(新)高中数学总结:基本初等函数

合集下载

人教版高中数学必修一-第二章-基本初等函数知识点总结

人教版高中数学必修一-第二章-基本初等函数知识点总结

人教版高中数学必修一第二章基本初等函数知识点总结第二章 基本初等函数一、指数函数(一)指数与指数幂的运算 1.根式的概念:负数没有偶次方根;0的任何次方根都是0=0。

注意:(1)na =(2)当 n a = ,当 n 是偶数时,0||,0a a a a a ≥⎧==⎨-<⎩2.分数指数幂正数的正分数指数幂的意义,规定:0,,,1)m na a m n N n *=>∈>且正数的正分数指数幂的意义:_1(0,,,1)m nm naa m n N n a*=>∈>且0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)(0,,)rsr s a a aa r s R +=>∈(2)()(0,,)r s rsa a a r s R =>∈ (3)(b)(0,0,)rrra ab a b r R =>>∈注意:在化简过程中,偶数不能轻易约分;如122[(1]11≠ (二)指数函数及其性质1、指数函数的概念:一般地,函数xy a = 叫做指数函数,其中x 是自变量,函数的定义域为R .注意:指数函数的底数的取值范围,底数不能是负数、零和1.即 a>0且a ≠1 2a>1注意: 指数增长模型:y=N (1+p)指数型函数: y=ka 3 考点:(1)a b =N, 当b>0时,a,N 在1的同侧;当b 〈0时,a,N 在1的 异侧.(2)指数函数的单调性由底数决定的,底数不明确的时候要进行讨论。

掌握利用单调性比较幂的大小,同底找对应的指数函数,底数不同指数也不同插进1(=a 0)进行传递或者利用(1)的知识。

(3)求指数型函数的定义域可将底数去掉只看指数的式子,值域求法用单调性. (4)分辨不同底的指数函数图象利用a 1=a ,用x=1去截图象得到对应的底数。

(5)指数型函数:y=N (1+p)x 简写:y=ka x 二、对数函数 (一)对数1.对数的概念:一般地,如果x a N = ,那么数x 叫做以a 为底N 的对数,记作:log a x N = ( a - 底数, N — 真数,log a N — 对数式)说明:1。

高中数学知识点总结(第二章 函数的概念与基本初等函数Ⅰ第一节 函数及其表示)

高中数学知识点总结(第二章 函数的概念与基本初等函数Ⅰ第一节 函数及其表示)

第二章函数的概念与基本初等函数Ⅰ第一节函数及其表示一、基础知识1.函数与映射的概念2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.求函数定义域的策略(1)确定函数的定义域常从解析式本身有意义,或从实际出发.(2)如果函数y=f(x)是用表格给出,则表格中x的集合即为定义域.(3)如果函数y=f(x)是用图象给出,则图象在x轴上的投影所覆盖的x的集合即为定义域.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.两函数值域与对应关系相同时,两函数不一定相同.(4)函数的表示法:表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.关于分段函数的3个注意(1)分段函数虽然由几个部分构成,但它表示同一个函数.(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(3)各段函数的定义域不可以相交.考点一 函数的定义域[典例] (1)(2019·长春质检)函数y =ln1-x x +1+1x的定义域是( ) A .[-1,0)∪(0,1) B .[-1,0)∪(0,1] C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)(2)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B.⎝⎛⎭⎫-1,-12 C .(-1,0)D.⎝⎛⎭⎫12,1[解析] (1)由题意得⎩⎪⎨⎪⎧1-x >0,x +1>0,x ≠0,解得-1<x <0或0<x <1.所以原函数的定义域为(-1,0)∪(0,1).(2)令u =2x +1,由f (x )的定义域为(-1,0),可知-1<u <0,即-1<2x +1<0, 得-1<x <-12.[答案] (1)D (2)B [解题技法]1.使函数解析式有意义的一般准则(1)分式中的分母不为0; (2)偶次根式的被开方数非负; (3)y =x 0要求x ≠0;(4)对数式中的真数大于0,底数大于0且不等于1; (5)正切函数y =tan x ,x ≠k π+π2(k ∈Z);(6)实际问题中除考虑函数解析式有意义外,还应考虑实际问题本身的要求. 2.抽象函数的定义域问题(1)若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域. [题组训练] 1.函数f (x )=1lnx +1+4-x 2的定义域为( ) A .[-2,0)∪(0,2] B .(-1,0)∪(0,2] C .[-2,2]D .(-1,2]解析:选B 由⎩⎪⎨⎪⎧x +1>0,ln x +1≠0,4-x 2≥0,得-1<x ≤2,且x ≠0.2.若函数y =f (x )的定义域是[1,2 019],则函数g (x )=f x +1x -1的定义域是________________.解析:因为y =f (x )的定义域是[1,2 019],所以若g (x )有意义,应满足⎩⎪⎨⎪⎧1≤x +1≤2 019,x -1≠0,所以0≤x ≤2 018,且x ≠1.因此g (x )的定义域是{x |0≤x ≤2 018,且x ≠1}. 答案:{x |0≤x ≤2 018,且x ≠1}考点二 求函数的解析式[典例] (1)已知二次函数f (2x +1)=4x 2-6x +5,求f (x ); (2)已知函数f (x )满足f (-x )+2f (x )=2x ,求f (x ). [解] (1)法一:待定系数法因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5, 所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R). 法二:换元法令2x +1=t (t ∈R),则x =t -12,所以f (t )=4⎝⎛⎭⎫t -122-6·t -12+5=t 2-5t +9(t ∈R),所以f (x )=x 2-5x +9(x ∈R). 法三:配凑法因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9, 所以f (x )=x 2-5x +9(x ∈R).(2)解方程组法由f (-x )+2f (x )=2x , ① 得f (x )+2f (-x )=2-x ,② ①×2-②,得3f (x )=2x +1-2-x . 即f (x )=2x +1-2-x3.故f (x )的解析式是f (x )=2x +1-2-x3(x ∈R).[解题技法] 求函数解析式的4种方法及适用条件 (1)待定系数法先设出含有待定系数的解析式,再利用恒等式的性质,或将已知条件代入,建立方程(组),通过解方程(组)求出相应的待定系数.(2)换元法对于形如y =f (g (x ))的函数解析式,令t =g (x ),从中求出x =φ(t ),然后代入表达式求出f (t ),再将t 换成x ,得到f (x )的解析式,要注意新元的取值范围.(3)配凑法由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)解方程组法已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).[提醒] 由于函数的解析式相同,定义域不同,则为不相同的函数,因此求函数的解析式时,如果定义域不是R ,一定要注明函数的定义域.[题组训练]1.[口诀第2句]已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,则f (x )=________________.解析:设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx . 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R).答案:12x 2+12x (x ∈R)2.[口诀第3句]已知f ⎝⎛⎭⎫2x +1=lg x ,则f (x )=________________.解析:令2x +1=t ,得x =2t -1,则f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg2x -1(x >1). 答案:lg2x -1(x >1) 3.[口诀第4句]已知f (x )满足2f (x )+f ⎝⎛⎭⎫1x =3x ,则f (x )=________. 解析:∵2f (x )+f ⎝⎛⎭⎫1x =3x ,①把①中的x 换成1x ,得2f ⎝⎛⎭⎫1x +f (x )=3x.② 联立①②可得⎩⎨⎧2f x +f ⎝⎛⎭⎫1x =3x ,2f ⎝⎛⎭⎫1x +f x =3x,解此方程组可得f (x )=2x -1x(x ≠0).答案:2x -1x (x ≠0)考点三 分段函数考法(一) 求函数值[典例] (2019·石家庄模拟)已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0(0<a <1),且f (-2)=5,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3[解析] 由题意得,f (-2)=a -2+b =5,①f (-1)=a -1+b =3,②联立①②,结合0<a <1,得a =12,b =1,所以f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝⎛⎭⎫12x +1,x ≤0,则f (-3)=⎝⎛⎭⎫12-3+1=9,f (f (-3))=f (9)=log 39=2. [答案] B[解题技法] 求分段函数的函数值的策略(1)求分段函数的函数值时,要先确定要求值的自变量属于哪一区间,然后代入该区间对应的解析式求值;(2)当出现f (f (a ))的形式时,应从内到外依次求值;(3)当自变量的值所在区间不确定时,要分类讨论,分类标准应参照分段函数不同段的端点.考法(二) 求参数或自变量的值(或范围)[典例] (2018·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)[解析] 法一:分类讨论法①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x ),即为2-(x +1)<2-2x,即-(x +1)<-2x ,解得x <1. 因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x ),即为1<2-2x,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). 法二:数形结合法∵f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,∴函数f (x )的图象如图所示. 结合图象知,要使f (x +1)<f (2x ), 则需⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0, ∴x <0,故选D. [答案] D[解题技法]已知函数值(或范围)求自变量的值(或范围)的方法(1)根据每一段的解析式分别求解,但要注意检验所求自变量的值(或范围)是否符合相应段的自变量的取值范围,最后将各段的结果合起来(求并集)即可;(2)如果分段函数的图象易得,也可以画出函数图象后结合图象求解.[题组训练]1.设f (x )=⎩⎨⎧x ,0<x <1,2x -1,x ≥1,若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( ) A .2 B .4 C .6D .8解析:选C 当0<a <1时,a +1>1,f (a )=a ,f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴a =2a , 解得a =14或a =0(舍去).∴f ⎝⎛⎭⎫1a =f (4)=2×(4-1)=6.当a ≥1时,a +1≥2,f (a )=2(a -1),f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴2(a -1)=2a ,无解. 综上,f ⎝⎛⎭⎫1a =6.2.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤1,f x -1,x >1,则f (f (3))=________.解析:由题意,得f (3)=f (2)=f (1)=21=2, ∴f (f (3))=f (2)=2. 答案:23.(2017·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12讨论.①当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,故-14<x ≤0.②当0<x ≤12时,原不等式为2x +x +12>1,显然成立.③当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,所求x 的取值范围是⎝⎛⎭⎫-14,+∞. 答案:⎝⎛⎭⎫-14,+∞ 4.设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是____________.解析:若a <0,则f (a )<1⇔⎝⎛⎭⎫12a-7<1⇔⎝⎛⎭⎫12a <8,解得a >-3,故-3<a <0; 若a ≥0,则f (a )<1⇔a <1,解得a <1,故0≤a <1. 综上可得-3<a <1. 答案:(-3,1)[课时跟踪检测]1.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4解析:选B ①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象;②中当x =x 0时,y 的值有两个,因此不是函数图象;③④中每一个x 的值对应唯一的y 值,因此是函数图象.故选B.2.函数f (x )=2x -1+1x -2的定义域为( ) A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)解析:选C 由题意得⎩⎪⎨⎪⎧2x -1≥0,x -2≠0,解得x ≥0,且x ≠2.3.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A.74 B .-74C.43D .-43解析:选A 令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.4.(2019·贵阳检测)下列函数中,同一个函数的定义域与值域相同的是( ) A .y =x -1 B .y =ln x C .y =13x -1D .y =x +1x -1解析:选D 对于A ,定义域为[1,+∞),值域为[0,+∞),不满足题意;对于B ,定义域为(0,+∞),值域为R ,不满足题意;对于C ,定义域为(-∞,0)∪(0,+∞),值域为(-∞,-1)∪(0,+∞),不满足题意;对于D ,y =x +1x -1=1+2x -1,定义域为(-∞,1)∪(1,+∞),值域也是(-∞,1)∪(1,+∞).5.(2018·福建期末)已知函数f (x )=⎩⎪⎨⎪⎧log 2x +a ,x >0,4x -2-1,x ≤0.若f (a )=3,则f (a -2)=( )A .-1516B .3C .-6364或3D .-1516或3解析:选A 当a >0时,若f (a )=3,则log 2a +a =3,解得a =2(满足a >0);当a ≤0时,若f (a )=3,则4a -2-1=3,解得a =3,不满足a ≤0,所以舍去.于是,可得a =2.故f (a -2)=f (0)=4-2-1=-1516.6.已知函数y =f (2x -1)的定义域是[0,1],则函数f 2x +1log 2x +1的定义域是( )A .[1,2]B .(-1,1] C.⎣⎡⎦⎤-12,0 D .(-1,0)解析:选D 由f (2x -1)的定义域是[0,1], 得0≤x ≤1,故-1≤2x -1≤1, ∴f (x )的定义域是[-1,1], ∴要使函数f 2x +1log 2x +1有意义,需满足⎩⎪⎨⎪⎧-1≤2x +1≤1,x +1>0,x +1≠1,解得-1<x <0.7.下列函数中,不满足f (2 018x )=2 018f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +2D .f (x )=-2x解析:选C 若f (x )=|x |,则f (2 018x )=|2 018x |=2 018|x |=2 018f (x );若f (x )=x -|x |,则f (2 018x )=2 018x -|2 018x |=2 018(x -|x |)=2 018f (x );若f (x )=x +2,则f (2 018x )=2 018x +2,而2 018f (x )=2 018x +2 018×2,故f (x )=x +2不满足f (2 018x )=2 018f (x );若f (x )=-2x ,则f (2 018x )=-2×2 018x =2 018×(-2x )=2 018f (x ).故选C.8.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足题意;对于②,f ⎝⎛⎭⎫1x =1x +x=f (x ),不满足题意;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧ 1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧ 1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足题意.综上可知,满足“倒负”变换的函数是①③. 9.(2019·青岛模拟)函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 解析:由⎩⎪⎨⎪⎧ 1+1x >0,1-x 2≥0⇒⎩⎪⎨⎪⎧x <-1或x >0,-1≤x ≤1⇒0<x ≤1. 所以该函数的定义域为(0,1].答案:(0,1]10.(2019·益阳、湘潭调研)若函数f (x )=⎩⎨⎧ lg 1-x ,x <0,-2x ,x ≥0,则f (f (-9))=________. 解析:∵函数f (x )=⎩⎨⎧ lg 1-x ,x <0,-2x ,x ≥0,∴f (-9)=lg 10=1,∴f (f (-9))=f (1)=-2. 答案:-211.(2018·张掖一诊)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.解析:∵f (1)=2,且f (1)+f (a )=0,∴f (a )=-2<0,故a ≤0. 依题知a +1=-2,解得a =-3.答案:-312.已知f (x )=⎩⎪⎨⎪⎧ 12x +1,x ≤0,-x -12,x >0,使f (x )≥-1成立的x 的取值范围是________. 解析:由题意知⎩⎪⎨⎪⎧ x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧ x >0,-x -12≥-1,解得-4≤x ≤0或0<x ≤2,故所求x 的取值范围是[-4,2].答案:[-4,2]13.设函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <0,2x ,x ≥0,且f (-2)=3,f (-1)=f (1). (1)求函数f (x )的解析式;(2)在如图所示的直角坐标系中画出f (x )的图象.解:(1)由f (-2)=3,f (-1)=f (1),得⎩⎪⎨⎪⎧ -2a +b =3,-a +b =2, 解得⎩⎪⎨⎪⎧ a =-1,b =1,所以f (x )=⎩⎪⎨⎪⎧-x +1,x <0,2x ,x ≥0. (2)函数f (x )的图象如图所示.。

高中数学必修一基本初等函数知识点与典型例题总结

高中数学必修一基本初等函数知识点与典型例题总结

( a ,c ( 0 ,1 ) U ( 1 , ) ,b 0 )
c
2) 对数恒等式
a lo g a N N ( a 0 且 a 1 , N 0 )
3) 四个重要推论
①logabllggabllnnab; ②logamNnm nlogaN;
③logablog1ba;
④ lo g ab lo g bc lo g ac.
由f x是奇函数,图像关于原点对称.
所以f x在( ,- a )是增函数,
在(- a ,0)是减函数.
综上,函数 f x x a(a>0)的单调
区间是
x f x在(- a ,0),(0, a )是减函数.
在( ,- a ),( a ,+)是增函数,
单调区间的分界点为: a的平方根
5.函数f x x a (a>0)的值域
①找不到证明问题的切入口.如第(1)问,很 多考生不知道求其定义域.
②不能正确进行分类讨论.若对数或指数的 底数中含有参数,一般要进行分类讨论.
一般地,函数 y x x 是 自 变 量 , 是 常 数
叫做幂函数
y
y x, y x2, y x3,
1
y x2, y x1
的图象.
O
x
幂函数的性质
当x1x2 >a时,由x1,x2是任意的,知x1,x2可 无限接近.而x1,x2在同一个区间取值, 知x1,x2 ( a,+)时,x1x2 >a都成立. 此时,f(x2 )>f (x1). 所以x ( a,+)时,f(x)是增函数.
同时可知,x (0, a )时,f(x)是减函数.
⑵. 当x∈ (-∞,0)时,确定某单调区间

基本初等函数知识点总结

基本初等函数知识点总结

基本初等函数知识点总结1.常数函数:常数函数是指函数的值在定义域内都保持不变的函数。

表示为f(x)=c,其中c是常数。

常数函数的图像是一条平行于x轴的直线。

常数函数的性质是恒等性,即f(x)=f(x'),对于任意x和x'都成立。

2.平方函数:平方函数是指函数的值与自变量的平方成正比的函数。

表示为f(x)=x²。

平方函数的图像是一条开口向上的抛物线。

平方函数的性质是奇偶性,即f(-x)=f(x),对于任意实数x都成立。

3.立方函数:立方函数是指函数的值与自变量的立方成正比的函数。

表示为f(x)=x³。

立方函数的图像是一条通过原点且存在于所有象限的曲线。

立方函数的性质是单调性,即在定义域内,当x₁<x₂时,有f(x₁)<f(x₂)或f(x₁)>f(x₂)成立。

4.绝对值函数:绝对值函数是指函数的值与自变量的绝对值成正比的函数。

表示为f(x)=,x。

绝对值函数的图像是一条以原点为顶点且对称于y轴的V字形曲线。

绝对值函数的性质是非负性,即对于任意实数x,有f(x)≥0成立。

5.指数函数:指数函数是指函数的值与自变量的指数幂成正比的函数。

表示为f(x)=aˣ,其中a是一个正实数且a≠1、指数函数的图像是一条通过点(0,1)且与x轴和y轴都无交点的曲线。

指数函数的性质是增长性,即在定义域内,当x₁<x₂时,有f(x₁)<f(x₂)成立。

6. 对数函数:对数函数是指函数的值与自变量的对数成正比的函数。

表示为f(x)=logₐ(x),其中a是一个正实数且a≠1、对数函数的图像是一条通过点(1, 0)且与x轴和y轴都无交点的曲线。

对数函数的性质是单调性,即在定义域内,当x₁<x₂时,有f(x₁)<f(x₂)成立。

7. 三角函数:三角函数包括正弦函数、余弦函数、正切函数等。

正弦函数表示为f(x)=sin(x),余弦函数表示为f(x)=cos(x),正切函数表示为f(x)=tan(x)。

基本初等函数初等函数

基本初等函数初等函数

基本初等函数初等函数初等函数是指可以用有限次加、减、乘、除、乘方、开方、指数、对数、函数互反和常数的四则运算来表示的函数。

它是高中数学中的一种函数类型,是数学研究和应用中最基本、最常见的一类函数。

最基本的初等函数包括:1.常数函数:y=C,其中C为任意常数。

常数函数在整个定义域上都保持不变。

2. 一次函数:y = mx + b,其中m和b为任意常数,m表示斜率,b 表示截距。

一次函数的图像为一条直线。

3.幂函数:y=x^r,其中r为任意的实数。

幂函数是由自变量的幂指数决定的。

4.指数函数:y=a^x,其中a为一个正常数且不等于1、指数函数的图像呈现指数增长或指数衰减的形式。

5. 对数函数:y = log_a(x),其中a为一个正数且不等于1、对数函数是指数函数的反函数,可以解决指数方程。

6. 三角函数:包括正弦函数y = sin(x),余弦函数y = cos(x),正切函数y = tan(x)等。

三角函数是周期性的函数。

除了以上基本初等函数外,复合函数也属于初等函数的范畴。

例如,将两个初等函数通过运算符号连接在一起形成的函数仍然属于初等函数。

例如加、减、乘、除、复合函数、互反函数等等。

初等函数在数学的研究和应用中起着非常重要的作用。

它们广泛应用于科学、工程、经济、物理、化学、生物学等领域中的数学模型建立和问题求解。

通过使用初等函数,我们可以更好地描述和分析变量之间的关系,从而更好地理解和预测实际问题。

初等函数的性质和特点也是数学学科中的重要内容之一、初等函数的图像、定义域、值域、对称性、奇偶性、单调性、极值等特征都可以通过数学工具和方法进行研究和分析。

总之,初等函数是数学中最基本和常见的一类函数。

它们通过有限次的四则运算、函数互反和常数的运算构成,在数学的研究和应用中起着重要的作用。

初等函数的性质和特点也是数学学科中的重要内容之一、通过学习初等函数,我们可以更好地理解和应用数学知识,解决实际问题。

高一数学 基本初等函数(对、指、幂函数)高考考纲及典型例题高考真题解析

高一数学 基本初等函数(对、指、幂函数)高考考纲及典型例题高考真题解析
x x 2 2x 2 x 4 1 4 a a 2 1
.
2
a 3 3a
【法二】 8 x 8 x 2 x
2
3 2
x 3
2 2 2 x 2 x 2 x 2 x 2 x 2 x
1

2 3
3
37 48
5 9 37 100 3 100 . 3 16 48
4
(4)原式 0.4 1 1 2 2 3 0.1

5 1 1 1 143 . 1 2 16 8 10 80
4.函数 f x a 2 7a 7 a x 是指数函数,求实数 a 的值. 【解析】∵函数 f x a 2 7a 7 a x 是指数函数,
1
0 a2 a1 1 a4 a3 . 1 又由题知: 0 10 1 3 10 ,∴ A 项正确. 3
1 x
a1 a2
O
x 1 x
b 7.已知二次函数 y ax 2 bx 与指数函数 y 的图象只能是下列图形中的 a y
1 1
1 2
1 1 , y x 2 的图像,了解它们的变化情况. x
二、重点知识总结
1.指数与指数幂运算 (1)①
a
n n n
n
a. a , 当n是奇数时 . a , 当n是偶数时
② a
(2)分数指数幂 ①a ②a
m n
n a m ( a 0 , m, n N * ,且 n 1 )
x y
2
是非负数,故④对.
7 (3) 2 9

(新)高中数学第二章基本初等函数Ⅰ2_1_1指数与指数幂的运算教材梳理素材新人教A版必修11

(新)高中数学第二章基本初等函数Ⅰ2_1_1指数与指数幂的运算教材梳理素材新人教A版必修11

2.1.1 指数与指数幂的运算疱丁巧解牛知识·巧学·升华指数与指数幂的运算 1.整数指数幂 (1)正整数指数幂正整数指数幂a m(a >0,m ∈N *)事实上是一种缩写,即 个m ma a a a .=⋅⋅⋅•.根据缩写的这种意义可以得到如下的性质:(1)a m×a n=a m+n;(2)a m÷a n=a m-n;(3)(a m )n=a mn;(4)a n b n=(ab)n;(5)(ba )n =n nb a (b ≠0).(2)负整数指数幂 ∵a n·a -n=a n-n=a 0=1,∴a -n=na 1. 这一规定把除法与乘法统一起来了,a n÷b m=m n ba =a n ·b -m.由于a 0与a -n(n ∈N *)都是由数学式子中除数a n产生的,根据0作除数无意义,所以规定a 0与a -n 的同时,必须有a n≠0即a ≠0,这样的规定才与已往有的除法运算相一致.就这样,正整数指数幂推广到了整数指数幂.要点提示 整数指数幂的底数应使等号两边都有意义.正整数指数幂的底数是a ∈R ;零指数和负整数指数幂的底数a ∈R 且a ≠0.指数可以是任意整数. 2.根式(1)平方根:如果x 2=a ,则x 叫做a 的平方根(或二次方根),其中a 叫做被开方数,次数2叫做根指数,x 叫做a 的平方根.当a >0时,它有两个互为相反数的平方根,记作:a ,-a ;当a=0时,0=0;当a <0时,在实数范围内没有平方根.例如:x 2=9,则x=±9=±3是9的平方根,若x 2=-4<0,则在实数范围内-4没有平方根. 或者平方根可由二次函数y=x 2的图象与性质去理解.要点提示 平方根存在与否以及平方根的个数仅仅与被开方数有关.(2)立方根:如果x 3=a ,则x 叫做a 的立方根(或三次方根).它的被开方数、根指数、根分别是a 、3、x.在实数范围内,对任意a ∈R ,它都有唯一的立方根3a ,其中3a 叫做根式.(3)n 次方根:如果存在实数x ,使得x n=a (a ∈R ,n >1,n ∈N ),则x 叫做a 的n 次方根. 如果n 是偶数,它同平方根一样,当a >0时,它有两个n 次方根,即±n a ;当a=0时,n 0=0;当a <0时,在实数范围内无偶次方根.如果n 是奇数,它同立方根一样,对任意a ∈R ,它都有唯一的n 次方根n a .要点提示 (1)只有当n a 有意义时,才能称为根式.n 次方根是平方根和立方根的推广.根指数是大于1的整数.(2)无论根指数是大于1的偶数还是奇数,当被开方数是0时,它的n 次方根是0. 3.方根性质(1)n 次方根的性质x=⎪⎩⎪⎨⎧=±+=kn a k n a n n 2,12,(k ∈N *,n>1,n ∈N )式子n a 叫做根式,n 叫做根指数,a 叫做被开方数. 由n 次方根的定义,我们可以得到根式的运算性质. (2)根式的运算性质①nn a )(=a (n >1,n ∈N )理解这一性质的关键是紧扣n 次方根的定义,如果x n=a(n>1,且n ∈N )有意义,则无论n是奇数或偶数,x=n a 一定是它的一个n 次方根,所以n n a )(=a 恒成立.例如:44)3(=3,33)5(-=-5.记忆要诀 先开方,再乘方(同次),结果为被开方数. 当n 为奇数时,a ∈R ,由n 次方根的定义可得n n a =a 恒成立,当n 为偶数时,a ∈R ,a n≥0,nn a 表示正的n 次方根或0,所以如果a ≥0,那么n n a =a.例如443=3,40=0;如果a <0,那么n n a =|a|=-a ,如2)3(-=23=3.从而归纳得到以下根式的性质:②⎪⎩⎪⎨⎧⎩⎨⎧<-≥==.,0,,0,||,,为偶数为奇数n a a a a a n a a nn利用根式的运算性质对根式的化简的过程中,根指数n 为奇数的题目较易处理,而例题侧重于根指数n 为偶数的运算.记忆要诀 先奇次乘方,再开方(同次),结果为被开方数;先偶次乘方,再开方(同次),结果为被开方数的绝对值. 4.分数指数幂(1)根式与分数指数幂的转化为了使同底数幂的运算变成指数的简单运算,有必要对分数指数幂规定为:n mnma a =(a ≥0,n 、m ∈N *,n ≥2),nm nm aa1=(a >0,n 、m ∈N *,n ≥2).分数指数幂是根式的另一种写法,这种写法更便于指数运算.同0指数幂、负整数指数幂一样,负分数指数幂中,nm a ≠0,即a ≠0.指数的概念在引入了0指数、负整数指数、分数指数以后,指数的概念就实现了由整数到有理数的扩充,扩充后同底数的有理次幂的乘法、除法、开方都可以化为指数的运算,为化简根式带来了很大的方便.要点提示 (1){有理数}={分数}=Q .(2)零的正分数次幂为零,零的负分数次幂无意义.(3)对分数指数幂和根式的互化,要紧扣方根的定义. (2)分数指数幂的运算法则设a >0,b >0,α、β∈Q ,则 ①a α·a β=a α+β;②(a α)β=a αβ;③(ab )α=a α·b α.分数指数幂的运算法则同整数指数幂一样,a α是一个确定的实数. 根式n m a 化成分数指数幂nm a 的形式,若对nm约分,有时会改变a 的范围.例如:214242)2()2()2(-≠-=-.所以考虑清楚a 的范围后再化简nm . 要点提示 化简代数式的关键是把问题化归成我们熟悉的、已知其运算法则的分数指数幂的形式,利用其法则去计算;对于代数式的化简结果,可用根式或分数指数幂中的一种形式,但不能同时出现根式和分数指数幂的形式,也不能既有分母,又有负指数. 5.无理指数幂无理指数幂教材中没有给出严格的定义,可阅读教材61页,通过计算器计算,体会“有理数逼近无理数”的思想,感受一下它的逼近程度.一般地,当a >0,α为无理数时,a α也是一个确定的实数.整数指数幂的运算法则就推广到了实数范围内,也就是说,设a >0,b >0,α、β∈R ,则(1)a α·a β=a α+β;(2)(a α)β=a αβ;(3)(ab )α=a α·b α.恒成立. 问题·思路·探究问题 为什么正数的偶次方根有两个并且互为相反数,而负数没有偶次方根? 思路:根据方根的定义,考虑偶次方与偶次方根的联系.探究:根据方根定义,若x 是a(a>0)的n 次方根(n 为偶数),则x n =a ,这时(-x )n=a ,即-x 也是a(a>0)的n 次方根.假设x 是a(a<0)的n 次方根(n 为偶数),则x n =a .因为x n≥0,a<0,所以x n=a 不成立,与方根定义矛盾. 典题·热题·新题例1 下列命题中,错误的是( )A.当n 为奇数时,n n x =xB.当n 为偶数时,n n x =xC.当n 为奇数时,n n x )(=xD.当n 为偶数时,n n x )(=x思路解析:由对根式性质中奇偶条件限制的理解,很容易知道选B. 答案:B深化升华 当n 是奇数时,n n n n a a =)(=a.例2 已知函数y=n m x 的定义域为R ,则下列给出的n, m 中,不能取的一对值是( ) A.n=3,m=7 B.n=2,m=4 C.n=4,m=3 D.n=3,m=4 思路解析:如果n 是奇数,对任意a ∈R ,它都有唯一的n 次方根n a ;故A 、D 项符合要求.如果n 是偶数,它同平方根一样,当a >0时,它有两个n 次方根,当a=0时,n 0=0,当a <0时,在实数范围内无偶次方根,B 项中x 4符合要求,而C 项中x 3未必为非负数,如x=-1就不行. 答案:C误区警示 当a <0时,在实数范围内a 无偶次方根,容易忽视. 例3 利用函数计算器计算(精确到0.001). (1)0.32.1;(2)3.14-3;(3)431.3;(4)33.思路解析:对于(1),可先按底数0.3,再按 2.1,最后按□=,即可求得它的值;对于(2),先按底数3.14,再按□-键,再按3,最后按□=即可;对于(3),先按底数3.1,再按3□÷4,最后按□=即可.对于(4),这种无理指数幂,可先按底数3,其次按3,最后按□=键.有时也可按.答案:(1)0.32.1≈0.080;(2)3.14-3≈0.032;(3)431.3≈2.336;(4)33≈6.705.深化升华 熟练掌握用计算器计算幂的值的方法与步骤,感受一下现代技术的威力,逐步把自己融入现代信息社会.用四舍五入法求近似值,若保留小数点后n 位,只需看第(n+1)位能否进位即可.例4 比较55,33,2的大小.思路解析:底数不同根指数也不同的两个数比较其大小,要化为同底数的或化为同指数的数再作比较.解:61613218)2(22===,616123139)3(33===,而8<9, ∴36161398<<,10110152132)2(22===,1012515)5(55==,而25<32.∴55<2.总之,55<2<33.拓展延伸 比较幂值的大小,如果底数与指数都不相同时,能化为同底,则先化为同底,不能化为同底,就化为同指数,这些都是通过代数变形转化的方法来实现的.转化是解题的万能钥匙.例5 已知x+x -1=3,求下列各式的值. (1)2121-+xx ;(2)2323-+xx思路解析:(1)题若平方则可出现已知形式,但开方时应注意正负的讨论;(2)题若立方则可出现(1)题形式与已知条件,需将已知条件与(1)题结论综合;或者可仿照(1)题作平方处理,进而利用立方和公式展开. ∵221212122122121)(2)()(---+•+=+x xx x x x =x+x -1+2=3+2=5,∴2121-+xx =±5.又由x+x -1=3得x>0,所以52121=+-x x .(2)解法一:3213212323)()(--+=+x x x x=])())[((22121212212121---+•-+x x x x x x=)(2121-+xx (x-1+x -1)=)13(5-=52 解法二:22323][-+x x=2232323223)(2)(--+•+x xx x=x 3+x -3+2而x 3+x -3=(x+x -1)(x 2-1+x -2)=(x+x -1)[(x+x -1)2-3]=3×(32-3)=18 ∴22323][-+xx =20.又由x+x -1=3,得x>0, ∴52202323==+-xx .误区警示 (1)题注重了已知条件与所求问题之间的内在联系,但开方时正负的取舍容易被学生忽视,应强调以引起学生注意.拓展延伸 (2)题解法一注意了(1)题结论的应用,显得颇为简捷,解法二注重的是与已知条件的联系,体现了对立方和公式、平方和公式的灵活运用,而且具有一定的层次,需看透问题实质方可解决得彻底,否则可能半途而废.另外,(2)题也体现了一题多解. 深化升华 条件代数式的化简遵循以下三个原则.(1)若条件复杂,结论简单,可把条件化简成结论的形式.(2)若结论复杂,条件简单,可把结论化简成条件的形式.(3)若条件结论均复杂,可同时化简它们,直到找到它们之间的联系为止.。

高中数学新人教B版必修1课件:第3章基本初等函数3.2.2对数函数

高中数学新人教B版必修1课件:第3章基本初等函数3.2.2对数函数
名师点拨1.对数函数也采取情势化的定义方式,即形如
y=logax(a>0,a≠1,x>0)的函数叫做对数函数.对数函数的解析式具
有以下特征:对数符号前面的系数等于1;对数的底数必须是大于0
且不等于1的实数;对数的真数仅为自变量x.
2.对数函数的解析式中其底数与指数函数解析式中的底数在范
围上是一样的,即a>0,且a≠1.
函数;当底数不相同,真数相同时,可根据图象与底数的关系所反应
出的规律进行比较;当底数和真数各不相同时,可考虑引进第三个
数(常用“0”或“1”)分别与之比较,通过第三个数的传递进而比较出
两个对数的大小.当底数与1的大小关系未明确指定时,要分情况对
底数进行讨论来比较两个对数的大小.
对于多个对数的大小比较,通常先找出(-∞,0),(0,1),(1,+∞)中的各
m)1.9>(lg m)2.1;若lg m=1,即m=10,则(lg m)1.9=(lg m)2.1.
(3)因为底数8,10均大于1,且10>8,
所以log85>lg 5>lg 4,即log85>lg 4.
题型一
题型二
题型三
题型四
题型五
反思本例中(1)小题是直接利用对数函数的单调性;(2)小题是指
解得 x≥16,故函数的定义域是[16,+∞);
题型一
题型二
题型三
题型四
题型五
(4)要使函数有意义,则 log1 (x+1)+2≥0,
2
即 log 1 (x+1)≥-2,也就是 log 1 (x+1)≥log 1 4,
2
2
2
则 x+1>0,且 x+1≤4,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学知识点总结第二章 基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nxa a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符表示;当n 是偶数时,正数a 的正的n表示,负的n次方根用符号0的n 次方根是0;负数a 没有n 次方根.这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当na =;当n 为偶数时,(0)|| (0)a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m naa m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质①(0,,)rs r s aa a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)rr r ab a b a b r R =>>∈【2.1.2】指数函数及其性质(4)指数函数〖2.2〗对数函数 【2.2.1】对数与对数运算(1)对数的定义 ①若(0,1)xaN a a =>≠且,则x 叫做以a 为底N 的对数,记作log a xN =,其中a 叫做底数,N叫做真数.②负数和零没有对数. ③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).(4)对数的运算性质 如果0,1,0,0aa M N >≠>>,那么①加法:log log log ()aa a M N MN += ②减法:log log log a a aMM N N-=③数乘:log log ()n aa n M M n R =∈ ④log a N a N =⑤loglog (0,)bn a a nM M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a bN N b b a =>≠且【2.2.2】对数函数及其性质(5)对数函数(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()xy ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()xf y -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质 ①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义 一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关y .②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). ③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则qpy x=是奇函数,若p 为奇数q 为偶数时,则q py x=是偶函数,若p 为偶数q 为奇数时,则q py x=是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式 ①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质 ①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a>时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2bx a=-时,2min 4()4ac b f x a-=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2b a -+∞上递减,当2bx a=-时,2max 4()4ac b f x a-=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||M x M x M M x x =-. (4)一元二次方程20(0)axbx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布. 设一元二次方程20(0)axbx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔③x1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k1<x1<k2≤p1<x2<p2⇔此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a=++≠在闭区间[,]p q上的最值设()f x在区间[,]p q上的最大值为M,最小值为m,令1()2x p q=+.(Ⅰ)当0a>时(开口向上)①若2bpa-<,则()m f p=②若2bp qa≤-≤,则()2bm fa=-③若2bqa->,则()m f q=2a)q()f p)M=②若q≤③若2bqa->,则()M f q=①若2bxa-≤,则()m f q=②2bxa->,则()m f p=.xx xxxx(q)xxfx。

相关文档
最新文档