高中数学基本初等函数练习题

合集下载

(完整版)高中数学第一章基本初等函数的导数公式及导数的运算法则(一)练习

(完整版)高中数学第一章基本初等函数的导数公式及导数的运算法则(一)练习

1.2.1几个常用函数的导数122 基本初等函数的导数公式及导数的运算法则(一)[A 基础达标]①(sin x) '= cos x;1 2②若f(x)= x,则f'⑶=-27;③(e x) ― e x;1④(log4x)、x nr-其中正确的有()A. 1个B. 2个C. 3个D. 4个“ 1 ' - 2解析:选 D.因为(sin x) ' = cos x,所以①正确;f ' (x) = 一2 = (x ) ' =- 2x x2 13,则f '⑶=—27,所以②正确;因为(e x) ' = e x,所以③正确;因为(log 4x) ' = x i n 4,所以④正确.a 1 12. 若幕函数f(x) = mx的图象经过点A4, 2,则它在点A处的切线方程是()A. 2x—y= 0B. 2x+ y = 0C. 4x—4y + 1 = 0D. 4x+ 4y + 1 = 0解析:选C.因为函数f(x) = mf为幕函数,所以m= 1.又幕函数f(x) = x a的图象经过11 1 1 1 1点A4, 2,所以a = 2,所以f(x) = x2, f' (x)=——,f ' 4 = 1,所以f(x)的图象在1 1点A处的切线方程为y—2= x —4,即4X—4y + 1 = 0._ n 1 一_ _ 一3. 过曲线y= cos x上一点P —, 且与曲线在点P处的切线垂直的直线方程为()1. 给出下列结论:— —5.已知点 P 在曲线y = 2sin qcos?上,a 为曲线在点 值范围是()D. 3— + 2y —1 = 0n 1解析:选A.因为y =cos —,所以y'一 sin —,曲线在点Py ,2处的切线斜率是y ,1 — n =— sin 才=—£,所以过点P 且与曲线在点 P 处的切线垂直的直线的斜率为3 ~3, 所以所求的直线方程为 y — 1=冷x —专,即2x — 3y —夺+ 卓 0. y = x + 1(n € N *)在点(1 , 1)处的切线与—轴的交点的横坐标为 x n,则X 1 4•设曲线 X 2 ........... X n 的值为() i A.—n1 B.- n +1nC.n nD. 1解析:选 B.由题意得—n =市, 则 X 1 • X 2 ......... X n = ............ 二n — 12 34n xidh =詁1,故选 B. 3nA. ~~, nB. 71 4' 3n4n 3 n c. 7,-4D. u 3n,n — — 解析:选 D.因为 y = 2sin gcosg h sin x ,所以 y '= cos X , 设P (x o , y o ).由题意,知 切线的斜率存在,则曲线在点 P 处的切线的斜率 k =tan a = cos —o ,所以一1<tan a < 1. n 3 n ,因为0W a Vn ,所以a € 0, — U , n ,故选D. 16.已知函数f (x )=- X且 f ' (a ) — f (a ) = — 2,则 a =1解析:f (x )= -,所以—2即 2a — a — 1 = 0,P 处的切线的倾斜角,则a 的取1解得a = 1或a =- 2. 、1答案:1或一 27.曲线y = x 3在点(1 ,1)处的切线与x 轴、直线x = 2所围成的三角形的面积为 _____________ . 解析:因为y '= 3x 2.所以切线的斜率为 y '|= 1 = 3X12= 3,所以切线方程为y — 1 = 3(x 2 12 8 —1),与x 轴的交点为3,0,与直线x = 2的交点为(2 , 4).所以S =-X 2 — - X 4 =-.3 2 331&设曲线y = e x在点(0 , 1)处的切线与曲线 y = -(x >0)上点P 处的切线垂直,则点P 的 X坐标为 _________ .解析:设 f (x ) = e x ,则 f '(x ) = e x ,1所以 f ' (0) = 1.设 g (x ) = x (x >0),解得X P = 1. 所以R1 , 1). 答案:(1 , 1)9.求与曲线y = f (x )=扳2在点P (8 , 4)处的切线垂直,且过点(4 , 8)的直线方程.曲线在点R8 , 4)处的切线的斜率为1.所以适合条件的直线的斜率为一 3.从而适合条件的直线方程为 y — 8= — 3(x — 4),即 3x + y — 20 = 0.10. 点P 是曲线y = e 上任意一点,求点 P 到直线y = x 的最小距离. 解:根据题意设平行于直线 y = x 的直线与曲线 y = e x 相切于点P (x o , y o ),该切点即为与y = x 距离最近的点,如图.则在点P (X 0, y °)处的切线斜率为1, 即 y '| x = x °= 1. 因为 y '= (e x ) ' = e x ,所以e*0= 1,得x ° = 0,代入y = e , 得 y 0= 1,即 P (0 , 1).[B 能力提升]11. 若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则g ' 1(x) =— x ^.由题意可得 g '(x P) =— 1, 解:因为y =习F,所以y '=(守£)'=1 12 2 — 2 - 1 =-x 3.所以 f ' (8) = -X 83 =;,即 3 3 3 3则称y= f(x)具有T性质.下列函数中具有T性质的是()A. y = sin xB. y = In xx 3C. y = eD. y = x解析:选A.设函数y= f (x)的图象上两点Rx i, y i), Qx2, y2),则由导数的几何意义可知,点P, Q处切线的斜率分别为k i= f'(x i) , k2 = f '(X2),若函数具有T性质,则k i - k2 =f '(x i) • f'(X2) = —i.对于A选项,f' (x) = cos x,显然k i • k2= cos x i • cos X2=—ii i i有无数组解,所以该函数具有T性质;对于B选项,f' (x) =-(x>0),显然k i • k2=- •x x i X2 =—i无解,故该函数不具有T性质;对于C选项,f' (x) = e x>0,显然k i • k2= e x i • e, =—i无解,故该函数不具有T性质;对于D选项,f' (x) = 3x2>0,显然k i • k= 3x i • 3x2 = —i无解,故该函数不具有T性质.故选A.12. 设f o(x) = sin x,f i(x) = f' o(x), f 2(x) = f ' i(x),…,f n+1(x) = f' n(x),n€N,贝y f 2 oi8 (x) = ________ .解析:由已知f i(x) = cos x,f2(x) = —sin x,f3(x) = —cos x,f4(x) = sin x,f5(x)=cos x,…依次类推可得,函数呈周期变化,且周期为3,贝U f2 oi8(x) = f2(x) = —sin x.答案:—sin x13. 若曲线f(x) = x—2在点(a, a—2)( a>0)处的切线与两坐标轴围成的三角形的面积为3, 求log 3a的值.T解:由题意,得f '( x) = —2x 3,一 2 一 2 一 3所以曲线f (x)在点(a, a )处的切线方程为y—a = —2a (x—a),一23a令x = 0,得y = 3a,令y = 0,得x =所以3a—2x 3a= 3,2 2解得a= 3 4所以log 3a=2.214. (选做题)已知两条曲线y i= sin x, y2= cos x,是否存在这两条曲线的一个公共点,使在这解:不存在.理由如下:由于y i = sin x, y2= cos x,设两条曲线的一个公共点为P(x o,一点处,两条曲线的切线互相垂直?并说明理由.解:不存在.理由如下:由于y i = sin x, y2= cos x,设两条曲线的一个公共点为P(x o,y。

高中数学基本初等函数图像题专题训练含答案

高中数学基本初等函数图像题专题训练含答案

高中数学基本初等函数图像题专题训练含答案姓名:__________ 班级:__________考号:__________一、选择题(共20题)1、函数的图象大致是 ( )A .B .C .D .2、已知函数的图象如图所示,则该函数的解析式可能是()A .B .C .D .3、函数在区间上的图象大致是()A . B .C .D .4、函数的图象大致为()A .B .C .D .5、 A . B .C .D .6、下列图象中不能作为函数的是()A .B .C .D .7、设函数满足对,都有,且在上单调递增,,,则函数的大致图象是()A .B .C .D .8、若方程在区间有解,则函数图象可能是()A .B .C .D .9、函数的图象大致为()A .B .C .D .10、函数的大致图象为()A .B .C .D .11、函数,图象大致为A. B .C .D .12、函数的图象大致是()A .B .C .D .13、已知函数,,则的图象不可能是()A .B .C .D .14、函数的图像可能是()A .B .C .D .15、函数的图像大致为()A .B .C .D .16、函数的图象大致为A .B .C .D .17、函数在其定义域上的图象大致为()A .B .C .D .18、函数的图象大致形状是()A .B .C .D .19、已知,函数与的图象可能是()A .B .C .D .20、函数的图象大致为()A .B .C .D .============参考答案============一、选择题1、B【解析】【分析】根据题意,先分析函数的奇偶性,排除AC ,再判断函数在上的符号,排除 D ,即可得答案.【详解】∵ f ( x ) 定义域 [ - 1 , 1 ] 关于原点对称,且,∴ f ( x ) 为偶函数,图像关于y 轴对称,故AC 不符题意;在区间上,,,则有,故 D 不符题意, B 正确.故选: B .2、D【解析】【分析】根据函数的图象结合函数的定义域,复合函数的奇偶性,利用排除法,即可得到结果 . 【详解】由图象可知函数是奇函数,函数和由复合函数的奇偶性可知,这两个函数为偶函数,故排除 A , C ;对于函数,由于时,,此时无意义,所以函数不经过原点,故 B 错误;故 D 满足题意.故选: D.3、A【解析】【分析】先判断函数的奇偶性,再由,进而得到正确选项 .【详解】∵ 函数,故函数为奇函数,排除 BD ;,可排除 C.故选: A.4、 B【分析】根据函数的奇偶性可排除 C ,再根据的符号即可排除 AD ,即可得出答案.【详解】解:函数的定义域为R ,因为,所以函数是偶函数,故排除 C ;,故排除 A ;,故排除 D.故选: B.5、【分析】首先确定函数的奇偶性,然后结合函数在处的函数值排除错误选项即可确定函数的图象 .【详解】因为,则,即题中所给的函数为奇函数,函数图象关于坐标原点对称,据此可知选项CD 错误;且时,,据此可知选项B 错误 .故选: A.【点睛】函数图象的识辨可从以下方面入手: (1) 从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2) 从函数的单调性,判断图象的变化趋势.(3) 从函数的奇偶性,判断图象的对称性.(4) 从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.6、 B【分析】根据函数的定义可知,对于x 的任何值y 都有唯一的值与之相对应,分析图象即可得到结论.【详解】由函数的定义可知,对定义域内的任意一个自变量x 的值,都有唯一的函数值y 与其对应,故函数的图象与直线x =a 至多有一个交点,图 B 中,存在x =a 与函数的图象有两个交点,不满足函数的定义,故 B 不是函数的图象.故选: B7、 A【分析】判断的奇偶性排除 BD ,再由当时,得出答案 .【详解】令,则函数为偶函数,故排除 BD当时,,则,故排除 C故选: A【点睛】关键点睛:本题关键是采用排除法,由奇偶性排除 BD ,再由当时,排除 C.8、 D【分析】由题意可得在区间上,能够成立,结合所给的选项,得出结论【详解】解:方程在区间上有解,在区间上,能够成立,结合所给的选项,只有 D 选项符合.故选: D .9、 A【分析】由条件判断函数为奇函数,且在为负数,从而得出结论 .【详解】,因此函数为奇函数,图像关于原点对称排除;当时,,,因此.故选:.【点睛】本题主要考查的是函数图像的应用,奇偶性的应用,根据奇偶函数的对称性进行判断是解决本题的关键,是中档题 .10、 A【分析】判断函数的奇偶性和对称性的关系,利用极限思想进行求解即可【详解】解:函数,,,,则函数为非奇非偶函数,图象不关于 y 轴对称,排除 C , D ,当,排除 B ,故选 A【点睛】本题主要考查函数图象的识别和判断,利用函数的对称性以及极限思想是解决本题的关键11、 D【分析】根据函数的奇偶性和函数图像上的特殊点对选项进行排除,由此得出正确选项 .【详解】,故函数为奇函数,图像关于原点对称,排除选项 .由排除选项 . 由,排除 C 选项,故本小题选 D.【点睛】本小题主要考查函数图像的识别,考查函数的奇偶性的判断方法,属于基础题 .12、 C【分析】根据函数的奇偶性和值域即可判断 .【详解】所以为偶函数,所以图象关于轴对称,故排除 B ,当时,故排除 A ,当时,故排除 D故选: C .13、 D【分析】先分析出为偶函数 . ,其图像关于y 轴对称,即可得到答案 .【详解】定义域为 R.因为,所以为偶函数 . ,其图像关于y 轴对称,对照四个选项的图像,只能选 D.故选 :D14、 B【分析】根据、分类讨论的图象,利用导函数研究它在各个区间上的单调性,分别判断两个区间某一部份的单调性即可得到它的大致图象;【详解】1 、当时,,即,令,则,∴ 时,即单调递增,故,∴ 此时,,即在单调递增,故排除D 选项;2 、当时,,令,则,∴ ,,故有即,所以,∴ 在上,而,故在上一定有正有负,则有B 正确;故选: B【点睛】本题考查了利用导数研究函数单调性,并确定函数的大致图象,注意按区间分类讨论,以及零点、极值点的讨论15、 B【分析】由函数为偶函数可排除 AC ,再由当时,,排除 D ,即可得解.【详解】设,则函数的定义域为,关于原点对称,又,所以函数为偶函数,排除 AC ;当时,,所以,排除 D.故选: B.16、 C【分析】由可排除 A 、 D ;再利用导函数判断在上的单调性,即可得出结论 . 【详解】因为,故排除 A 、 D ;,令,在是减函数,,在是增函数,,存在,使得,单调递减,单调递增,所以选项 B 错误,选项 C 正确.故选: C【点睛】本题考查由解析式选择函数图象的问题,利用导数研究函数单调性是解题的关键,考查学生逻辑推理能力,是一道中档题 .17、 D【分析】求函数的定义域 , 判断函数的奇偶性和对称性, 利用排除法, 进行判断即可【详解】函数的定义域为.因为,,所以是奇函数,图象关于原点对称,排除 A,B ;当,,排除 C.故选 :D.18、 D【分析】利用排除法,先判断函数的奇偶性,再取特殊值即可判断【详解】解:函数的定义域为,因为,所以为偶函数,所以其图像关于轴对称,所以排除 A ,B ,因为,所以排除 C ,故选: D19、 B【分析】根据函数的定义域,判断两个函数的单调性,即可求解 .【详解】,函数在上是增函数,而函数定义域为,且在定义域内是减函数,选项 B 正确》故选 :B.【点睛】本题考查函数的定义域、单调性,函数的图像,属于基础题 .20、 A【分析】分析函数的奇偶性,并结合函数的解析式知:当时,即可确定大概函数图象 . 【详解】根据题意,设,其定义域为,有,则为奇函数,其图象关于原点对称,排除 C 、 D ,当时,,,必有,排除 B ,故选: A.【点睛】关键点点睛:分析函数的奇偶性与函数值符号,应用间接法确定函数图象 .。

高中数学基本初等函数的导数公式及导数运算法则综合测试卷(附答

高中数学基本初等函数的导数公式及导数运算法则综合测试卷(附答

高中数学基本初等函数的导数公式及导数运算法则综合测试卷(附答选修2-2 1.2.2 第2课时差不多初等函数的导数公式及导数运算法则一、选择题1.函数y=(x+1)2(x-1)在x=1处的导数等于()A.1B.2C.3D.4[答案]D[解析]y=[(x+1)2](x-1)+(x+1)2(x-1)=2(x+1)(x-1)+(x+1)2=3x2+2x-1,y|x=1=4.2.若对任意xR,f(x)=4x3,f(1)=-1,则f(x)=()A.x4 B.x4-2C.4x3-5 D.x4+2[答案]B[解析]∵f(x)=4x3.f(x)=x4+c,又f(1)=-11+c=-1,c=-2,f(x)=x4-2.3.设函数f(x)=xm+ax的导数为f(x)=2x+1,则数列{1f(n)}(nN*)的前n项和是()A.nn+1B.n+2n+1C.nn-1D.n+1n[答案]A[解析]∵f(x)=xm+ax的导数为f(x)=2x+1,m=2,a=1,f(x)=x2+x,即f(n)=n2+n=n(n+1),数列{1f(n)}(nN*)的前n项和为:Sn=112+123+134+…+1n(n+1)=1-12+12-13+…+1n-1n+1=1-1n+1=nn+1,故选A.4.二次函数y=f(x)的图象过原点,且它的导函数y=f(x)的图象是过第一、二、三象限的一条直线,则函数y=f(x)的图象的顶点在() A.第一象限B.第二象限C.第三象限D.第四象限[答案]C[解析]由题意可设f(x)=ax2+bx,f(x)=2ax+b,由于f(x)的图象是过第一、二、三象限的一条直线,故2a0,b0,则f(x)=ax+b2a2-b24a,顶点-b2a,-b24a在第三象限,故选C.5.函数y=(2+x3)2的导数为()A.6x5+12x2 B.4+2x3C.2(2+x3)2 D.2(2+x3)3x[答案]A[解析]∵y=(2+x3)2=4+4x3+x6,y=6x5+12x2.6.(2021江西文,4)若函数f(x)=ax4+bx2+c满足f(1)=2,则f(-1)=()A.-1 B.-2C.2 D.0[答案]B[解析]本题考查函数知识,求导运算及整体代换的思想,f(x)=4ax3+2bx,f(-1)=-4a-2b=-(4a+2b),f(1)=4a+2b,f(-1)=-f(1)=-2要善于观看,故选B.7.设函数f(x)=(1-2x3)10,则f(1)=()A.0 B.-1C.-60 D.60[答案]D[解析]∵f(x)=10(1-2x3)9(1-2x3)=10(1-2x3)9(-6x2)=-60x2(1-2x3)9,f(1)=60.8.函数y=sin2x-cos2x的导数是()A.22cos2x-B.cos2x-sin2xC.sin2x+cos2x D.22cos2x+4[答案]A[解析]y=(sin2x-cos2x)=(sin2x)-(cos2x)=2cos2x+2sin2x=22cos2x-4.9.(2021高二潍坊检测)已知曲线y=x24-3lnx的一条切线的斜率为1 2,则切点的横坐标为()A.3 B.2C.1 D.12[答案]A[解析]由f(x)=x2-3x=12得x=3.10.设函数f(x)是R上以5为周期的可导偶函数,则曲线y=f(x)在x =5处的切线的斜率为()A.-15 B.0C.15 D.5[答案]B[解析]由题设可知f(x+5)=f(x)f(x+5)=f(x),f(5)=f(0)又f(-x)=f(x),f(-x)(-1)=f(x)即f(-x)=-f(x),f(0)=0故f(5)=f(0)=0.故应选B.二、填空题11.若f(x)=x,(x)=1+sin2x,则f[(x)]=_______,[f(x)]=________.[答案]2sinx+4,1+sin2x[解析]f[(x)]=1+sin2x=(sinx+cosx)2=|sinx+cosx|=2sinx+4.[f(x)]=1+sin2x.12.设函数f(x)=cos(3x+)(0<),若f(x)+f(x)是奇函数,则=______ __.[答案]6[解析]f(x)=-3sin(3x+),f(x)+f(x)=cos(3x+)-3sin(3x+)=2sin3x++56.若f(x)+f(x)为奇函数,则f(0)+f(0)=0,即0=2sin+56,+56=kZ).又∵(0,),6.13.函数y=(1+2x2)8的导数为________.[答案]32x(1+2x2)7[解析]令u=1+2x2,则y=u8,yx=yuux=8u74x=8(1+2x2)74x=32x(1+2x2)7.14.函数y=x1+x2的导数为________.[答案](1+2x2)1+x21+x2[解析]y=(x1+x2)=x1+x2+x(1+x2)=1+x2+x21+x2=(1+2x2) 1+x21+x2.三、解答题15.求下列函数的导数:(1)y=xsin2x;(2)y=ln(x+1+x2);(3)y=ex+1ex-1;(4)y=x+cosxx+sinx.[解析](1)y=(x)sin2x+x(sin2x)=sin2x+x2sinx(sinx)=sin2x+xsin2x.(2)y=1x+1+x2(x+1+x2)=1x+1+x2(1+x1+x2)=11+x2 .(3)y=(ex+1)(ex-1)-(ex+1)(ex-1)(ex-1)2=-2ex(ex-1)2 .(4)y=(x+cosx)(x+sinx)-(x+cosx)(x+sinx)(x+sinx)2=(1-sinx)(x+sinx)-(x+cosx)(1+cosx)(x+sinx)2=-xcosx-xsinx+sinx-cosx-1(x+sinx)2.16.求下列函数的导数:(1)y=cos2(x2-x);(2)y=cosxsin3x;(3)y=xloga(x2+x-1);(4)y=log2x-1x+1.[解析](1)y=[cos2(x2-x)]=2cos(x2-x)[cos(x2-x)]=2cos(x2-x)[-sin(x2-x)](x2-x)=2cos(x2-x)[-sin(x2-x)](2x-1)=(1-2x)sin2(x2-x).(2)y=(cosxsin3x)=(cosx)sin3x+cosx(sin3x)=-sinxsin3x+3cosxcos3x=3cosxcos3x-sinxsin3x.(3)y=loga(x2+x-1)+x1x2+x-1logae(x2+x-1)=loga(x2+x-1)+2x2+xx2+x-1logae.(4)y=x+1x-1x-1x+1log2e=x+1x-1log2ex+1-x+1(x+1)2=2log2ex2-1.17.设f(x)=2sinx1+x2,假如f(x)=2(1+x2)2g(x),求g(x).[解析]∵f(x)=2cosx(1+x2)-2sinx2x(1+x2)2=2(1+x2)2[(1+x2)cosx-2xsinx],又f(x)=2(1+x2)2g(x).g(x)=(1+x2)cosx-2xsinx.18.求下列函数的导数:(其中f(x)是可导函数)(1)y=f1x;(2)y=f(x2+1).[解析](1)解法1:设y=f(u),u=1x,则yx=yuux=f(u)-1x2=-1x 2f1x.解法2:y=f1x=f1x1x=-1x2f1x.要练说,得练看。

2024年高考数学总复习第二章《函数与基本初等函数》模考卷及答案解析

2024年高考数学总复习第二章《函数与基本初等函数》模考卷及答案解析

2024年高考数学总复习第二章《函数与基本初等函数》模考卷(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.函数y =ln x +1-x 的定义域是()A .(0,1)B .[0,1)C .(0,1]D .[0,1]答案C解析>0,-x ≥0,解得0<x ≤1,所以函数f (x )的定义域为(0,1].故选C.2.下列函数中,既是奇函数,又在区间(0,1)上递减的函数是()A .y =cos xB .y |C .y =tan xD .y =x-3答案D解析由于y =cos x 是偶函数,故A 不是正确选项.由于y |是偶函数,故B 不是正确选项.由于y =tan x 在(0,1)上为增函数,故C 不是正确选项.D 选项中y =x -3既是奇函数,又在(0,1)上递减,符合题意.故选D.3.设函数y =log 3x 与y =3-x 的图象的交点为(x 0,y 0),则x 0所在的区间是()A .(0,1)B .(1,2)C .(2,3)D .(3,4)答案C解析因为方程log 3x =-x +3的解,就是m (x )=log 3x +x -3的零点,因为m (x )=log 3x +x -3单调递增且连续,m (x )=log 3x +x -3在(1,2)上满足m (1)m (2)>0,m (x )=log 3x +x -3在(2,3)上满足m (2)m (3)<0,所以m (x )=log 3x +x -3的零点在(2,3)内,可得方程log 3x +x -3=0的解所在的区间是(2,3),即则x 0所在的区间是(2,3),故选C.4.若a =π82=1πlog b ,c =log ()A .b >c >aB .a >b >cC .c >a >bD .b >a >c答案B解析a =π82>20=1,∵0<1π<1,1πlog b >0,∴0<b <1,c =log log 232<log 21=0,∴a >b >c .故选B.5.(2019·山师大附中模拟)函数f (x )-2a )x +3a (x <1),x (x ≥1)的值域为R ,则实数a 的取值范围是()A .(-∞,-1) B.12,1C.-1答案C解析因为函数f (x )-2a )x +3a (x <1)x (x ≥1),的值域为R -2a >0,1-2a )+3a ≥0,解得-1≤a <12,故选C.6.函数y =2xln|x |的图象大致为()答案B解析采用排除法,函数定义域为{x |x ≠0且x ≠±1},排除A ;当x >1时,ln|x |>0,y =2xln|x |>0,排除D ;当x <-1时,ln|x |>0,y =2x ln|x |<0,排除C ,故选B.7.(2019·山师大附中模拟)函数f (x )是R 上的偶函数,且f (x +1)=-f (x ),若f (x )在[-1,0]上单调递减,则函数f (x )在[3,5]上是()A.增函数B.减函数C.先增后减的函数D.先减后增的函数答案D解析已知f(x+1)=-f(x),则函数周期T=2,因为函数f(x)是R上的偶函数,在[-1,0]上单调递减,所以函数f(x)在[0,1]上单调递增,即函数在[3,5]上是先减后增的函数.故选D.8.(2019·新乡模拟)设函数f(x)=e-x-e x-5x,则不等式f(x2)+f(-x-6)<0的解集为() A.(-3,2)B.(-∞,-3)∪(2,+∞)C.(-2,3)D.(-∞,-2)∪(3,+∞)答案D解析由f(x)=e-x-e x-5x,得f(-x)=e x-e-x+5x=-f(x),则f(x)是奇函数,故f(x2)+f(-x-6)<0⇔f(x2)<-f(-x-6)=f(x+6).又f(x)是减函数,所以f(x2)<f(x+6)⇔x2>x+6,解得x<-2或x>3,故不等式f(x2)+f(-x-6)<0的解集为(-∞,-2)∪(3,+∞),故选D.9.(2019·广东六校模拟)已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(2019)等于()A.-2018B.2C.0D.50答案C解析f(x)是定义域为(-∞,+∞)的奇函数,可得f(-x)=-f(x),f(1-x)=f(1+x)即有f(x+2)=f(-x),即f(x+2)=-f(x),进而得到f(x+4)=-f(x+2)=f(x),f(x)为周期为4的函数,若f(1)=2,可得f(3)=f(-1)=-f(1)=-2,f(2)=f(0)=0,f(4)=f(0)=0,则f(1)+f(2)+f(3)+f(4)=2+0-2+0=0,可得f(1)+f(2)+f(3)+…+f(2019)=504×0+2+0-2=0.故选C.10.(2019·衡水中学摸底)已知函数f(x)e x,x≤0,x,x>0(e为自然对数的底数),若关于x 的方程f(x)+a=0有两个不相等的实根,则a的取值范围是()A .a >-1B .-1<a <1C .0<a ≤1D .a <1答案C解析画出函数f (x )的图象如图所示,若关于x 的方程f (x )+a =0有两个不相等的实根,则函数f (x )与直线y =-a 有两个不同交点,由图可知-1≤-a <0,所以0<a ≤1.故选C.11.(2019·新疆昌吉教育共同体月考)若关于x 的不等式1+a cos x ≥23sin 2R 上恒成立,则实数a 的最大值为()A .-13 B.13C.23D .1答案B解析1+a cos x ≥23sin 2=23cos 2x =23(2cos 2x -1),令cos x =t ∈[-1,1],并代入不等式,则问题转化为不等式4t 2-3at -5≤0在t ∈[-1,1]+3a -5≤0,-3a -5≤0,所以-13≤a ≤13.所以实数a 的最大值为13.12.(2019·沈阳东北育才学校模拟)设函数f (x )+1|,x ≤0,4x |,x >0,若关于x 的方程f (x )=a 有四个不同的解x 1,x 2,x 3,x 4,且x 1<x 2<x 3<x 4,则x 3(x 1+x 2)+1x 23x 4的取值范围是()1,721C .(-1,+∞)-∞,72答案A解析画出函数f (x )的图象如图所示,根据对称性可知,x 1和x 2关于x =-1对称,故x 1+x 2=-2.由于|log 4x |=|log 41x |,故1x 3=x 4,x 3·x 4=1.令log 41x =1,解得x =14,所以x 3∈14,x 3(x 1+x 2)+1x 23x 4=-2x 3+1x 3,由于函数y =-2x +1x 在区间14,减函数,故-2x 3+1x 3∈1,72,故选A.二、填空题(本大题共4小题,每小题5分,共20分)13.函数f (x )=ln x -2的定义域为________.答案[e 2,+∞)解析∵函数f (x )=ln x -2,∴ln x -2≥0,即ln x ≥ln e 2,∴x ≥e 2,∴函数f (x )=ln x -2的定义域为[e 2,+∞).14.(2019·浏阳六校联考)f (x )是定义在R 上的周期为3的奇函数,当0<x <1时,f (x )=4x ,则f (6)=________.答案-2解析由题意得-72+=-124=-2,又f (6)=f (0)=0,∴f (6)=-2.15.(2019·青岛调研)已知函数f (x )3(x +1),x >0,-x ,x ≤0,f (m )>1,则m 的取值范围是____________.答案(-∞,0)∪(2,+∞)解析若f (m )>1>0,3(1+m )>log 33≤0,-m >1,>0,+1>3≤0,m >0,解得m >2或m <0.16.已知函数f (x )2+3a ,x <0,a (x +1)+1,x ≥0(a >0且a ≠1)在R 上单调递减,且关于x 的方程|f (x )|=2-x 恰好有两个不相等的实数解,则a 的取值范围是________.答案13,23∪解析画出函数y =|f (x )|的图象如图,由函数y =f (x )是单调递减函数可知,0+3a ≥log a (0+1)+1,即a ≥13,由log a (x 0+1)+1=0得,x 0=1a -1≤2,所以当x ≥0时,y =2-x 与y =|f (x )|图象有且仅且一个交点.所以当2≥3a ,即13≤a ≤23时,函数y =|f (x )|与函数y =2-x 图象恰有两个不同的交点,即方程|f (x )|=2-x 恰好有两个不相等的实数解,结合图象可知当直线y =2-x 与函数y =x 2+3a 相切时,得x 2+x +3a -2=0.由Δ=1-4(3a -2)=0,解得a =34,此时也满足题意.综上,所求实数a 的取值范围是13,23∪三、解答题(本大题共70分)17.(10分)(2019·酒泉敦煌中学诊断)求下列函数的解析式:(1)已知2f (x -1)-f (1-x )=2x 2-1,求二次函数f (x )的解析式;(2)已知f (x -1)=x ,求f (x )的解析式.解(1)设f (x )=ax 2+bx +c (a ≠0),则f (x -1)=a (x -1)2+b (x -1)+c ,f (1-x )=a (1-x )2+b (1-x )+c ,所以2f (x -1)-f (1-x )=2ax 2-4ax +2a +2bx -2b +2c -(ax 2-2ax +a +b -bx +c )=ax 2-(2a -3b )x +a -3b +c =2x2-1,=2,a -3b =0,-3b +c =-1,=2,=43,=1,所以f (x )=2x 2+43x +1.(2)令t =x -1,t ≥-1,则x =(t +1)2,∴f (t )=(t +1)2(t ≥-1).∴f (x )的解析式为f (x )=(x +1)2,x ≥-1.18.(12分)(2019·廊坊省级示范高中联考)已知函数f (x )=log 3(ax 2-x +3).(1)若函数f (x )的定义域为R ,求a 的取值范围;(2)已知集合M =[1,3],方程f (x )=2的解集为N ,若M ∩N ≠∅,求a 的取值范围.解(1)因为函数的定义域为R ,所以ax 2-x +3>0恒成立,当a =0时,-x +3>0不恒成立,不符合题意;当a ≠0>0,=1-12a <0,解得a >112.综上所述a >112.(2)由题意可知,ax 2-x +3=9在[1,3]上有解.即a =6x 2+1x 在[1,3]上有解,设t =1x,t ∈13,1,则a =6t 2+t ,因为y =6t 2+t 在13,1上单调递增,所以y ∈[1,7].所以a ∈[1,7].19.(12分)函数f (x )对任意的a ,b ∈R 都有f (a +b )=f (a )+f (b )-1,并且当x >0时,f (x )>1.(1)判断函数f (x )是否为奇函数;(2)证明:f (x )在R 上是增函数;(3)解不等式f (3m 2-m -2)<1.(1)解当a =b =0时,解得f (0)=1,显然函数不可能是奇函数.(2)证明任取x 1,x 2∈R ,且x 1<x 2,则f (x 2)-f (x 1)=f [(x 2-x 1)+x 1]-f (x 1)=f (x 2-x 1)+f (x 1)-1-f (x 1)=f (x 2-x 1)-1,∵x 2-x 1>0,∴f (x 2-x 1)>1,∴f (x 2)-f (x 1)>0,∴f (x )在R 上是增函数.(3)∵f (0)=1,∴f (3m 2-m -2)<1=f (0),又f (x )在R 上递增,所以3m 2-m -2<0,解得-23<m <1,∴-23,20.(12分)已知定义在R 上的函数f (x )是偶函数,当x ≥0时,f (x )=x 2-4x +1.(1)求函数f (x )在R 上的解析式;(2)若方程m =f (x )有4个根x 1,x 2,x 3,x 4,求m 的取值范围及x 1+x 2+x 3+x 4的值.解(1)设x <0⇒-x >0⇒f (-x )=(-x )2-4(-x )+1=x 2+4x +1,由函数f (x )是偶函数,则f (x )=f (-x )=x 2+4x +1,综上f (x )2-4x +1,x ≥0,2+4x +1,x <0或f (x )=x 2-4|x |+1.(2)作出函数f (x )的图象如图所示,由图可知,当-3<m <1时,方程m =f (x )有4个根.令x 1<x 2<x 3<x 4,由x 1+x 22=-2,x 3+x 42=2,得x 1+x 2=-4,x 3+x 4=4,则x 1+x 2+x 3+x 4=0.21.(12分)(2019·荆州质检)为响应国家提出的“大众创业,万众创新”的号召,小李同学大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为5万元,每年生产x 万件,需另投入流动成本为C (x )万元,且C (x )=2+4x ,0<x <8,x +49x -35,x ≥8,每件产品售价为10元.经市场分析,生产的产品当年能全部售完.(1)写出年利润P (x )(万元)关于年产量x (万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(2)年产量为多少万件时,小李在这一产品的生产中所获利润最大?最大利润是多少?解(1)因为每件产品售价为10元,则x 万件产品销售收入为10x 万元,依题意得,当0<x <8时,P (x )=10x 2+45=-12x 2+6x -5,当x ≥8时,P (x )=10x x +49x -5=30所以P (x )-12x 2+6x -5,0<x <8,x ≥8.(2)当0<x <8时,P (x )=-12(x -6)2+13,当x =6时,P (x )取得最大值P (6)=13,当x ≥8时,P ′(x )=-1+49x 2<0,所以P (x )为减函数,当x =8时,P (x )取得最大值P (8)=1278,因为13<1278,故当年产量为8万件时,小李在这一产品的生产中所获利润最大,最大利润为1278万元.22.(12分)(2019·佛山禅城区调研)已知f (x )是定义在(-1,1)上的奇函数,当x ∈(0,1)时,f (x )=2x 4x +1.(1)求f (x )在(-1,1)上的解析式;(2)若g (x )是周期为2的函数,且x ∈(-1,1)时g (x )=f (x ),求x ∈(2n ,2n +1),n ∈N 时函数g (x )的解析式.解(1)当x ∈(-1,0)时,-x ∈(0,1),因为函数f (x )为奇函数,所以f (x )=-f (-x )=-2-x4-x +1=-2x1+4x .因为f (x )是定义在(-1,1)上的奇函数,所以f (0)=0,故当x ∈(-1,1)时,f (x )的解析式为f (x )∈(0,1),x ∈(-1,0).(2)设x ∈(2n ,2n +1),则x -2n ∈(0,1),g (x -2n )=2x-2n4x -2n +1.因为g (x )周期为2,n ∈N ,所以2n 也是周期,g (x -2n )=g (x ),所以x ∈(2n,2n +1)时,g (x )=2x -2n 4x-2n+1.。

高中数学【基本初等函数、函数的应用】专题练习

高中数学【基本初等函数、函数的应用】专题练习

高中数学【基本初等函数、函数的应用】专题练习1.已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A.a <b <c B.b <a <c C.b <c <a D.c <a <b答案 A解析 ∵log 53-log 85=log 53-1log 58=log 53·log 58-1log 58<⎝ ⎛⎭⎪⎫log 53+log 5822-1log 58=⎝ ⎛⎭⎪⎫log 52422-1log 58<⎝ ⎛⎭⎪⎫log 52522-1log 58=0,∴log 53<log 85.∵55<84,134<85,∴5log 85<4log 88=4=4log 1313<5log 138, ∴log 85<log 138,∴log 53<log 85<log 138, 即a <b <c .故选A.2.若2x -2y <3-x -3-y ,则( ) A.ln(y -x +1)>0 B.ln(y -x +1)<0 C.ln|x -y |>0 D.ln|x -y |<0 答案 A解析 设函数f (x )=2x -3-x .因为函数y =2x 与y =-3-x 在R 上均单调递增, 所以f (x )在R 上单调递增.原已知条件等价于2x -3-x <2y -3-y ,即f (x )<f (y ),所以x <y ,即y -x >0,y -x +1>1,所以A 正确,B 不正确. 因为|x -y |与1的大小不能确定,所以C ,D 不正确.3.设a ∈R ,函数f (x )=⎩⎨⎧cos (2πx -2πa ),x <a ,x 2-2(a +1)x +a 2+5,x ≥a ,若f (x )在区间(0,+∞)内恰有6个零点,则a 的取值范围是( ) A.⎝ ⎛⎦⎥⎤2,94∪⎝ ⎛⎦⎥⎤52,114 B.⎝ ⎛⎭⎪⎫74,2∪⎝ ⎛⎭⎪⎫52,114 C.⎝ ⎛⎦⎥⎤2,94∪⎣⎢⎡⎭⎪⎫114,3 D.⎝ ⎛⎭⎪⎫74,2∪⎣⎢⎡⎭⎪⎫114,3 答案 A解析 因为x 2-2(a +1)x +a 2+5=0最多有2个根, 所以c os (2πx -2πa )=0至少有4个根.由2πx -2πa =π2+k π,k ∈Z 可得x =k 2+14+a ,k ∈Z .由0<k 2+14+a <a 可得-2a -12<k <-12.①当x <a 时,当-5≤-2a -12<-4时,f (x )有4个零点,即74<a ≤94;当-6≤-2a -12<-5时,f (x )有5个零点, 即94<a ≤114;当-7≤-2a -12<-6时,f (x )有6个零点, 即114<a ≤134;②当x ≥a 时,f (x )=x 2-2(a +1)x +a 2+5, Δ=4(a +1)2-4(a 2+5)=8(a -2), 当a <2时,Δ<0,f (x )无零点;当a =2时,Δ=0,f (x )有1个零点x =3;当a >2时,令f (a )=a 2-2a (a +1)+a 2+5=-2a +5≥0,则2<a ≤52,此时f (x )有2个零点;所以当a >52时,f (x )有1个零点.综上,要使f (x )在区间(0,+∞)内恰有6个零点,则应满足⎩⎪⎨⎪⎧74<a ≤94,2<a ≤52或⎩⎪⎨⎪⎧94<a ≤114,a =2或a >52或⎩⎨⎧114<a ≤134,a <2.则可解得a 的取值范围是⎝ ⎛⎦⎥⎤2,94∪⎝ ⎛⎦⎥⎤52,114.4.已知f (x )=|lg x |-kx -2,给出下列四个结论: (1)若k =0,则f (x )有两个零点; (2)∃k <0,使得f (x )有一个零点; (3)∃k <0,使得f (x )有三个零点; (4)∃k >0,使得f (x )有三个零点. 以上正确结论的序号是________. 答案 (1)(2)(4)解析 令f (x )=|lg x |-kx -2=0,可转化成两个函数y 1=|lg x |,y 2=kx +2的图象的交点个数问题. 对于(1),当k =0时,y 2=2与y 1=|lg x |的图象有两个交点,(1)正确; 对于(2),存在k <0,使y 2=kx +2与y 1=|lg x |的图象相切,(2)正确;对于(3),若k <0,则y 1=|lg x |与y 2=kx +2的图象最多有2个交点,(3)错误; 对于(4),当k >0时,过点(0,2)存在函数g (x )=lg x (x >1)图象的切线,此时共有两个交点,当直线斜率稍微小于相切时的斜率时,就会有3个交点,故(4)正确.1.指数式与对数式的七个运算公式 (1)a m ·a n =a m +n ; (2)(a m )n =a mn ;(3)log a (MN )=log a M +log a N ; (4)log a MN =log a M -log a N ;(5)log a M n =n log a M ; (6)a log a N =N ;(7)log a N =log b Nlog ba (注:a ,b >0且a ,b ≠1,M >0,N >0).2.指数函数与对数函数的图象和性质指数函数y =a x (a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图象和性质,分0<a <1,a >1两种情况,当a >1时,两函数在定义域内都为增函数,当0<a <1时,两函数在定义域内都为减函数. 3.函数的零点问题(1)函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图象与函数y =g (x )的图象交点的横坐标.(2)确定函数零点的常用方法:①直接解方程法;②利用零点存在性定理;③数形结合,利用两个函数图象的交点求解. 4.应用函数模型解决实际问题的一般程序 读题文字语言⇒建模数学语言⇒求解数学应用⇒反馈检验作答.热点一 基本初等函数的图象与性质 【例1】 (1)(多选)下列命题中正确的是( ) A.∃x ∈(0,+∞),⎝ ⎛⎭⎪⎫12x >⎝ ⎛⎭⎪⎫13xB.∀x ∈(0,1),log 12x >log 13xC.∀x ∈⎝ ⎛⎭⎪⎫0,12,⎝ ⎛⎭⎪⎫12x >x 12D.∃x ∈⎝ ⎛⎭⎪⎫0,13,⎝ ⎛⎭⎪⎫12x >log 13x(2)已知函数f (x )=⎩⎨⎧log a x ,x >0,|x +2|,-3≤x ≤0(a >0且a ≠1),若函数f (x )的图象上有且仅有两个点关于y 轴对称,则a 的取值范围是( )A.(0,1)B.(1,3)C.(0,1)∪(3,+∞)D.(0,1)∪(1,3)答案 (1)ABC (2)D解析 (1)对于A ,分别作出y =⎝ ⎛⎭⎪⎫12x ,y =⎝ ⎛⎭⎪⎫13x的图象,如图(1),由图可知,当x ∈(0,+∞)时,⎝ ⎛⎭⎪⎫12x >⎝ ⎛⎭⎪⎫13x,故A 正确;对于B ,分别作出y =log 12x ,y =log 13x 的图象,如图(2),由图可知,当x ∈(0,1)时,log 12x >log 13x ,故B 正确;对于C ,分别作出y =⎝ ⎛⎭⎪⎫12x ,y =x 12的图象,如图(3),由图可知,当x ∈⎝ ⎛⎭⎪⎫0,12时,⎝ ⎛⎭⎪⎫12x >x 12,故C 正确;对于D ,当x ∈⎝ ⎛⎭⎪⎫0,13时,⎝ ⎛⎭⎪⎫12x <⎝ ⎛⎭⎪⎫120=1,log 13x >log 1313=1,所以D 错误.故选ABC.(2)y =log a x 的图象关于y 轴对称的图象对应的函数为y =log a (-x ),函数f (x )的图象上有且仅有两个点关于y 轴对称,等价于y =log a (-x )与y =|x +2|,-3≤x ≤0的图象有且仅有一个交点.当0<a <1时,显然符合题意(图略).当a >1时,只需log a 3>1,∴1<a <3. 综上所述,a 的取值范围是(0,1)∪(1,3).探究提高 1.指数函数、对数函数的图象和性质受底数a 的影响,解决与指数、对数函数特别是与单调性有关的问题时,首先要看底数a 的范围. 2.基本初等函数的图象和性质是统一的,在解题中可相互转化. 【训练1】 (1)函数f (x )=x 2-1e x 的图象大致为( )(2)(多选)已知函数f (x )=log 2(1+4x )-x ,则下列说法正确的是( ) A.函数f (x )是偶函数 B.函数f (x )是奇函数C.函数f (x )在(-∞,0]上单调递增D.函数f (x )的值域为[1,+∞) 答案 (1)A (2)AD解析 (1)易知f (x )在定义域R 上为非奇非偶函数,B 不合题意. 当x <0且x →-∞时,f (x )>0,且f (x )→+∞,C 不合题意. 当x >0且x →+∞时,f (x )→0,知D 不合题意,只有A 满足.(2)因为f (x )的定义域为R ,且f (-x )=log 2⎝ ⎛⎭⎪⎫1+14x -(-x )=log 2⎝ ⎛⎭⎪⎫4x +14x +x =log 2(4x +1)-log 24x +x =log 2(1+4x )-2x +x =log 2(1+4x )-x =f (x ), 所以函数f (x )为偶函数,故A 正确,B 不正确;f ′(x )=4x ln 4(1+4x)ln 2-1=2×4x 4x +1-1=4x -14x +1, 则当x <0时,f ′(x )<0,函数f (x )单调递减,当x >0时,f ′(x )>0,函数f (x )单调递增,故C 不正确;由以上分析知,f (x )min =f (0)=1,所以函数f (x )的值域为[1,+∞),故D 正确.综上所述,选AD. 热点二 函数的零点与方程 考向1 确定函数零点个数【例2】 (1)设函数f (x )=2|x |+x 2-3,则函数y =f (x )的零点个数是( ) A.4 B.3 C.2D.1(2)已知函数f (x )=⎩⎨⎧e x ,x <0,4x 3-6x 2+1,x ≥0,其中e 为自然对数的底数,则函数g (x )=3[f (x )]2-10f (x )+3的零点个数为( ) A.4 B.5 C.6D.3答案 (1)C (2)A解析 (1)易知f (x )是偶函数,当x ≥0时,f (x )=2x +x 2-3,所以x ≥0时,f (x )在[0,+∞)上是增函数,且f (1)=0,所以x =1是函数y =f (x )在[0,+∞)上的唯一零点.根据奇偶性,知x =-1是y =f (x )在(-∞,0)内的零点, 因此y =f (x )有两个零点.(2)当x ≥0时,f (x )=4x 3-6x 2+1的导数为f ′(x )=12x 2-12x , 当0<x <1时,f (x )单调递减,x >1时,f (x )单调递增,可得f (x )在x =1处取得最小值,最小值为-1,且f (0)=1, 作出函数f (x )的图象,如图. g (x )=3[f (x )]2-10f (x )+3,可令g (x )=0,t =f (x ),可得3t 2-10t +3=0, 解得t =3或13.当t =13时,可得f (x )=13有三个实根,即g (x )有三个零点; 当t =3时,可得f (x )=3有一个实根,即g (x )有一个零点. 综上,g (x )共有四个零点.探究提高 判断函数零点个数的主要方法(1)解方程f (x )=0,直接求零点;(2)利用零点存在性定理;(3)数形结合法:对于给定的函数不能直接求解或画出图象,常会通过分解转化为两个能画出图象的函数,求其图象交点问题.【训练2】 (1)函数f (x )=2sin x -sin 2x 在[0,2π]的零点个数为( ) A.2 B.3 C.4D.5(2)设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R ,都有f (x +2)=f (2-x ),当x ∈[-2,0]时,f (x )=⎝ ⎛⎭⎪⎫22x-1,则关于x 的方程为f (x )-log 8(x +2)=0在区间(-2,6)上根的个数为( ) A.1 B.2 C.3D.4答案 (1)B (2)C解析 (1)令f (x )=0,得2sin x -sin 2x =0, 即2sin x -2sin x cos x =0,∴2sin x (1-cos x )=0,∴sin x =0或cos x =1. 又x ∈[0,2π],∴由sin x =0得x =0,π或2π,由cos x =1得x =0或2π. 故函数f (x )的零点为0,π,2π,共3个. (2)对于任意的x ∈R ,都有f (2+x )=f (2-x ), ∴f (x +4)=f [2+(x +2)]=f [2-(x +2)]=f (-x )=f (x ), ∴函数f (x )是一个周期函数,且T =4.又∵当x ∈[-2,0]时,f (x )=⎝ ⎛⎭⎪⎫22x-1,函数f (x )是定义在R 上的偶函数,且f (6)=f (-2)=1,则函数y =f (x )与y =log 8(x +2)在区间(-2,6)上的图象如图所示,根据图象可得y =f (x )与y =log 8(x +2)在区间(-2,6)上有3个不同的交点,即f (x )-log 8(x +2)=0在区间(-2,6)上有3个根. 考向2 根据函数的零点求参数的值或范围 【例3】 (1)已知函数f (x )=x 2-2x +a (e x -1+e-x +1)有唯一零点,则a =( )A.-12B.13C.12D.1(2)设a ,b ∈R ,函数f (x )=⎩⎪⎨⎪⎧x ,x <0,13x 3-12(a +1)x 2+ax ,x ≥0.若函数y =f (x )-ax -b恰有3个零点,则( ) A.a <-1,b <0 B.a <-1,b >0 C.a >-1,b <0 D.a >-1,b >0答案 (1)C (2)C解析 (1)f (x )=(x -1)2+a (e x -1+e 1-x )-1, 令t =x -1,则g (t )=f (t +1)=t 2+a (e t +e -t )-1. ∵g (-t )=(-t )2+a (e -t +e t )-1=g (t ),且t ∈R , ∴函数g (t )为偶函数.∵f (x )有唯一零点,∴g (t )也有唯一零点. 又g (t )为偶函数,由偶函数的性质知g (0)=0, ∴2a -1=0,解得a =12.(2)由题意,令y =f (x )-ax -b =0,得b =f (x )-ax =⎩⎨⎧(1-a )x ,x <0,13x 3-12(a +1)x 2,x ≥0. 设y =b ,g (x )=⎩⎨⎧(1-a )x ,x <0,13x 3-12(a +1)x 2,x ≥0,则以上两个函数的图象恰有3个交点,根据选项进行讨论.①当a <-1时,1-a >0,可知在x ∈(-∞,0)上,g (x )单调递增,且g (x )<0; 由g ′(x )=x 2-(a +1)x =x [x -(a +1)](x ≥0),a +1<0, 可知在x ∈[0,+∞)上,g (x )单调递增,且g (x )≥0.此时直线y =b 与g (x )的图象只有1个交点,不符合题意,故排除A ,B. ②当a >-1,即a +1>0时.因为g ′(x )=x [x -(a +1)](x ≥0),所以当x ≥0时,由g ′(x )<0可得0<x <a +1,由g ′(x )>0可得x >a +1,所以当x ≥0时,g (x )在(0,a +1)上单调递减,g (x )在(a +1,+∞)上单调递增.如图,y =b 与y =g (x )(x ≥0)的图象至多有2个交点.当1-a >0,即-1<a <1时,由图象可得,若要y =g (x )与y =b 的图象有3个交点,必有b <0;当1-a =0时,y =g (x )与y =b 的图象可以有1个、2个或无数个交点,但不存在恰有3个交点的情况,不符合题意,舍去;当1-a <0,即a >1时,y =g (x )与y =b 的图象可以有1个或2个交点,但不存在恰有3个交点的情况,不符合题意,舍去. 综上,-1<a <1,b <0.故选C.探究提高 1.求解第(1)题关键是利用函数f (x )有唯一零点找到解题思路.借助换元法,构造函数g (t )=f (t +1)=t 2+a (e t +e -t )-1,利用函数的性质求解. 2.解决由函数零点的存在情况求参数的值或取值范围问题,关键是利用函数方程思想或数形结合思想,构建关于参数的方程或不等式求解.【训练3】 设函数f (x )=e x (2x -1)-ax +a (a <1)有两个零点,则实数a 的取值范围是( ) A.(0,1) B.⎝ ⎛⎭⎪⎫0,43e -0.5 C.(-∞,1) D.⎝ ⎛⎭⎪⎫-∞,43e -0.5 答案 A解析 依题设,f (x )=e x (2x -1)-ax +a 有两个零点,∴函数y =e x (2x -1)的图象与直线y =a (x -1)有两个交点. 令y ′=[e x (2x -1)]′=e x (2x +1)=0,得x =-12.当x ∈⎝ ⎛⎭⎪⎫-∞,-12时,y ′<0,故y =e x(2x -1)为减函数; 当x ∈⎝ ⎛⎭⎪⎫-12,+∞时,y ′>0,故y =e x (2x -1)为增函数,如图.设直线y =a (x -1)与y =e x (2x -1)相切于点P (x 0,y 0), ∴y 0=e x 0(2x 0-1). 则过点P (x 0,y 0)的切线为 y -e x 0(2x 0-1)=e x 0(2x 0+1)(x -x 0).将点(1,0)代入上式,得x 0=0或x 0=32(舍去). 此时,直线y =a (x -1)的斜率为1.故若直线y =a (x -1)与函数y =e x (2x -1)的图象有两个交点,应有0<a <1. 热点三 函数的实际应用【例4】某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上,桥AB 与MN 平行,OO ′为铅垂线(O ′在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离h 1(米)与D 到OO ′的距离a (米)之间满足关系式h 1=140a 2;右侧曲线BO 上任一点F 到MN 的距离h 2(米)与F 到OO ′的距离b (米)之间满足关系式h 2=-1800b 3+6b .已知点B 到OO ′的距离为40米.(1)求桥AB的长度;(2)计划在谷底两侧建造平行于OO′的桥墩CD和EF,且CE为80米,其中C,E在AB上(不包括端点).桥墩EF每米造价k(万元),桥墩CD每米造价32k(万元)(k>0),问O′E为多少米时,桥墩CD与EF的总造价最低?解(1)如图,设AA1,BB1,CD1,EF1都与MN垂直,A1,B1,D1,F1是相应垂足.由条件知,当O′B=40时,BB1=-1800×403+6×40=160,则AA1=160.由140O′A2=160,得O′A=80.所以AB=O′A+O′B=80+40=120(米).(2)以O为原点,OO′所在直线为y轴建立平面直角坐标系xOy(如图所示).设F(x,y2),x∈(0,40),则y2=-1800x3+6x,EF=160-y2=160+1800x3-6x.因为CE=80,所以O′C=80-x.设D(x-80,y1),则y1=140(80-x)2,所以CD =160-y 1=160-140(80-x )2=-140x 2+4x . 记桥墩CD 和EF 的总造价为f (x )万元, 则f (x )=k ⎝ ⎛⎭⎪⎫160+1800x 3-6x +32k ⎝ ⎛⎭⎪⎫-140x 2+4x=k ⎝ ⎛⎭⎪⎫1800x 3-380x 2+160(0<x <40). f ′(x )=k ⎝ ⎛⎭⎪⎫3800x 2-340x =3k 800x (x -20),令f ′(x )=0,得x =20或x =0(舍去). 列表如下:所以当x =20时,f (x )取得最小值. 答:(1)桥AB 的长度为120米;(2)当O ′E 为20米时,桥墩CD 与EF 的总造价最低.探究提高 1.解决函数的实际应用问题时,首先要耐心、细心地审清题意,弄清各量之间的关系,再建立函数关系式,然后借助函数的知识求解,解答后再回到实际问题中去.2.对函数模型求最值的常用方法:单调性法、基本不等式法及导数法.【训练4】 “一骑红尘妃子笑,无人知是荔枝来”描述了封建统治者的骄奢生活,同时也讲述了古代资源流通的不便利.如今我国物流行业蓬勃发展,极大地促进了社会经济发展和资源整合.已知某类果蔬的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e ax +b (a ,b 为常数),若该果蔬在6 ℃的保鲜时间为216小时,在24 ℃的保鲜时间为8小时,且该果蔬所需物流时间为3天,则物流过程中果蔬的储藏温度(假设物流过程中恒温)最高不能超过( ) A.9 ℃ B.12 ℃ C.18 ℃ D.20 ℃答案 B解析 当x =6时,e 6a +b =216;当x =24时,e 24a +b =8, ∴e 6a +be 24a +b =2168=27,则e 6a =13. 若果蔬保鲜3天,则72=13×216=e 6a ·e 6a +b =e 12a +b , 故物流过程中果蔬的储藏温度最高不能超过12 ℃.一、选择题1.设a =log 2 0.3,b =log 120.4,c =0.40.3,则a ,b ,c 的大小关系为( )A.a <b <cB.c <a <bC.b <c <aD.a <c <b答案 D解析 ∵log 20.3<log 21=0,∴a <0.∵log 120.4=-log 20.4=log 252>log 22=1,∴b >1.∵0<0.40.3<0.40=1,∴0<c <1, ∴a <c <b .2.已知函数f (x )是定义在R 上的偶函数,满足f (x +1)=-f (x ),当x ∈[0,1]时,f (x )=cos π2x ,则函数y =f (x )-|x |的零点个数是( ) A.2 B.3 C.4 D.5 答案 A解析 由f (x +1)=-f (x ),得f (x +2)=f (x ),知周期T =2. 令f (x )-|x |=0,得f (x )=|x |.作出函数y =f (x )与g (x )=|x |的图象如图所示.由图象知,函数y =f (x )-|x |有两个零点.3.Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:I (t )=K 1+e-0.23(t -53),其中K 为最大确诊病例数.当I (t *)=0.95K 时,标志着已初步遏制疫情,则t *约为(ln 19≈3)( ) A.60 B.63 C.66 D.69答案 C 解析 ∵I (t )=K 1+e -0.23(t -53), ∴当I (t *)=0.95K 时,K1+e -0.23(t *-53)=0.95K ,则11+e -0.23(t *-53)=0.95⇒1+e -0.23(t *-53)=10.95⇒e -0.23(t *-53)=10.95-1⇒e0.23(t *-53)=19. ∴0.23(t *-53)=ln 19,∴t *=ln 190.23+53≈30.23+53≈66.4.已知函数f (x )=[x ]([x ]表示不超过实数x 的最大整数),若函数g (x )=e x -1e x -2的零点为x 0,则g [f (x 0)]等于( ) A.1e -e -2B.-2C.e -1e -2 D.e 2-1e 2-2答案 B解析 因为g (x )=e x -1e x -2, 所以g ′(x )=e x +1e x >0在R 上恒成立, 即函数g (x )=e x -1e x -2在R 上单调递增.又g(0)=e0-1e0-2=-2<0,g(1)=e1-1e1-2>0,所以g(x)在(0,1)上必然存在零点,即x0∈(0,1),因此f(x0)=[x0]=0,所以g[f(x0)]=g(0)=-2.5.(多选)若0<c<1,a>b>1,则()A.log a c>log b cB.ab c>ba cC.a log b c>b log a cD.a(b-c)>b(a-c) 答案AB解析对于A,因为0<c<1,a>b>1,所以log c a<log c b<0,所以log a alog a c<log b blog b c<0,即1 log a c<1log b c<0,所以0>log a c>log b c,故A正确;对于B,因为0<c<1,所以-1<c-1<0,所以当x>1时,函数y=x c-1单调递减,所以b c-1>a c-1,又ab>0,所以由不等式的基本性质得ab c>ba c,故B正确;对于C,由A知log b c<log a c<0,又a>b>1,所以a log b c<b log b c,b log b c<b log a c,所以a log b c<b log a c,故C不正确;对于D,因为0<c<1,a>b>1,所以ac>bc,所以-ac<-bc,所以ab-ac<ab-bc,即a(b-c)<b(a-c),故D不正确.综上所述,选AB.6.(多选)已知f(x)是定义在R上的奇函数,且f(1+x)=f(1-x),当0≤x≤1时,f(x)=x,则关于函数g(x)=|f(x)|+f(|x|),下列说法正确的是()A.g(x)为偶函数B.g (x )在(1,2)上单调递增C.g (x )在[2 016,2 020]上恰有三个零点D.g (x )的最大值为2 答案 AD解析 易知函数g (x )的定义域为R ,且g (-x )=|f (-x )|+f (|-x |)=|-f (x )|+f (|x |)=|f (x )|+f (|x |)=g (x ), 所以g (x )为偶函数,故A 正确;因为f (1+x )=f (1-x ),所以f (x )的图象关于直线x =1对称,又f (x )是奇函数,当0≤x ≤1时,f (x )=x ,所以f (x )是周期为4的函数,其部分图象如图所示,所以当x ≥0时,g (x )=⎩⎪⎨⎪⎧2f (x ),x ∈[4k ,2+4k ],0,x ∈(2+4k ,4+4k ],k ∈N ,当x ∈(1,2)时,g (x )=2f (x ),g (x )单调递减,故B 错误;g (x )在[2 016,2 020]上零点的个数等价于g (x )在[0,4]上零点的个数,而g (x )在[0,4]上有无数个零点,故C 错误;当x ≥0时,易知g (x )的最大值为2,由偶函数图象的对称性可知,当x <0时,g (x )的最大值也为2,所以g (x )在整个定义域上的最大值为2,故D 正确. 综上可知,选AD. 二、填空题7.已知λ∈R ,函数f (x )=⎩⎨⎧x -4,x ≥λ,x 2-4x +3,x <λ.若函数f (x )恰有2个零点,则λ的取值范围是________. 答案 (1,3]∪(4,+∞)解析 令f (x )=0,当x ≥λ时,x =4.当x <λ时,x 2-4x +3=0,则x =1或x =3.若函数f (x )恰有2个零点,结合图1与图2知,1<λ≤3或λ>4.8.为了预防某种病毒,某商场需要通过喷洒药物对内部空间进行全面消毒,出于对顾客身体健康的考虑,相关部门规定空气中这种药物的浓度不超过0.25 mg/m 3时,顾客方可进入商场.已知从喷洒药物开始,商场内部的药物浓度y (单位:mg/m 3)与经过的时间t (单位:min)之间的函数关系为y =⎩⎪⎨⎪⎧0.1t ,0≤t <10,⎝ ⎛⎭⎪⎫12t10-a,t ≥10(a 为常数),函数图象如图所示.如果商场规定10:00顾客可以进入商场,那么开始喷洒药物的时间最迟是________.答案 9:30解析 由题图可得函数图象过点(10,1), 代入函数的解析式,可得⎝ ⎛⎭⎪⎫121-a=1,解得a =1,所以y =⎩⎪⎨⎪⎧0.1t ,0≤t <10,⎝ ⎛⎭⎪⎫12t 10-1,t ≥10. 设从喷洒药物开始经过t min 顾客方可进入商场,易知t >10, 则⎝ ⎛⎭⎪⎫12t10-1≤0.25,解得t ≥30,所以如果商场规定10:00顾客可以进入商场,那么开始喷洒药物的时间最迟是9:30.9.已知a ,b ,c 为正实数,且ln a =a -1,b ln b =1,c e c =1,则a ,b ,c 的大小关系是________. 答案 c <a <b解析 ln a =a -1,ln b =1b ,e c =1c .依次作出y =e x ,y =ln x ,y =x -1,y =1x 这四个函数的图象,如下图所示.由图象可知0<c <1,a =1,b >1,∴c <a <b . 三、解答题10.设函数f (x )=⎪⎪⎪⎪⎪⎪1-1x (x >0).(1)作出函数f (x )的图象;(2)当0<a <b 且f (a )=f (b )时,求1a +1b 的值;(3)若方程f (x )=m 有两个不相等的正根,求实数m 的取值范围. 解 (1)函数f (x )的图象如图所示.(2)因为f (x )=⎪⎪⎪⎪⎪⎪1-1x=⎩⎪⎨⎪⎧1x -1,x ∈(0,1],1-1x ,x ∈(1,+∞),故f (x )在(0,1]上是减函数,在(1,+∞)上是增函数,由0<a <b 且f (a )=f (b ),得0<a <1<b , 且1a -1=1-1b ,所以1a +1b =2.(3)由函数f (x )的图象可知,当0<m <1时,方程f (x )=m 有两个不相等的正根. 故实数m 的取值范围为(0,1).11.随着中国经济的快速发展,节能减耗刻不容缓.某市环保部门为了提高对所辖水域生态环境的巡查效率,引进了一种新型生态环保探测器,该探测器消耗能量由公式E n =M v n T 给出,其中M 是质量(常数),v 是设定速度(单位:km/h),T 是行进时间(单位:h),n 为参数.某次巡查为逆水行进,水流速度为4 km/h ,行进路程为100 km.(逆水行进中,实际速度=设定速度-水流速度,顺水行进中,实际速度=设定速度+水流速度)(1)求T 关于v 的函数关系式,并指出v 的取值范围;(2)①当参数n =2时,求探测器最低消耗能量;②当参数n =3时,试确定使该探测器消耗的能量最低的设定速度.解 (1)由题意得,探测器实际速度为100T =v -4,则T =100v -4(v >4). (2)①当参数n =2时,E 2=100·M ·v 2v -4=100M ⎣⎢⎡⎦⎥⎤v -4+16v -4+8 ≥100M ⎣⎢⎡⎦⎥⎤2(v -4)·16v -4+8 =1 600M ⎝ ⎛⎭⎪⎫当且仅当v -4=16v -4,即v =8时取等号. 因此,当参数n =2时,该探测器最低消耗能量为1 600M .②当参数n =3时,E 3=100·M ·v 3v -4(v >4). 令f (v )=v 3v -4(v >4),则f ′(v )=2v 2(v -6)(v -4)2, 当4<v <6时,f ′(v )<0,f (v )单调递减,当v >6时,f ′(v )>0,f (v )单调递增.故当设定速度为6 km/h 时,该探测器消耗的能量最低.12.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I (t )=e rt 描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln 2≈0.69)( )A.1.2天B.1.8天C.2.5天D.3.5天答案 B解析 由R 0=1+rT ,R 0=3.28,T =6,得r =R 0-1T =3.28-16=0.38.由题意,累计感染病例数增加1倍,则I (t 2)=2I (t 1),即e0.38t 2=2e0.38t 1,所以e0.38(t 2-t 1)=2,即0.38(t 2-t 1)=ln 2,∴t 2-t 1=ln 20.38≈0.690.38≈1.8. 13.(多选)方程e x +x -2=0的根为x 1,ln x +x -2=0的根为x 2,则( ) A.x 1x 2>12 B.x 1ln x 2+x 2ln x 1<0 C.e x 1+e x 2<2eD.x 1x 2<e 2 答案 BD解析 令f (x )=e x +x -2,g (x )=ln x +x -2,作出函数y =-x +2,y =e x ,y =ln x 的图象,其中y =e x 与y =ln x 互为反函数,其图象关于直线y =x 对称,如图,则A (x 1,e x 1),B (x 2,ln x 2).设直线y =x 与y =-x +2的交点为C ,则C (1,1),且A ,B 关于点C 对称,∴e x 1=x 2,x 1+x 2=2.∵f (0)=-1<0,f ⎝ ⎛⎭⎪⎫12=e -32>0,g (1)=-1<0,g (2)=ln 2>0, ∴0<x 1<12<1<x 2<2,∴x 1x 2<12,故A 错误; ∵x 1ln x 2+x 2ln x 1<0等价于ln x 1x 1+ln x 2x 2<0,易知h (x )=ln x x 在(0,e)上单调递增, ∴h (x 1)<h ⎝ ⎛⎭⎪⎫12=-2ln 2,h (x 2)<h (2)=12ln 2, ∴h (x 1)+h (x 2)<-32ln 2<0,即ln x 1x 1+ln x 2x 2<0,故B 正确; ∵x 1+x 2=2且x 1≠x 2,∴e x 1+e x 2>2e x 1+x 2=2e ,故C 错误;∵e x 1=x 2,∴x 1x 2=x 1e x 1.易知φ(x )=x e x 在⎝ ⎛⎭⎪⎫0,12上单调递增, ∴φ(x 1)<φ⎝ ⎛⎭⎪⎫12, 即x 1e x 1<e 2,即x 1x 2<e 2,故D 正确. 故选BD.14.记f ′(x ),g ′(x )分别为函数f (x ),g (x )的导函数.若存在x 0∈R ,满足f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),则称x 0为函数f (x )与g (x )的一个“S 点”.(1)证明:函数f (x )=x 与g (x )=x 2+2x -2不存在“S 点”;(2)若函数f (x )=ax 2-1与g (x )=ln x 存在“S 点”,求实数a 的值.(1)证明 函数f (x )=x ,g (x )=x 2+2x -2,则f ′(x )=1,g ′(x )=2x +2.由f (x )=g (x )且f ′(x )=g ′(x ),得⎩⎨⎧x =x 2+2x -2,1=2x +2,此方程组无解, 因此,f (x )与g (x )不存在“S 点”.(2)解 函数f (x )=ax 2-1,g (x )=ln x ,则f ′(x )=2ax ,g ′(x )=1x .设x 0为f (x )与g (x )的“S 点”, 由f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),得 ⎩⎪⎨⎪⎧ax 20-1=ln x 0,2ax 0=1x 0,即⎩⎨⎧ax 20-1=ln x 0,2ax 20=1, (*) 得ln x 0=-12,即x 0=e -12,则a =12⎝ ⎛⎭⎪⎫e -122=e 2. 当a =e 2时,x 0=e -12满足方程组(*),即x 0为f (x )与g (x )的“S 点”.因此,a 的值为e 2.。

基本初等函数练习题

基本初等函数练习题

基本初等函数练习题1. 函数f(x) = 2x^2 - 3x + 1,求f(2)的值。

解析:代入x=2,得出:f(2) = 2(2)^2 - 3(2) + 1= 2(4) - 6 + 1= 8 - 6 + 1= 3所以,f(2)的值为3。

2. 求函数g(x) = 3x^3 + 2x^2 - 5x的导函数。

解析:对于函数g(x),使用幂函数的求导法则,得到:g'(x) = 3(3x^2) + 2(2x) - 5= 9x^2 + 4x - 5所以,函数g(x)的导函数为g'(x) = 9x^2 + 4x - 5。

3. 函数h(x) = log₃(x - 2),求h(10)的值。

解析:代入x=10,得出:h(10) = log₃(10 - 2)= log₃(8)因为log₃(8)表示3的几次方等于8,即3^? = 8。

而3^2 = 9,3^3 = 27,所以8位于3^2和3^3之间。

因此,log₃(8) = 2.xxx,其中xxx是一个小于1的数。

所以,h(10)的值约等于2.xxx。

4. 求函数j(x) = e^x 的反函数。

解析:对于函数j(x) = e^x,令y = e^x,则可以表示为x = ln(y)。

为了求得函数j(x)的反函数,交换x和y的位置并解出y即可。

解得,y = ln(x)。

所以,函数j(x)的反函数为j^(-1)(x) = ln(x)。

5. 函数k(x) = |x - 3|,求k(-2)的值。

解析:代入x=-2,得出:k(-2) = |-2 - 3|= |-5|= 5所以,k(-2)的值为5。

6. 求函数m(x) = 2x + 1 的零点。

解析:对于函数m(x),令y = 2x + 1,令y = 0,求得x的值。

解得,2x + 1 = 0=> 2x = -1=> x = -1/2所以,函数m(x)的零点为x = -1/2。

通过以上的练习题,不仅可以使我们更加熟悉和掌握基本初等函数的运算和性质,也对函数的图像、导函数、反函数以及零点有了更深入的理解。

高中数学函数(基本初等函数) (1)

高中数学函数(基本初等函数) (1)

绝密★启用前高中数学函数(基本初等函数)启程教育 0349-5991279一、选择题[0,1]的是()A. y=x2B. y=sin xC. y=1x+1D. y=1-x22. [2017·云南省玉溪第一中学高一期中]函数f(x−1x )=x2+1x, 则f(3)= ( )A. 8B. 9C. 11D. 103. 若函数f(x)满足关系式f(x)+2f1x=3x,则f(2)的值为()A. 1B. -1C. -32D. 32二、填空题2−2x,则f(3)= .5. [2017·北京密云二中高一月考]若函数f(2x+1)=6x+2,则函数f(x)=_______.6. [2017·广东省湛江市第一中学高一大考(一)]已知f x+1=x2−3x+2,求函数的解析式f(x)=.7. 已知f(x)=x+2(x≤-1),x2(-1<x<2),2x(x≥2).若f(x)=3,则x的值是.三、解答题8. [2017·甘肃省武威市第十八中学高一月考(一)]已知函数f(x)=x 21+x.(1)求f(2)与f(12),f(3)与f(13);(2)证明:f(x)+f(1x)=1.参考答案第1页共2页1. 【答案】D【解析】本题考查函数的值域,属于基础题.因为x2≥0,所以函数y=x2的值域为[0,+∞),所以A错误;因为-1≤sin x≤1,所以函数y=sin x的值域为[-1,1],所以B错误;因为x2+1≥1,所以0<1x+1≤1,所以函数y=1x+1的值域为(0,1],所以C错误;因为1-x2≤1,所以0≤1-x2≤1,所以函数y=1-x2的值域为[0,1],所以D正确,故选D.2. 【答案】C【解析】本题考查函数的解析式与求值.f x−1x =x2+1x2=(x−1x)2+2,则f(x)=x2+2,所以f(3)=11,故选C3. 【答案】B【解析】∵f(x)+2f1x=3x,∴f(2)+2f12=6,①f(1 2)+2f2=32,②由①②知f(2)=-1.4. 【答案】-1【解析】∵f(2x+1)=x2-2x,令2x+1=t,x=t−12,∴f(t)=(t−12)2−2×t−12=(t−12)2−t+1,把t=3代入上式得f(3)=-1.5. 【答案】3x−1【解析】本题考查函数的表示法.因为函数f(2x+1)=6x+2,令t=2x+1,t∈R,则x=t−12,则f(t)=6×t−12+2=3t−1,t∈R,故函数f(x)=3x−1.6. 【答案】x2−5x+6【解析】本题主要考查函数的表示法.f(x+1)=x2−3x+2=(x+1)2−5x+1=(x+1)2−5(x+1)+6,则f(x)=x2−5x+6.7. 【答案】3【解析】进行分类讨论,当x≤-1时,x+2=3,解得x=1(舍);当-1<x<2时,x2=3,解得x=3或x=-3(舍);当x≥2时,解得2x=3,解得x=32(舍).∴x的值为3.8.(1) 【答案】由f(x)=x 21+x =1-1x+1,∴f(2)=1-122+1=45,f(12)=1-11+1=15.f(3)=1-132+1=910,f(13)=1-11+1=110.(2) 【答案】f(x)+f(1x )=x21+x+1x21+12=x21+x+1x+1=1.第2页共2页。

2024_2025学年高中数学第二章基本初等函数Ⅰ2

2024_2025学年高中数学第二章基本初等函数Ⅰ2
∵x>y>0,∴x-y=2 .
∴ = = = = = .
(2)原式= ÷ · =a (a -2b )· · =a ·a·a =a2.
= × -10 -20+10 +2=-16.
7.化简:(1) + - ;
(2)(4a2+4a+1) +(4a2-12a+9) .
解(1)原式= +

=x -1+x -x +1-x (x +1)=-x .
(2)原式= +
= +
=|2a+1|+|2a-3|

易错点
忽视取值限制导致错误
8.若x+x-1=4,则x +x- 的值等于( )
A.2或-2 B.2
C. 或- D.
易错分析 在由 2=x+x-1+2=6,求x +x- 时极易忽视x 与x- 的取值不行能为负数,而错选了C.
答案 D
正解 2=x+2+x-1=4+2=6.
∵x ≥0,x- >0,∴x +x- = .
对应学生用书P40
一、选择题
1.下列各式既符合分数指数幂的定义,值又相等的是( )
(3) = =b a- =a- b .
(4) = =|(-a)3|=a3.
3.用分数指数幂的形式表示下列各式:
(1) (a>0);
(2) (a>0,b>0).
解 (1) =
= = = =a .
(2)(从里向外化)

= =
= =
= · · = · ·
=a1- + ·b- + - =a b- .
学问点二
分数指数幂的运算性质
4.[(- )-2]- 的结果是( )
A. B.- C. D.-
答案 A
解析[(- )-2]- =( )(-2)× = .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(一)指数运算
例1 计算:526743642++--- 例2 求值:238、12100-、31()4-、34
16()81- 例3 用分数指数幂表示下列各式(其中各字母均为正数)
(1)34a a ⋅;(2)a a a ;(2)3324()a b +;
(二)指数函数的性质
例1 下列函数是指数函数的是( )
A .2y x =
B .2x y =
C .12
x y += D .132x y +=⨯ 例2 函数22(0,1)x y a a a -=->≠ 且的图象恒过定点________________
例3 比较下列各组数的大小
(1)0.245()6-与145()6- (2)1()ππ
-与1 (3)2(0.8)-与125()4- 例4 设a 是实数,2()()21
x f x a x R =-∈+ (1)证明:不论a 为何实数,()f x 均为增函数;(2)试确定a 的值,使得()f x 为奇函数 例5 已知0a >,且1a ≠,11()12x f x a =
--,则()f x 是( ) A .奇函数 B .偶函数 C .非奇非偶函数 D .函数的奇偶性与a 有关 例6 若函数221x x y a
a =+-(01)a a >≠且在[1,1]x ∈-上的最大值为14,求a 的值.
三、实战演练 1、化简:3322
1
11
143342(0,0)()a b ab a b a b a b ->>=_______________
2、已知12102
a -=,31032
b =,则32410=a b +_______________ 3、函数2(33)x y a a a =-+是指数函数,则a 的值为
4、函数()x b f x a -=的图像如图,其中a 、b 为常数,则下列结论正确的是( )
A .
B .
C .
D .
5、比较大小:①0.70.8
a =,0.90.8
b =,0.81.2
c =;②01, 2.50.4-,0.22-, 1.6
2.5; 7、已知定义域为R 的函数12()2x x b f x a
+-+=+是奇函数 (1)求a 、b 的值;(2)若对任意的,不等式恒成立,求k 的取值
范围
0,1<>b a 0,1>>b a 0,10><<b a 0,10<<<b a R t ∈0)2()2(22<-+-k t f t t f
四、强化训练
1
、设a =
b =
c =,,a b c 的大小关系是_______________ 2、设137
x =,则( ) A .21x -<<- B .32x -<<- C .10x -<< D .01x <<
3、求函数的定义域和值域,并讨论函数的单调性、奇偶性
4、已知定义在R 上的函数()22x x
a f x =+,a 为常数 (1)如果()()f x f x =-,求a 的值;(2)当()f x 满足(1)时,用单调性定义讨论()f x 的单调性
二、题型解析
(一)对数计算
例1 已知732log [log (log )]0x =,那么1
2x -=______________
例2 计算:(1);(2);(3);(4)
(二)对数运算
例1 计算下列各式的值
(1

1324lg 2493-(2
(3) ; 例2 已知 , ,用,表示
例3 若3484log 4log 8log log 16m ⋅⋅=,则m =______________
例4 设3436x y ==,求
21x y +的值
四、强化训练
1、已知2(3)4log 3233x f x =+,则的值等于
例1 在(2)log (6)a x a -=-中,实数a 的取值范围是( )
A .6a >或2a <
B .26a <<
C .23a <<或36a <<
D .34a << 例2
函数y = )
A .[1,)+∞
B .2(,)3+∞
C .2[,1]3
D .2(,1]3
例3 若4log 15
a
<(01)a a >≠且,求实数a 的取值范围 2121
x x y -=+9log
27
(
(2log
20.4log 10.21log 35-2log 3a =3log 7b =a b 42log 568(2)(4)(8)(2)f f f f ++++
例4 比较下列各组数中两个值的大小:
(1),;(2),;(3),
例5 求函数22log (56)y x x =-+的定义域、值域、单调区间
例6 函数在上的最大值比最小值大,求的值;
三、实战演练
1、求下列函数的定义域
(1)2(1)log (23)x y x x -=-++;(2
)y =
(01)a a >≠且
2、已知log (31)a a -恒为正数,求a 的取值范围
3、比较下列各题中两个数值的大小: ; ; ;
4、设1a >,函数()log a f x x =在区间[,2]a a 上的最大值与最小值之差为
12,则a = 5、若log (2)a y ax =-在[0,1]上是减函数,则a 的取值范围是 ( )
A .(0,1)
B .(0,2)
C .(1,2)
D .(2,)+∞
四、强化训练
1、已知函数()f x 满足:4x ≥,则1
()()2
x f x =;当4x <时()(1)f x f x =+,则2(2log 3)f += A .124 B .112 C .18 D .38
2、设01a a >≠且,函数2lg(23)()x x f x a -+=有最大值,则不等式2log (57)0a x x -+>的解集为 .
3、已知01a a >≠且,21(log )()1a a f x x a x
=-- (1)求()f x ;(2)判断()f x 的奇偶性与单调性;
(3)对于()f x ,当(1,1)x ∈-时,有2(1)(1)0f m f m -+-<,求m 的集合M
4、若x 满足21422(log )14log 30x x -+≤
,求2
()log 2x f x =最大值和最小值
2log 3.42log 8.50.3log 1.80.3log 2.7log 5.1a log 5.2a (0,1)a a >≠log a y x =[2,4]1a 22log 3log 3.5和0.30.2log 4log 0.7和0.70.7log 1.6log 1.8和23log 3log 2和。

相关文档
最新文档