/秒,根据两点相距 15,列方程,求 解即可。 (2)根据两点的运动速度,就快求出 A、B 两点运动到 3 秒时停止运动,就可得出它们的 位置。
3.已知关于 的方程 (1)求 、 的值;
的解也是关于 的方程
的解.
(2)若线段 段 AQ 的长.
,在直线 AB 上取一点 P,恰好使
,点 Q 是 PB 的中点,求线
【答案】 (1)解: (m−14)=−2, m−14=−6m=8,
∵ 关于 m 的方程
的解也是关于 x 的方程
∴ x=8, 将 x=8,代入方程
5.仔细阅读下列材料. “分数均可化为有限小数或无限循环小数”,反之,“有限小数或无限小数均可化为分数”.
例如: =1÷4=0.25; = =8÷5=1.6; =1÷3= ,反之,0.25= = ;1.6= = =
.那么 , 怎么化成分数呢?
解:∵ ×10=3+ , ∴ 不妨设 =x,则上式变为 10x=3+x,解得 x= ,即 = ;
得:
解得:n=4, 故 m=8,n=4;
的解.
(2)解:由(1)知:AB=8, =4, ①当点 P 在线段 AB 上时,如图所示:
∵ AB=8, =4,
∴ AP= ,BP= , ∵ 点 Q 为 PB 的中点,
∴ PQ=BQ= BP= ,
∴ AQ=AP+PQ= + = ; ②当点 P 在线段 AB 的延长线上时,如图所示:
4.某食品厂从生产的袋装食品中抽出样品若干袋,用以检测每袋的质量是否符合标准,超 过或不足标准质量的部分用正数或负数来表示(单位:克),记录如下表:
袋数
2 1 3 2 ● 合计
与标准质量的差值 +0.5 +0.8 +0.6 ﹣0.4 ﹣0.7 +1.4
(1)若表中的一个数据不小心被墨水涂污了,请求出这个数据;
(2)若每袋的标准质量为 50 克,每克的生产成本 2 元,求这批样品的总成本. 【答案】 (1)解:设被墨水涂污了的数据为 x , 则 0.5×2+0.8×1+0.6×3+(﹣0.4)×2+(﹣0.7)x=1.4, 解得:x=2, 故这个数据为 2
(2)解:[50+1.4÷(2+1+3+2+2)]×(2+1+3+2+2)×2=1002.8 元, 答:这批样品的总成本是 1002.8 元 【解析】【分析】(1)设被墨水涂污了的数据为 x , 根据题意列方程,即可得到结论; (2)根据题意计算计算即可.
(2)解:3×3=9,2×3=6, ∴ 运动到 3 秒钟时,点 A 表示的数为﹣9,点 B 表示的数为 6;
(3)解:设运动的时间为 t 秒, 当 A、B 两点向数轴正方向运动时,有|3t﹣2t﹣15|=4, 解得:t1=11,t2=19; 当 A、B 两点相向而行时,有|15﹣3t﹣2t|=4,
解得:t3= 或 t4= ,
则车站应建在何处?______
A.点 处 B.线段 之间 C.线段 的中点 D.线段 之间
(2)当整数 ________时,关于 的方程
的解是正整数.
【答案】 (1)A (2) 或 【解析】【解答】(1)故答案为:A;(2) 或 【分析】(1)根据图形要使车站到三个村庄的路程之和最小,得到车站应建在 C 处; (2)根据解一元一次方程的步骤去分母、去括号、移项 、合并同类项、系数化为一;求 出 m 的值.
(3)设运动的时间为 t 秒,分两种情况:当 A、B 两点向数轴正方向运动时;当 A、B 两 点相向而行时,分别根据 A、B 两点之间相距 4 个单位长度,列方程求出 t 的值。
2. 综合题
(1)如图, 、 、 是一条公路上的三个村庄, 、 间的路程为
, 、 间的
路程为 ,现要在 、 之间建一个车站 ,若要使车站到三个村庄的路程之和最小,
一、初一数学一元一次方程解答题压轴题精选(难)
1.如图,动点 A 从原点出发向数轴负方向运动,同时,动点 B 也从原点出发向数轴正方 向运动,运动到 3 秒钟时,两点相距 15 个单位长度.已知动点 A、B 的运动速度比之是 3∶ 2(速度单位:1 个)A、B 两点运动到 3 秒时停止运动,请在数轴上标出此时 A、B 两点的位置;
∵ AB=8, =4,
∴ PB= , ∵ 点 Q 为 PB 的中点,
∴ PQ=BQ= ,
∴ AQ=AB+BQ=8+ =
故 AQ= 或 . 【解析】【分析】(1)先解
求得 m 的值,然后把 m 的值代入方程
,即可求出 n 的值;(2)分两种情况讨论:①点 P 在线段 AB 上,② 点 P 在线段 AB 的延长线上,画出图形,根据线段的和差定义即可求解;
=1+ =
【解析】【解答】(1)9÷5=1.8,22÷7=
;(2)设 0. x,根据题意得:10x=5+x,
解得:x

设 0. x,则 10x=6+x,解得:x


故答案为:

【分析】(1)由已学过的知识可知: 分数均可化为有限小数或无限循环小数 ; 是一个

=
,设 =x,则上式变为 100x=2+x,解得 x= ,

=
=1+x=1+ =
(1)将分数化为小数: =________, =________; (2)将小数化为分数: =________; =________。
(3)将小数 化为分数,需要写出推理过程. 【答案】 (1)1.8;
(2) ;
(3)解:设 =x,则 100x=95+x,解得:x=
(3)若 A、B 两点分别从(2)中标出的位置再次同时开始在数轴上运动,运动的速度不 变,运动的方向不限,问:运动到几秒钟时,A、B 两点之间相距 4 个单位长度?
【答案】 (1)解:设点 B 的速度为 2x 个单位长度/秒,则点 A 的速度为 3x 个单位长度/ 秒, 根据题意得:3×(2x+3x)=15, 解得:x=1, ∴ 3x=3,2x=2, 答:动点 A 的运动速度为 3 个单位长度/秒,动点 B 的运动速度为 2 个单位长度/秒;
相关文档
最新文档