芦淞区2015年上学期第一次月考九年级数学试卷
2014~2015年九年级第一次月考数学试卷及参考答案

九年级第一次月考数学试卷考生注意:本试卷共八大题,计23小题,满分150分,考试时间120分钟。
一、选择题(本大题共10小题,每小题4分,满分40分)1.二次函数y=x 2的图象向下平移2个单位,得到新图象的二次函数表达式………( ) A .y =x 2-2 B .y =(x -2)2C .y =x 2+2 D .y =(x +2)22.若二次函数y=2x 2-2mx+2m 2-2的图象的顶点在y 轴上,则m 的值是………………( ) A.0 B.±1 C.±2 D.±23.已知(-1,y 1)(-2,y 2)(-4,y 3)是抛物线y=-2x 2-8x+m 上的点,则………………( )A. y 1<y 2<y 3B. y 3<y 2<y 1C. y 2>y 1>y 3D. y 2>y 3>y 1 4.已知反比例函数y =xm2-1的图像上有两点A(x 1,y 1)、B(x 2,y 2),当x 1<0<x 2时, 有y 1<y 2。
则m 的取值范围是 ………………………………………………………( ) A 、m <0 B.、m >0 C 、m >21 D 、m <21 5.等边三角形的一条中线与一条中位线的比值是………………………………… ( ) A 、1:3 B 、2:3 C 、3:1 D 、1:36.下列各组线段:①a=1,b=2,c=3,d=4;②a=1,b=2,c=2,d=4;③a=2,b=5,c=8,d=20;④a=3, b=2,c=3,d=2;其中各组线段的长度成比例的有………………………………………………………………………………………( ) A .1组 B. 2组 C. 3组 D. 4组7. 下列关于二次函数的说法错误..的是………………………………………………( ) A.抛物线1322++-=x x y 的对称轴是直线x =34; B.点A(3,0)不在抛物线322--=x x y 的图象上; C.二次函数y=(x +2)2-2的顶点坐标是(-2,-2);D.函数y=2x 2+4x-3的图象的最低点在(-1,-5)8.在同一直角坐标系中,函数y mx m =+和函数222y mx x =-++(m 是常数,且0m ≠)的图象可能..是 ………………………………………………………………( ) 9.抛物线2y a x b x c =++ 上部分点的横坐标x ,纵坐标y 的对应值如表所示.给出下列说法:①抛物线与y 轴的交点为(0,6); ②抛物线的对称轴是在y 轴的右侧;③抛物线一定经过点(3,0);④在对称轴左侧,y 随x 增大而减小。
20150910九年级(上)月考数学试卷(9月份)附答案

九年级(上)月考数学试卷(9月份)一、选择题(每题3分)1.关于x的一元二次方程x2﹣k=0有实数根,则()A.k<0 B.k>0 C.k≥0 D.k≤02.对于抛物线y=﹣(x﹣5)2+3,下列说法正确的是()A.开口向下,顶点坐标(5,3)B.开口向上,顶点坐标(5,3)C.开口向下,顶点坐标(﹣5,3)D.开口向上,顶点坐标(﹣5,3)3.已知一个直角三角形的两条直角边恰好是方程2x2﹣8x+7的两根,则此三角形的斜边长为()A.3 B. 6 C.9 D.124.王刚同学在解关于x的方程x2﹣3x+c=0时,误将﹣3x看作+3x,结果解得x1=1 x2=﹣4,则原方程的解为()A.x1=﹣1,x2=﹣4 B.x1=1,x2=4 C.x1=﹣1,x2=4 D.x1=2,x2=35.抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是()A.y=3(x﹣1)2﹣2 B.y=3(x+1)2﹣2 C.y=3(x+1)2+2 D.y=3(x﹣1)2+26.某饲料厂一月份生产饲料500吨,三月份生产饲料720吨,若二、三月份每月平均增长的百分率为x,则有()A.500(1+x2)=720 B.500(1+x)2=720 C.500(1+2x)=720 D.720(1+x)2=5007.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B.x(x﹣1)=1035×2 C.x(x﹣1)=1035 D.2x(x+1)=1035 8.函数y=kx2﹣k和在同一直角坐标系中图象可能是图中的()A.B.C.D.二、填空题(每题3分)9.二次函数y=x2﹣2x+1的对称轴方程是.10.关于x的一元二次方程2x(kx﹣4)﹣x2+6=0没有实数根,则k的最小整数值是.11.已知x1,x2是方程x2﹣2x﹣1=0的两个根,则+等于.12.如果﹣﹣8=0,则的值是.13.已知二次函数y=x2+bx+3的对称轴为x=2,则b=.14.若抛物线y=x2﹣2x﹣3与x轴分别交于A,B两点,则AB的长为.15.请写出一个开口向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式.三、解答题(共9小题,满分75分)16.(16分)(2014秋•团风县校级月考)解下列方程:(1)(2x﹣1)2=9(2)x2+3x﹣4=0(3)(x+4)2=5(x+4)(4)x2+4x=2.17.已知一元二次方程kx2+(2k﹣1)x+k+2=0有两个不相等的实数根,求k的取值范围.18.如图,一块长和宽分别为60厘米和40厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体水槽,使它的底面积为800平方厘米,求截去正方形的边长.19.若二次函数的图象的对称轴方程是x=,并且图象过A(0,﹣4)和B(4,0).(1)求此二次函数图象上点A关于对称轴x=对称的点A′的坐标;(2)求此二次函数的解析式;(3)画出这个二次函数的图象.20.已知二次函数图象的对称轴是x+3=0,图象经过(1,﹣6),且与y轴的交点为(0,).(1)求这个二次函数的解析式;(2)当x为何值时,这个函数的函数值为0;(3)当x在什么范围内变化时,这个函数的函数值y随x的增大而增大?21.阅读下面的例题:解方程x2﹣|x|﹣2=0解:(1)当x≥0时,原方程化为x2﹣x﹣2=0解得:x1=2,x2=﹣1(不合题意,舍去)(2)当x<0时,原方程化为x2+x﹣2=0,解得:x1=1(不合题意,舍去),x2=﹣2∴原方程的根是x1=2,x2=﹣2请参照例题解方程x2﹣|x﹣1|﹣5=0.22.某商店销售一种商品,每件的进价为2.00元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是10.00元时,销售量为500件,而单价降低1元,就可多销售出200件.请你分析,销售单价多少时,可以获利最大.23.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?24.(10分)(2014秋•漳县校级期中)已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;(2)求△MCB的面积S△MCB.参考答案与试题解析一、选择题(每题3分)1.关于x的一元二次方程x2﹣k=0有实数根,则()A.k<0 B.k>0 C.k≥0 D.k≤0考点:解一元二次方程-直接开平方法.分析:根据直接开平方法的步骤得出x2=k,再根据非负数的性质得出k≥0即可.解答:解:∵x2﹣k=0,∴x2=k,∴一元二次方程x2﹣k=0有实数根,则k≥0,故选:C.点评:此题考查了直接开平方法解一元二次方程,用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.2.对于抛物线y=﹣(x﹣5)2+3,下列说法正确的是()A.开口向下,顶点坐标(5,3)B.开口向上,顶点坐标(5,3)C.开口向下,顶点坐标(﹣5,3)D.开口向上,顶点坐标(﹣5,3)考点:二次函数的性质.分析:二次函数的一般形式中的顶点式是:y=a(x﹣h)2+k(a≠0,且a,h,k是常数),它的对称轴是x=h,顶点坐标是(h,k).抛物线的开口方向有a的符号确定,当a>0时开口向上,当a<0时开口向下.解答:解:∵抛物线y=﹣(x﹣5)2+3,∴a<0,∴开口向下,∴顶点坐标(5,3).故选:A.点评:本题主要是对抛物线一般形式中对称轴,顶点坐标,开口方向的考查,是中考中经常出现的问题.3.已知一个直角三角形的两条直角边恰好是方程2x2﹣8x+7的两根,则此三角形的斜边长为()A.3 B. 6 C.9 D.12考点:根与系数的关系;勾股定理.分析:根据根与系数的关系,求出两根之积与两根之和的值,再根据勾股定理列出直角三角形三边之间的关系式,然后将此式化简为两根之积与两根之和的形式,最后代入两根之积与两根之和的值进行计算.解答:解:设直角三角形的斜边为c,两直角边分别为a与b.∵直角三角形的两条直角边的长恰好是方程2x2﹣8x+7=0的两个根,∴a+b=4,ab=3.5;根据勾股定理可得:c2=a2+b2=(a+b)2﹣2ab=16﹣7=9,∴c=3,故选A.点评:此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.4.王刚同学在解关于x的方程x2﹣3x+c=0时,误将﹣3x看作+3x,结果解得x1=1 x2=﹣4,则原方程的解为()A.x1=﹣1,x2=﹣4 B.x1=1,x2=4 C.x1=﹣1,x2=4 D.x1=2,x2=3考点:根与系数的关系.分析:把x=1代入x2+3x+c=0得出方程1+3+c=0,求出c=﹣4,得出原方程为x2﹣3x﹣4=0,求出方程的解即可.解答:解:∵王刚同学在解关于x的方程x2﹣3x+c=0时,误将﹣3x看作+3x,结果解得x1=1,x2=﹣4,∴把x=1代入x2+3x+c=0得:1+3+c=0,解得:c=﹣4,即原方程为x2﹣3x﹣4=0,即方程得:x1=4,x2=﹣1,故选C.点评:本题考查了解一元二次方程的应用,熟练掌握越野车非常的解法是解题的关键,主要考查学生的计算能力.5.抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是()A.y=3(x﹣1)2﹣2 B.y=3(x+1)2﹣2 C.y=3(x+1)2+2 D.y=3(x﹣1)2+2考点:二次函数图象与几何变换.分析:根据图象向下平移减,向右平移减,可得答案.解答:解:抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是y=3(x﹣1)2﹣2,故选:A.点评:本题考查了二次函数图象与几何变换,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.6.某饲料厂一月份生产饲料500吨,三月份生产饲料720吨,若二、三月份每月平均增长的百分率为x,则有()A.500(1+x2)=720 B.500(1+x)2=720 C.500(1+2x)=720 D.720(1+x)2=500考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:由于某饲料厂一月份生产饲料500吨,三月份生产饲料720吨,若二、三月份每月平均增长的百分率为x,那么二、三月份分别生产500(1+x)吨、500(1+x)2,由此即可列出方程.解答:解:依题意得500(1+x)2=720.故选B.点评:此题主要考查了一元二次方程的应用,是增长率的问题,解题的关键利用了增长率的公式a(1+x)2=b.7.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B.x(x﹣1)=1035×2 C.x(x﹣1)=1035 D.2x(x+1)=1035考点:由实际问题抽象出一元二次方程.专题:其他问题.分析:如果全班有x名同学,那么每名同学要送出(x﹣1)张,共有x名学生,那么总共送的张数应该是x(x﹣1)张,即可列出方程.解答:解:∵全班有x名同学,∴每名同学要送出(x﹣1)张;又∵是互送照片,∴总共送的张数应该是x(x﹣1)=1035.故选C.点评:本题考查一元二次方程在实际生活中的应用.计算全班共送多少张,首先确定一个人送出多少张是解题关键.8.函数y=kx2﹣k和在同一直角坐标系中图象可能是图中的()A.B.C.D.考点:二次函数的图象;反比例函数的图象.分析:本题可先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.解答:解:由解析式y=kx2﹣k可得:抛物线对称轴x=0;A、当k<0时,物线开口方向向下、双曲线的两支分别位于二、四象限、抛物线与y轴的交点为在y轴的正半轴上;本图象符合题意,正确;B、当k>0时,物线开口方向向上、双曲线的两支分别位于一、三象限;当k>0抛物线会与y轴的交点为在y轴的负半轴上,本图象与k的取值相矛盾,错误;C、当k<0时,物线开口方向向下、双曲线的两支分别位于二、四象限;当k<0抛物线会与y轴的交点为在y轴的正半轴上,本图象与k的取值相矛盾,错误;D、当k>0时,双曲线的两支分别位于一、三象限而物线开口方向应该向上,本图象与k 的取值相矛盾,错误.故选A.点评:解决此类问题步骤一般为:(1)先根据图象的特点判断k取值是否矛盾;(2)根据二次函数图象判断抛物线与y轴的交点是否符合要求.二、填空题(每题3分)9.二次函数y=x2﹣2x+1的对称轴方程是x=1.考点:二次函数的性质.分析:利用公式法可求二次函数y=x2﹣2x+1的对称轴.也可用配方法.解答:解:∵﹣=﹣=1∴x=1.点评:本题就是考查二次函数的对称轴的求法.10.关于x的一元二次方程2x(kx﹣4)﹣x2+6=0没有实数根,则k的最小整数值是2.考点:根的判别式.分析:先把方程化为一般形式:(2k﹣1)x2﹣8x+6=0,由关于x的一元二次方程2x(kx﹣4)﹣x2+6=0没有实数根,所以2k﹣1≠0且△<0,即解得k>,即可得到k的最小整数值.解答:解:把方程化为一般形式:(2k﹣1)x2﹣8x+6=0,∵原方程为一元二次方程且没有实数根,∴2k﹣1≠0且△<0,即△=(﹣8)2﹣4×(2k﹣1)×6=88﹣48k<0,解得k>.所以k的取值范围为:k>.则满足条件的k的最小整数值是2.故答案为2.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.同时考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的定义.11.已知x1,x2是方程x2﹣2x﹣1=0的两个根,则+等于﹣2.考点:根与系数的关系.专题:计算题.分析:根据一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系得到x1+x2=2,x1•x2=1,然后变形+得,再把x1+x2=2,x1•x2=﹣1整体代入计算即可.解答:解:∵x1,x2是方程x2﹣2x﹣1=0的两个根,∴x1+x2=2,x1•x2=﹣1,∴+==﹣2.故答案为﹣2.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.也考查了一元二次方程的根的判别式.12.如果﹣﹣8=0,则的值是4或﹣2.考点:换元法解一元二次方程;解一元二次方程-因式分解法.专题:换元法;因式分解.分析:本题应先换元,将方程转化为一元二次方程,再将原式因式分解化为两式相乘的形式,再根据“两式相乘值为0,这两式中至少有一式值为0”来解题.解答:解:设t=,则原方程变形为t2﹣2t﹣8=0,即(t﹣4)(t+2)=0,解得t=4或﹣2,∴=4或﹣2.点评:本题考查了一元二次方程的解法和换元法的运用.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.13.已知二次函数y=x2+bx+3的对称轴为x=2,则b=﹣4.考点:二次函数的性质.分析:可直接由对称轴公式﹣=2,求得b的值.解答:解:∵对称轴为x=2,∴﹣=2,∴b=﹣4.点评:本题难度不大,只要掌握了对称轴公式即可解出.主要考查二次函数解析式中系数与对称轴的关系.14.若抛物线y=x2﹣2x﹣3与x轴分别交于A,B两点,则AB的长为4.考点:抛物线与x轴的交点.专题:压轴题.分析:先求出二次函数与x轴的2个交点坐标,然后再求出2点之间的距离.解答:解:二次函数y=x2﹣2x﹣3与x轴交点A、B的横坐标为一元二次方程x2﹣2x﹣3=0的两个根,求得x1=﹣1,x2=3,则AB=|x2﹣x1|=4.点评:要求熟悉二次函数与一元二次方程的关系和坐标轴上两点距离公式|x1﹣x2|,并熟练运用.15.请写出一个开口向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式y=(x﹣2)2﹣1.考点:待定系数法求二次函数解析式.专题:压轴题;开放型.分析:已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解.顶点式:y=a(x﹣h)2+k(a,h,k是常数,a≠0),其中(h,k)为顶点坐标.解答:解:因为开口向上,所以a>0∵对称轴为直线x=2,∴﹣=2∵y轴的交点坐标为(0,3),∴c=3.答案不唯一,如y=x2﹣4x+3,即y=(x﹣2)2﹣1.点评:此题是开放题,考查了学生的综合应用能力,解题时要注意别漏条件.已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解.三、解答题(共9小题,满分75分)16.(16分)(2014秋•团风县校级月考)解下列方程:(1)(2x﹣1)2=9(2)x2+3x﹣4=0(3)(x+4)2=5(x+4)(4)x2+4x=2.考点:解一元二次方程-因式分解法;解一元二次方程-直接开平方法;解一元二次方程-配方法.专题:计算题.分析:(1)方程利用直接开平方法求出解即可;(2)方程利用因式分解法求出解即可;(3)方程移项后,利用因式分解法求出解即可;(4)方程利用配方法求出解即可.解答:解:(1)方程开方得:2x﹣1=3或2x﹣1=﹣3,解得:x1=2,x2=﹣1;(2)分解因式得:(x﹣1)(x+4)=0,解得:x1=1,x2=﹣4;(3)方程变形得:(x+4)2﹣5(x+4)=0,分解因式得:(x+4)(x+4﹣5)=0,解得:x1=﹣4,x2=1;(4)方程变形得:x2+4x+4=6,即(x+2)2=6,开方得:x+2=±,解得:x1=﹣2+,x2=﹣2﹣.点评:此题考查了解一元二次方程﹣因式分解法,配方法,以及直接开平方法,熟练掌握各种解法是解本题的关键.17.已知一元二次方程kx2+(2k﹣1)x+k+2=0有两个不相等的实数根,求k的取值范围.考点:根的判别式;一元二次方程的定义.分析:由条件可知该一元二次方程的判断式大于0,可得到一个关于k的不等式,可求出k 的取值范围,需要验证k是否为0.解答:解:该方程的判断式为:△=(2k﹣1)2﹣4k(k+2)=﹣12k+1,因为方程有两个不相等的实数根,所以△>0,即﹣12k+1>0,解得k<,又因为该方程为一元二次方程,所以k≠0,所以k的取值范围为:k<且k≠0.点评:本题主要考查一元二次方程根的判断式,掌握一元二次方程根的情况与判断式的关系是解题的关键,注意需要保证该方程为一元二次方程.18.如图,一块长和宽分别为60厘米和40厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体水槽,使它的底面积为800平方厘米,求截去正方形的边长.考点:一元二次方程的应用.专题:几何图形问题.分析:可设截去正方形的边长为x厘米,对于该长方形铁皮,四个角各截去一个边长为x 厘米的小正方形,长方体底面的长和宽分别是:(60﹣2x)厘米和(40﹣2x)厘米,底面积为:(60﹣2x)(40﹣2x),现在要求长方体的底面积为:800平方厘米,令二者相等求出x 的值即可.解答:解:设截去正方形的边长为x厘米,由题意得,长方体底面的长和宽分别是:(60﹣2x)厘米和(40﹣2x)厘米,所以长方体的底面积为:(60﹣2x)(40﹣2x)=800,即:x2﹣50x+400=0,解得x1=10,x2=40(不合题意舍去).答:截去正方形的边长为10厘米.点评:此题考查了一元二次方程的应用,本题的关键在于理解题意,找出等量关系:底面积为800平方厘米,列出方程求解即可.19.若二次函数的图象的对称轴方程是x=,并且图象过A(0,﹣4)和B(4,0).(1)求此二次函数图象上点A关于对称轴x=对称的点A′的坐标;(2)求此二次函数的解析式;(3)画出这个二次函数的图象.考点:待定系数法求二次函数解析式;二次函数的图象.分析:(1)直接利用对称性求解即可;(2)利用待定系数法把A(0,﹣4)和B(4,0),即对称轴x=代入解析式,解三元一次方程组可得y=x2﹣3x﹣4;(3)利用描点和对称性作图.解答:解:(1)A′(3,﹣4);(2)设此二次函数的解析式为y=ax2+bx+c,由题意,得,解得,∴y=x2﹣3x﹣4为所求;(3)如图:点评:主要考查了二次函数的概念、性质、图象,求解析式.20.已知二次函数图象的对称轴是x+3=0,图象经过(1,﹣6),且与y轴的交点为(0,).(1)求这个二次函数的解析式;(2)当x为何值时,这个函数的函数值为0;(3)当x在什么范围内变化时,这个函数的函数值y随x的增大而增大?考点:待定系数法求二次函数解析式;二次函数的性质;抛物线与x轴的交点.分析:①本题实际上已知了三个条件,可设抛物线的一般形式y=ax2+bx+c求解;②根据函数值为0解答;③利用对称轴解答这个问题.解答:解:(1)设抛物线的解析式为y=ax2+bx+c,由题意可得,解得a=﹣,b=﹣3,c=﹣,所以y=﹣x2﹣3x﹣.答:这个二次函数的解析式y=﹣x2﹣3x﹣.(2)令y=0,得﹣x2﹣3x﹣=0,解得:x=﹣1或﹣5.答:当x为﹣1或﹣5时,这个函数的函数值为0.(3)由于对称轴是x=﹣3,开口向下,所以当x<﹣3时,函数的函数值y随x的增大而增大.答:当x<﹣3时,函数的函数值y随x的增大而增大.点评:本题考查了用待定系数法求函数解析式的方法,同时还考查了二次函数的性质等相关知识.21.阅读下面的例题:解方程x2﹣|x|﹣2=0解:(1)当x≥0时,原方程化为x2﹣x﹣2=0解得:x1=2,x2=﹣1(不合题意,舍去)(2)当x<0时,原方程化为x2+x﹣2=0,解得:x1=1(不合题意,舍去),x2=﹣2∴原方程的根是x1=2,x2=﹣2请参照例题解方程x2﹣|x﹣1|﹣5=0.考点:解一元二次方程-因式分解法.专题:阅读型;分类讨论.分析:分类讨论:当x≥1时,去绝对值得到x2﹣x﹣4=0,利用求根公式求解;当x<1时,原方程化为x2+x﹣6=0,利用因式分解法求解.解答:解:(1)当x≥1时,原方程化为x2﹣x+1﹣5=0,即x2﹣x﹣4=0,解得:x1=,x2=(不合题意,舍去)(2)当x<1时,原方程化为x2+x﹣6=0,解得:x1=2(不合题意,舍去),x2=﹣3,∴原方程的根是x1=,x2=﹣3.点评:本题考查了解一元二次方程﹣因式分解法:先把方程右边变形为0,然后把方程左边进行因式分解,这样把一元二次方程转化为两个一元一次方程,再解一次方程可得到一元二次方程的解.22.某商店销售一种商品,每件的进价为2.00元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是10.00元时,销售量为500件,而单价降低1元,就可多销售出200件.请你分析,销售单价多少时,可以获利最大.考点:二次函数的应用.分析:根据等量关系“利润=(售价﹣进价)×(500+200×降价)”列出函数关系式.根据函数关系式求得利润最大值.解答:解:根据题意得:y=(x﹣2)[(500+200(10﹣x)]=﹣200x2+2900x﹣5000=﹣200(x﹣)2+5512.5,∵a=﹣200<0,∴当x=7.25时,y取最大值,最大值是5512.5,即售价7.25时利润最大,∴销售单价为7.25元时,最大利润5512.5元.点评:本题考查了二次函数的应用,运用数学建模思想把实际问题转化为数学问题.运用函数性质求最值常用公式法或配方法.23.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?考点:一元二次方程的应用.专题:销售问题.分析:商场平均每天盈利数=每件的盈利×售出件数;每件的盈利=原来每件的盈利﹣降价数.设每件衬衫应降价x元,然后根据前面的关系式即可列出方程,解方程即可求出结果.解答:解:设每件衬衫应降价x元,可使商场每天盈利2100元.根据题意得(45﹣x)(20+4x)=2100,解得x1=10,x2=30.因尽快减少库存,故x=30.答:每件衬衫应降价30元.点评:需要注意的是:(1)盈利下降,销售量就提高,每件盈利减,销售量就加;(2)在盈利相同的情况下,尽快减少库存,就是要多卖,降价越多,卖的也越多,所以取降价多的那一种.24.(10分)(2014秋•漳县校级期中)已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;(2)求△MCB的面积S△MCB.考点:二次函数综合题.专题:综合题;压轴题.分析:(1)将已知的三点坐标代入抛物线中,即可求得抛物线的解析式.(2)可根据抛物线的解析式先求出M和B的坐标,由于三角形MCB的面积无法直接求出,可将其化为其他图形面积的和差来解.过M作ME⊥y轴,三角形MCB的面积可通过梯形MEOB的面积减去三角形MCE的面积减去三角形OBC的面积求得.解答:解:(1)依题意:,解得∴抛物线的解析式为y=﹣x2+4x+5(2)令y=0,得(x﹣5)(x+1)=0,x1=5,x2=﹣1,∴B(5,0).由y=﹣x2+4x+5=﹣(x﹣2)2+9,得M(2,9)作ME⊥y轴于点E,可得S△MCB=S梯形MEOB﹣S△MCE﹣S△OBC=(2+5)×9﹣×4×2﹣×5×5=15.点评:本题考查了二次函数解析式的确定以及图形面积的求法.不规则图形的面积通常转化为规则图形的面积的和差.。
2015年九年级数学第一次月考模拟试卷(一元二次方程和二次函数)难度中等

2015-2016学年上学期第一次月考模拟试卷九年级数学一、选择题(本大题共8小题,每小题3分,共24分)一、下列方程中,一元二次方程是 ( )A 、2210x x +=B 、20ax bx c ++=C 、(x 1)(x 2)1-+=D 、223250x xy y --=二、用配方式解方程2250x x --=时,原方程应变形为 ( )A .()216x +=B .()216x -= C .()229x += D .()229x -= 3、抛物线223y x 的极点在( )A 、第一象限B 、 第二象限C 、 x 轴上D 、 y 轴上4、一元二次方程0332=+-x x 的根的情形是 ( ).A 、有两个相等的实数根B 、有两个不相等的实数根C 、只有一个相等的实数根D 、没有实数根五、二次函数y =-x 2+2x 的图象可能是( )六、二次函数y =2x 2+mx +8的图象如下图,则m 的值是( )A .-8B .8C .±8D .67、某超市一月份的营业额为200万元,三月份的营业额为288万元,若是每一个月比上月增加的百分数相同,则平均每一个月的增加率为 ( )A .%10B .%15C .%20D .%25八、抛物线y=21x 2向左平移3个单位,再向下平移2个单位后,所得的抛物线表达式是( ) A .y=21(x -3)2-2 B .y=21(x -3)2+2 C .y=21(x+3)2-2 D .y=21(x+3)2+2 二、填空题(每小题3分,共24分) 九、当m 时,关于x 的方程5)3(72=---x x m m 是一元二次方程。
10、抛物线2ax y =通过点(3,5),则a = .1一、已知5)3)(1(2222=-+++y x y x ,则22y x +的值等于 。
1二、一个长100 m ,宽60 m 的游泳池扩建成一个周长为600 m 的大型水上游乐场,把游泳池的长增加x m ,那么x 等于多少时,水上游乐场的面积为20 000 m2?列出方程__________________________.13、把一元二次方程化为一样形式是________________,其中二次项为 ______,一次项系数为______,常数项为______.14、若是抛物线c x x y +-=82的极点在x 轴上, 则c = _____ .1五、如图,已知二次函数y =ax 2+bx +c 的图象与x 轴交于A (1,0),B (3,0)两点,与y 轴交于点C(0,3),则二次函数的图象的极点坐标是________.第15题图1六、函数y =-(x -h )2+k 的图象,则其解析式为____________.三、解答题(本大题共 52 分) 17、解下列方程(共12分)(1)0152=+-x x (2)2(3)5(x 3)x +=+ (3)2(2)40x --=18、已知关于x 的一元二次方程(2m -1)x 2+3mx +5=0有一根是x =-1,求m 的值.(本小题共 5分)19、已知开口向上的抛物线y =ax 2-2x +|a |-4通过点(0,-3).(1)确信此抛物线的解析式;(本小题共 3分)(2)当x 取何值时,y 有最小值,并求出那个最小值.(本小题共 3分)20、如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地,如何围才能使矩形场地的面积为750m2?(本小题共5分)21、某水果批发商场经销一种高级水果,若是每千克盈利10元,天天可售出500千克,经市场调查发觉,在进货价不变的情形下,若每千克涨价1元,日销售量将减少20千克.(1)现该商场要保证天天盈利6000元,同时又要顾客取得实惠,那么每千克应涨价多少元?(本小题共4分)(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?(本小题共4分)22、在实数范围内概念一种新运算“”,其规则为:a b=a2-b2,依照那个规则:(1)求43的值;(2)求(x+2)5=0中x的值.(本小题共6分)23、行驶中的汽车,在刹车后由于惯性的作用,还要向前方滑行一段距离才能停止,这段距离称为“刹车距离”,为了测定某种型号的汽车的刹车性能(车速不超过140 km/h),对这种汽车进行测试,测得数据如下表:(1)以车速为x致图象;(本小题共3分)(2)观看图象.估量函数的类型,并确信一个知足这些数据的函数解析式;(本小题共3分)(3)该型号汽车在国道发生了一次交通事故,现场测得刹车距离为46.5 m,推测刹车时的车速是多少?请问事故发生时,汽车是超速行驶仍是正常行驶?(本小题共4分)。
2015-2016学年九年级(上)月考数学试卷(9月份)附答 案

九年级(上)月考数学试卷(9月份)一、选择题(每题3分,共18分)1.如果向东走20m记作+20m,那么﹣30m表示()A.向东走30m B.向西走30m C.向南走30m D.向北走30m 2.下列两个数互为相反数的是()A.和﹣0.3 B.3和﹣4 C.﹣2.25和2D.8和﹣(﹣8)3.数轴上的点A表示数为1,则数轴上到点A的距离为2的点表示的数为()A.2 B.3 C.﹣1 D.﹣1或34.下列各式中,不正确的是()A.|﹣3|=|+3| B.|﹣0.8|=|| C.|﹣2|<0 D.|﹣1.3|>05.有理数a,b在数轴上的对应点的位置如图所示,则()A.a+b=0 B.a+b>0 C.a﹣b<0 D.a﹣b>06.一个数和它的倒数相等,则这个数是()A.1 B.﹣1 C.±1和0 D.±1二、填空题(每题3分,共18分)7.﹣的倒数是.8.﹣5的绝对值是.9.0.1的相反数是.10.比较大小:﹣﹣.11.2008年冬天的某日,大连市最低气温﹣5℃,哈尔滨市最低气温﹣21℃,这一天大连市的最低气温比哈尔滨的最低气温高℃.12.计算:﹣1÷2×(﹣)=.三、计算题(注意步骤书写完整)(每题4分,共40分)13.(﹣8)﹣8.14.(﹣8)+10﹣(﹣2)+(﹣1)15.(﹣3)×9+11.16.(﹣5)×(﹣9)×8×(﹣2).17.﹣8+(﹣15)÷(﹣3).18.(﹣2)×7﹣3×(﹣7)19.﹣10﹣(﹣3)×(﹣4).20.(﹣)÷(﹣)+×(﹣).21.24÷(﹣).22.(+﹣)×(﹣24).四、解答题(25题6分、26题5分、27题6分、28各7分,共24分)23.画数轴,然后在数轴上表示下列各数,并用“<”号将各数连接起来.3.5,﹣2,3,0,1.5,﹣4.24.将下列各数填在相应的大括号内:﹣,0,1.5,﹣6,7,﹣5.32,2,﹣2009,0.正有理数集合:…负分数集合:…整数集合:…非正数集合:…25.有10盒巧克力豆,以100粒为标准,超过的粒数为正,不足的粒数为负,每盒记录如下:+3,﹣1,﹣3,+2,0,﹣2,﹣3,+4,﹣2,﹣3,这10盒巧克力共有多少粒巧克力豆?26.一辆出租车在一条南北方向的公路上行驶,从A地出发,司机记录了出租车所行驶的路程:(向北为正方向,单位:千米)﹣10,9,4,﹣8,9,10.然后车停下来休息.(1)此时出租车在A地的什么方向?距A地多远?(2)出租车距A地最远有多少千米?(3)已知出租车每千米耗油0.1升,在此过程中共耗油多少升?参考答案与试题解析一、选择题(每题3分,共18分)1.如果向东走20m记作+20m,那么﹣30m表示()A.向东走30m B.向西走30m C.向南走30m D.向北走30m考点:正数和负数.分析:在一对具有相反意义的量中,向东走记作正,则负就代表向西走,据此求解.解答:解:∵向东走20m记作+20m,∴﹣30m记作向西走30m.故选B.点评:本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.下列两个数互为相反数的是()A.和﹣0.3 B.3和﹣4 C.﹣2.25和2D.8和﹣(﹣8)考点:相反数.分析:此题依据相反数的概念作答.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.解答:解:A、的相反数是﹣,故选项错误;B、3的相反数的是﹣3,故选项错误;C、﹣2.25和2互为相反数,故选项正确;D、8的相反数是﹣8,5=﹣(﹣8),故选项错误.故选:C.点评:考查了相反数,此题关键是看两个数是否“只有符号不同”,并注意分数与小数的转化.3.数轴上的点A表示数为1,则数轴上到点A的距离为2的点表示的数为()A.2 B.3 C.﹣1 D.﹣1或3考点:数轴.分析:设数轴上到点A的距离为2的点表示的数为x,再根据数轴上两点间距离的定义即可得出结论.解答:解:设数轴上到点A的距离为2的点表示的数为x,则|x﹣1|=2,解得x=﹣1或x=3.故选D.点评:本题考查的是数轴,熟知数轴上两点间距离的定义是解答此题的关键.4.下列各式中,不正确的是()A.|﹣3|=|+3| B.|﹣0.8|=|| C.|﹣2|<0 D.|﹣1.3|>0考点:绝对值.分析:由绝对值的性质可得答案.解答:解:A.|﹣3|=3,|+3|=3,故A正确;B.0.8=,|﹣0.8|=,||=,故B正确;C.|﹣2|=2>0,故C错误;D.|﹣1.3|=1.3>0,故D正确,故选C.点评:本题主要考查了绝对值的性质,利用绝对值的定义和性质化简是解答此题的关键.5.有理数a,b在数轴上的对应点的位置如图所示,则()A.a+b=0 B.a+b>0 C.a﹣b<0 D.a﹣b>0考点:数轴.分析:由数轴可得a<0<b,|a|>|b|,即可判定.解答:解:由数轴可得a<0<b,|a|>|b|,所以a+b<0,a﹣b<0,故选:C.点评:本题主要考查了数轴,解题的关键是利用数轴确定a,b的数量关系.6.一个数和它的倒数相等,则这个数是()A.1 B.﹣1 C.±1和0 D.±1考点:倒数.分析:根据倒数的定义可知乘积是1的两个数互为倒数.解答:解:一个数和它的倒数相等,则这个数是±1.故选D.点评:主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.要求掌握并熟练运用.二、填空题(每题3分,共18分)7.﹣的倒数是﹣.考点:倒数.分析:直接根据倒数的定义求解.解答:解:﹣的倒数是﹣.故答案为:﹣.点评:本题考查了倒数的定义,关键是根据a的倒数为(a≠0).8.﹣5的绝对值是5.考点:绝对值.分析:绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.解答:解:根据负数的绝对值是它的相反数,得|﹣5|=5.点评:解题的关键是掌握绝对值的性质.9.0.1的相反数是﹣0.1.考点:相反数.分析:先根据负整数指数幂的运算法则求出2﹣2的值,再求出其相反数即可.解答:解:0.1的相反数是﹣0.1.故答案为﹣0.1.点评:本题主要相反数的意义,只有符号不同的两个数互为相反数,a的相反数是﹣a.10.比较大小:﹣<﹣.考点:有理数大小比较.分析:有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.解答:解:根据有理数比较大小的方法,可得﹣<﹣.故答案为:<.点评:此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.11.2008年冬天的某日,大连市最低气温﹣5℃,哈尔滨市最低气温﹣21℃,这一天大连市的最低气温比哈尔滨的最低气温高16℃.考点:有理数的减法.专题:应用题.分析:由大连气温减去哈尔滨的气温,即可得到结果.解答:解:根据题意得:﹣5﹣(﹣21)=﹣5+21=16(℃),则这一天大连市的最低气温比哈尔滨的最低气温高16℃.故答案为:16点评:此题考查了有理数的减法,熟练掌握减法法则是解本题的关键.12.计算:﹣1÷2×(﹣)=.考点:有理数的除法;有理数的乘法.分析:利用有理数的乘除法则求解即可.解答:解::﹣1÷2×(﹣)=﹣×(﹣),=.故答案为:.点评:本题主要考查了有理数的乘除法,解题的关键是熟记有理数的乘除法则.三、计算题(注意步骤书写完整)(每题4分,共40分)13.(﹣8)﹣8.考点:有理数的减法.专题:计算题.分析:原式利用减法法则变形,计算即可得到结果.解答:解:原式=﹣8+(﹣8)=﹣16.点评:此题考查了有理数的减法,熟练掌握减法法则是解本题的关键.14.(﹣8)+10﹣(﹣2)+(﹣1)考点:有理数的加法.专题:计算题.分析:原式利用减法法则变形,计算即可得到结果.解答:解:原式=﹣8+10+2﹣1=3.点评:此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.15.(﹣3)×9+11.考点:有理数的混合运算.专题:计算题.分析:原式先计算乘法运算,再计算加法运算即可得到结果.解答:解:原式=﹣27+11=﹣16.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.(﹣5)×(﹣9)×8×(﹣2).考点:有理数的乘法.分析:先确结果的符号,然后利用乘法的交换律和结合律进行简便运算即可.解答:解:原式=﹣5×9×8×2=﹣(5×2)×(9×8)=﹣10×72=﹣720.点评:本题主要考查的是有理数的乘法,利用利用乘法的交换律和结合律进行简便运算是解题的关键.17.﹣8+(﹣15)÷(﹣3).考点:有理数的除法;有理数的加法.分析:先算除法,然后再算加法.解答:解:原式=﹣8+5=﹣3.点评:本题主要考查的是有理数的四则混合运算,掌握有理数的运算顺序是解题的关键.18.(﹣2)×7﹣3×(﹣7)考点:有理数的乘法.分析:先算乘法,然后再计算减法.解答:解:(﹣2)×7﹣3×(﹣7)=﹣14+21=7.点评:本题主要考查的是有理数的四则混合运算,掌握运算法则和运算顺序是解题的关键.19.﹣10﹣(﹣3)×(﹣4).考点:有理数的乘法.分析:先算乘法,然后再算减法.解答:解:原式=﹣10﹣12=﹣22.点评:本题主要考查的是有理数的四则混合运算,掌握运算顺序和运算法则是解题的关键.20.(﹣)÷(﹣)+×(﹣).考点:有理数的除法;有理数的乘法.分析:首先将除法转化为乘法,然后按照有理数的乘法法则计算即可.解答:解;原式==2+(﹣2)=0.点评:本题主要考查的是有理数的乘除运算,掌握有理数的乘法和除法法则是解题的关键.21.24÷(﹣).考点:有理数的除法.分析:首先将除法转化为乘法,然后将24变形为25﹣,最后利用乘法分配律计算即可.解答:解:原式=(25﹣)×(﹣10)=﹣250+2=﹣248.点评:本题主要考查的是有理数的除法,将除法转化为乘法,然后进行简便运算是解题的关键.22.(+﹣)×(﹣24).考点:有理数的乘法.专题:计算题.分析:原式利用乘法分配律计算即可得到结果.解答:解:原式=﹣9﹣4+18=5.点评:此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.四、解答题(25题6分、26题5分、27题6分、28各7分,共24分)23.画数轴,然后在数轴上表示下列各数,并用“<”号将各数连接起来.3.5,﹣2,3,0,1.5,﹣4.考点:有理数大小比较;数轴.分析:根据数轴是用点表示数的一条直线,可用数轴上的点表示数,根据数轴上的点表示的数右边的总比左边的大,可得答案.解答:解:如图:数轴上的点表示的数右边的总比左边的大,得.点评:本题考查了有理数比较大小,数轴上的点表示的数右边的总比左边的大.24.将下列各数填在相应的大括号内:﹣,0,1.5,﹣6,7,﹣5.32,2,﹣2009,0.正有理数集合: 1.5,7,2,0.…负分数集合:﹣,﹣5.32…整数集合:0,﹣6,7,2,﹣2009…非正数集合:﹣,0,﹣6,7,﹣5.32,﹣2009…考点:有理数.分析:按照有理数的分类填写:有理数.解答:解:正有理数集合:1.5,7,2,0.…负分数集合:﹣,﹣5.32…整数集合:0,﹣6,7,2,﹣2009…非正数集合:﹣,0,﹣6,7,﹣5.32,﹣2009…故答案为:1.5,7,2,0.;﹣,﹣5.32;0,﹣6,7,2,﹣2009;﹣,0,﹣6,7,﹣5.32,﹣2009.点评:考查了有理数,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.25.有10盒巧克力豆,以100粒为标准,超过的粒数为正,不足的粒数为负,每盒记录如下:+3,﹣1,﹣3,+2,0,﹣2,﹣3,+4,﹣2,﹣3,这10盒巧克力共有多少粒巧克力豆?考点:正数和负数.分析:将所有数相加可得出超过或不足的数量,将各盒子的数量相加可得出答案.解答:解:3﹣1﹣3+2+0﹣2﹣3+4﹣2﹣3=﹣5,10×100﹣5=995,这10盒巧克力共有995粒巧克力豆.点评:本题考查正数和负数问题,关键是根据有理数的加减混合运算进行计算.26.一辆出租车在一条南北方向的公路上行驶,从A地出发,司机记录了出租车所行驶的路程:(向北为正方向,单位:千米)﹣10,9,4,﹣8,9,10.然后车停下来休息.(1)此时出租车在A地的什么方向?距A地多远?(2)出租车距A地最远有多少千米?(3)已知出租车每千米耗油0.1升,在此过程中共耗油多少升?考点:正数和负数.分析:(1)把行驶记录的所有数据相加,然后根据结果进行判断即可;(2)根据行驶记录的数据相加得出绝对值最大即可;(3)求出行驶记录的绝对值的和,然后转化为千米,再乘以0.1即可得解.解答:解:(1)﹣10+9+4﹣8+9+10=14,在A地的北方,距离A地14千米;(2)因为|14|最大,所以出租车距A地最远有14千米;(3)10+9+4+8+9+10=50,50×0.1=5,在此过程中共耗油5升.点评:本题考查了“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,(2)要注意单位转换.11。
2015年九年级(上)第一次月考数学参考答案

2015年九年级(上)第一次月考数学参考答案二、填空题(每小题3分,共18分)11.75° 12.1- 13.180 14.3 15.9 16.4-. 三、解答题(共72分) 17.(1)解:162=-x x⇒10)3(2=-x …………………………………2分 ⇒103±=-x …………………………………3分⇒1031+=x ,1032-=x …………………………………4分(2)解:22)12()3(+=-x x⇒0)3()12(22=--+x x …………………………………1分⇒0)312)(312(=+-+-++x x x x …………………………………2分 ⇒0)4)(23(=+-x x …………………………………3分⇒321=x ,42-=x …………………………………4分 18.解:aa a a a a ---+⋅-213242221)3(2)2)(2(-+-+⋅+-=a a a a a a a21)3)(2(1-+--=a a a)3)(2(31---+=a a a)3)(2(2---=a a a31-=a …………………………………3分 ∵3223+<<-a …………………………………4分∴51<<a∵a 为整数,且2≠a ,且3≠a∴4=a …………………………………5分 当4=a 时,原式341-=1=…………………………………6分19.解:四边形AFCE 是菱形,理由如下: ∵直线l 垂直平分线段AC , ∴OA=OC ,AF=CF∵四边形ABCD 是矩形, ∴AD ∥BC∴∠1=∠2,∠3=∠4………………………3分 在△AOE 和△COF 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠OC OA 4321 ∴△AOE ≌△COF(AAS) ∴AE=CF∵AE ∥CF ,AF=CF∴四边形AFCE 是菱形…………………………………7分 20.解:0322=-+x x ⇒0)3)(1(=+-x x ⇒11=x ,32-=x∵a 是一元二次方程0322=-+x x 的根,且0>a ,∴1=a ………………………………………3分 ∴AE=EB=EC=1∵AE ⊥BC 于E ,∴∠AEB=90° ∵AE=EB=EC ,∴AB=2,BC= EB+EC=2平行四边形ABCD 的周长=2(AB+BC)=422+ ………………………………1分 21.解:设04)1(2=+++x m x 的两根为1x 、2x ,则有)1(21+-=+m x x ,421=⋅x x …………………………………2分22221=+x x⇒22)(21221=-+x x x x⇒28)]1([2=-+-m ⇒10)1(2=+m ⇒101±=+m ⇒1011+-=m1012--=m ……………………………4分414)1(2≥⨯⨯-+m⇒16)1(2≥+m⇒41≥+m41-≤+m⇒31≥m 52-≤m ………………………………6分∴不存在实数m ,使关于x 的方程04)1(2=+++x m x 的两根平方和等于2 ………7分22.证明:过点D ,作DE ⊥x 轴于E , ∴∠DEA=∠AOB=90° 设A 点坐标为(m ,0),B 点坐标为(0,n ) ∵正方形ABCD 的对角线AC 、BD 相交于点P ∴点P 为BD 的中点,AB=DA ,∠BAD=90° ∴∠BAO+∠DAE=∠BAO+∠ABO=90° ∴∠DAE=∠ABO在△AOB 和△DEA 中:∵⎪⎩⎪⎨⎧=∠=∠∠=∠DA AB DAE ABO DEA AOB ∴△AOB ≌和△DEA (AAS )………………………………4分 ∴AE=0B=n ,DE=OA=m , ∴D 点坐标为(n m +,m ),且B 点坐标为(0,n ) ∴P 点坐标为(2n m +,2nm +) ∴无论点A 在x 轴正半轴上、点B 在y 轴正半轴上怎样运动,点P 都在直线x y =上. ……………………………………………………………………………………7分23.解:2008到2010年的月工资的平均增长率为x ,则.2420)1(2002=+x ………………………………2分⇒21.1)1(2=+x⇒1.11±=+x⇒1.01=x(舍去)1.22-=x ………………………………3分∴小明2011年的月工资为26621.12420=⨯(元)………………………………4分(2)设小明第一次购买甲种工具书a 本,乙种工具书b 本;甲种工具书每本m 元,乙种工具书每本n 元,则:⎪⎩⎪⎨⎧-=+=+=+24226622662242bm an bn am n m 解之得:21=+b a ∴232=++b a答:小明总共捐献了23本工具书. ………………………………9分 (2)解法二:设小明总共捐献了y 本工具书,则:24226622)2(242-⨯=-y⇒212=-y ⇒23=y答:小明总共捐献了23本工具书. ………………………………9分 24. 解:(1)∵CE 平分∠ACB , ∴∠ACE=∠BCE , ∵MN ∥BC ,∴∠OEC=∠ECB , ∴∠OEC=∠OCE , ∴OE=OC , 同理,OC=OF ,∴OE=OF .………………………………3分(2)当点O 运动到AC 中点处时,四边形AECF 是矩形. 如图AO=CO ,EO=FO ,∴四边形AECF 为平行四边形, ∵CE 平分∠ACB ,∴∠ACE=21∠ACB , 同理,∠ACF=21∠ACG ,∴∠ECF=∠ACE+∠ACF=21(∠ACB+∠ACG )=21×180°=90°,∴四边形AECF 是矩形.………………………………6分(3)△ABC 是直角三角形 ∵四边形AECF 是正方形, ∴AC ⊥EN ,故∠AOM=90°, ∵MN ∥BC ,∴∠BCA=∠AOM , ∴∠BCA=90°,∴△ABC 是直角三角形………………………………9分25.解:BM+DN=MN 成立.理由如下: 如图,把△ADN 绕点A 顺时针旋转90°,得到△ABE ,则可证得E 、B 、M 三点共线. ∴∠EAM=90°-∠NAM=90°-45°=45°. 又∵∠NAM=45°,∴在△AEM 与△ANM 中,∵⎪⎩⎪⎨⎧=∠=∠=AM AM NAM EAM AN AE ∴△AEM ≌△ANM (SAS ) ∴ME=MN.∵ME=BE+BM=DN+BM ,∴DN+BM=MN ;………………………………6分 (2)DN-BM=MN .在线段DN 上截取DQ=BM , 在△AMN 和△AQN 中,∵⎪⎩⎪⎨⎧=∠=∠=AN AN MAN QAN AM AQ ∴△AMN ≌△AQN (SAS ) ∴MN=QN ,∴DN-BM=MN .………………………………12分。
2015-2016学年新人教版九年级(上)月考数学试卷及答案(10月份)

2015-2016学年九年级(上)月考数学试卷(10月份)一、选择题(本大题共10小题,每小题3分,共30分)每小题只有一个正确选项,把正确选项的代号填在题后的括号内.1.把方程x(x+2)=5(x﹣2)化成一般式,则a、b、c的值分别是()A.1,﹣3,10 B.1,7,﹣10 C.1,﹣5,12 D.1,3,22.方程3x=x2的解是()A.x=3 B.C.x 1=3,x2=0 D.x=03.8x2﹣(k﹣1)x﹣k﹣7=0的一个根为零,则k=()A.﹣1 B.C.4 D.﹣74.若方程2x2﹣5x+m=0有两个相等实数根,则m=()A.﹣2 B.0 C.2 D.5.用配方法解下列方程时,配方错误的是()A.x2+2x﹣99=0化为(x+1)2=100B.2x2﹣7x﹣4=0化为C.x2+8x+9=0化为(x+4)2=25D.3x2﹣4x﹣2=0化为6.下列关系式中,属于二次函数的是(x为自变量)()A.y=x2B.y=C.y=D.y=a2x27.用换元法解方程(x2+x)(x2+x﹣1)=6,如果设x2+x=y,则原方程可变形为()A.y2+y﹣6=0 B.y2﹣y﹣6=0 C.y2﹣y+6=0 D.y2﹣y﹣6=08.某商品原价200元,连续两次降价a%后售价为148元,下列所列方程正确的是()A.200(1+a%)2=148 B.200(1﹣a%)2=148 C.200(1﹣2a%)=148 D.200(1﹣a2%)=1489.某校组织初中一年级各班同学进行足球赛,实行单循环赛制,结果总共进行了21场比赛,则初中一年级班级数为()A.6 B.7 C.8 D.910.已知α,β是方程x2+2013x+1=0的两个根,则(1+2014a+a2)(1+2014β+β2)的值为()A.1 B.2 C.3 D.4二、填空题(本大题共6小题,每小题3分,共18分)11.关于x的方程(m﹣2)﹣x+3=0是一元二次方程,则m= .12.在实数内定义一种运算“*”,其定义为a*b=a2﹣b2,根据这个定义,(x+3)*5=0的解为.13.关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个实数根,则k的取值范围是.14.若两个连续自然数的积是30,则这两个数是.15.已知x1,x2是方程x2=2x+1的两个根,则的值是.16.如图所示,某小区规划在一个长为40m、宽为26m的矩形场地ABCD上修建三条同样宽的甬路,使其中两条与AB平行,另一条与AD平行,其余部分种草.若使所有草坪的面积和为864m2,求甬路的宽度.若设甬路的宽度为xm,则x满足的方程为.三、解方程(本大题共1小题,每小题20分,共20分)17.(1)x2﹣3x=﹣1(配方法);(2)2x2+7x﹣4=0;(3)3(x﹣2)2=x(x﹣2);(4)(y+2)2=(3y﹣1)2.四、解答题(本大题共6小题,共52分)18.已知关于x的一元二次方程x2+(k+3)x+k=0的一个根是x=﹣2,求k的值以及方程的另一根.19.方程x2﹣9x+18=0的两个根分别是等腰三角形的底和腰长,求这个三角形的周长.20.已知a、b均为实数,且,则求ax2﹣bx﹣3=0的根.21.在一幅长8分米,宽6分米的矩形风景画(如图①)的四周镶宽度相同的金色纸边,制成一幅矩形挂图(如图②).如果要使整个挂图的面积是80平方分米,求金色纸边的宽.22.已知x的一元二次方程x2+2(k﹣2)x+k2+4=0有两个实数根,设它的两个根分别为x1、x2.(1)求k的取值范围.(2)若x1、x2满足x1x2﹣(x1+x2)=3,求k的值.23.某商场2014年7月份的营业额为180万元,9月份的营业额达到304.2万元,7月份到9月份的月平均增长率相等.(1)求7月份到9月份的月平均增长率?(2)按照此增长速率,10月份的营业额预计达到多少?2015-2016学年九年级(上)月考数学试卷(10月份)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)每小题只有一个正确选项,把正确选项的代号填在题后的括号内.1.把方程x(x+2)=5(x﹣2)化成一般式,则a、b、c的值分别是()A.1,﹣3,10 B.1,7,﹣10 C.1,﹣5,12 D.1,3,2考点:一元二次方程的一般形式.专题:压轴题;推理填空题.分析: a、b、c分别指的是一元二次方程的一般式中的二次项系数、一次项系数、常数项.解答:解:由方程x(x+2)=5(x﹣2),得x2﹣3x+10=0,∴a、b、c的值分别是1、﹣3、10;故选A.点评:本题考查了一元二次方程的一般形式.一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.2.方程3x=x2的解是()A.x=3 B.C.x 1=3,x2=0 D.x=0考点:解一元二次方程-因式分解法.分析:方程3x=x2的变形成x(x﹣3)=0,即可转化成两个一元一次方程,从而求解.解答:解:移项,得:x2﹣3x=0,即x(x﹣3)=0,则x1=3,x2=0.故选C.点评:本题考查了利用因式分解法解方程,基本思路是依据两个式子的乘积是0,则至少有一个是0转化成一元一次方程.3.8x2﹣(k﹣1)x﹣k﹣7=0的一个根为零,则k=()A.﹣1 B.C.4 D.﹣7考点:一元二次方程的解;一元二次方程的定义.专题:方程思想.分析:把x=0代入方程中,就可以求出k的值.解答:解:∵方程8x2﹣(k﹣1)x﹣k﹣7=0的一个根为0,∴把x=0代入此方程有:﹣k﹣7=0,k=﹣7.故本题选D.点评:本题考查的是一元二次方程的根,把方程的根代入方程就可以求出字母系数k的值.4.若方程2x2﹣5x+m=0有两个相等实数根,则m=()A.﹣2 B.0 C.2 D.考点:根的判别式.专题:计算题.分析:由方程2x2﹣5x+m=0有两个相等实数根,则△=0,得到关于m的方程,解方程即可.解答:解:根据题意得,△=52﹣4×2m=0,∴m=.故选D.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时考查了不等式的解法.5.用配方法解下列方程时,配方错误的是()A.x2+2x﹣99=0化为(x+1)2=100B.2x2﹣7x﹣4=0化为C.x2+8x+9=0化为(x+4)2=25D.3x2﹣4x﹣2=0化为考点:解一元二次方程-配方法.分析:根据配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方分别进行配方,即可求出答案.解答:解:A、由原方程,得x2+2x=99,等式的两边同时加上一次项系数2的一半的平方1,得(x+1)2=100;故本选项正确;B、由原方程,得2x2﹣7x=4,等式的两边同时加上一次项系数﹣7的一半的平方,得,(x﹣)2=,故本选项正确;C、由原方程,得x2+8x=﹣9,等式的两边同时加上一次项系数8的一半的平方16,得(x+4)2=7;故本选项错误;D、由原方程,得3x2﹣4x=2,化二次项系数为1,得x2﹣x=等式的两边同时加上一次项系数﹣的一半的平方,得;故本选项正确.故选C.点评:此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.6.下列关系式中,属于二次函数的是(x为自变量)()A.y=x2B.y=C.y=D.y=a2x2考点:二次函数的定义.分析:根据二次函数的定义判定即可.解答:解:A、y=x2,是二次函数,正确;B、y=,被开方数含自变量,不是二次函数,错误;C、y=,分母中含自变量,不是二次函数,错误;D、a=0时,a2=0,不是二次函数,错误.故选A.点评:本题考查二次函数的定义.7.用换元法解方程(x2+x)(x2+x﹣1)=6,如果设x2+x=y,则原方程可变形为()A.y2+y﹣6=0 B.y2﹣y﹣6=0 C.y2﹣y+6=0 D.y2﹣y﹣6=0考点:换元法解一元二次方程.分析:用y代替方程中(x2+x),然后将其整理为一般式方程即可.解答:解:依题意得:y(y﹣1)=6,整理,得y2﹣y﹣6=0.故选:B.点评:本题主要考查了换元法,即把某个式子看作一个整体,用一个字母去代替它,实行等量替换.8.某商品原价200元,连续两次降价a%后售价为148元,下列所列方程正确的是()A.200(1+a%)2=148 B.200(1﹣a%)2=148 C.200(1﹣2a%)=148 D.200(1﹣a2%)=148考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:主要考查增长率问题,本题可用降价后的价格=降价前的价格×(1﹣降价率),首先用x表示两次降价后的售价,然后由题意可列出方程.解答:解:依题意得两次降价后的售价为200(1﹣a%)2,∴200(1﹣a%)2=148.故选:B.点评:增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.9.某校组织初中一年级各班同学进行足球赛,实行单循环赛制,结果总共进行了21场比赛,则初中一年级班级数为()A.6 B.7 C.8 D.9考点:一元二次方程的应用.分析:赛制为单循环形式(每两队之间都赛一场),x个球队比赛总场数=,即可列方程求解.解答:解:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,x(x﹣1)=21,解得:x1=7,x2=﹣6(舍去),故应邀请7个球队参加比赛.故选:B.点评:本题考查了一元二次方程的应用,解决本题的关键是读懂题意,得到总场数的等量关系.10.已知α,β是方程x2+2013x+1=0的两个根,则(1+2014a+a2)(1+2014β+β2)的值为()A.1 B.2 C.3 D.4考点:根与系数的关系;一元二次方程的解.分析:由α,β是方程x2+2013x+1=0的两个根,根据根与系数的关系,可得αβ=1,由一元二次方程的根的定义,可得α2+2013α+1=0,β2+2013β+1=0,继而求得答案.解答:解:∵α,β是方程x2+2013x+1=0的两个根,∴α2+2013α+1=0,β2+2013β+1=0,αβ=1,∴(1+2014a+a2)(1+2014β+β2)=[(1+2013a+a2)+α][(1+2013β+β2)+β]=αβ=1.故选A.点评:此题考查了根与系数的关系以及一元二次方程的解.注意x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)(2013秋•镇康县校级期中)关于x的方程(m﹣2)﹣x+3=0是一元二次方程,则m= ﹣2 .考点:一元二次方程的定义.分析:根据一元二次方程的定义知,m2﹣2=2,且m﹣2≠0,据此可以求得m的值.解答:解:∵关于x的方程(m﹣2)﹣x+3=0是一元二次方程,∴m2﹣2=2,且m﹣2≠0,解得,m=﹣2;故答案是:﹣2.点评:本题考查了一元二次方程的定义.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.12.在实数内定义一种运算“*”,其定义为a*b=a2﹣b2,根据这个定义,(x+3)*5=0的解为﹣8或2 .考点:解一元二次方程-因式分解法;解一元二次方程-公式法.专题:新定义.分析:将a=x+3,b=5代入公式a*b=a2﹣b2进行计算即可.解答:解:∵(x+3)*5=(x+3)2﹣25,∴(x+3)2﹣25=0,∴x+3=±5,∴x=﹣8或2,故答案为﹣8或2.点评:本题是一道新定义的题目,考查了一元二次方程的解法,是基础知识比较简单.13.关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个实数根,则k的取值范围是k≥﹣且k≠0 .考点:根的判别式.分析:在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有两个实数根下必须满足△=b2﹣4ac≥0.解答:解:根据题意列出方程组,解得k≥﹣且k≠0.点评:本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.14.若两个连续自然数的积是30,则这两个数是5和6 .考点:一元二次方程的应用.专题:数字问题.分析:根据连续自然数相差1,设出较小的自然数为x,则较大自然数为x+1,根据两个连续自然数之积是30列出关于x的方程,求出方程的解即可得到x的值,进而确定出连续的两个自然数.解答:解:设两个连续的自然数分别为x,x+1,(x>0),由题意得:x(x+1)=30,即x2+x﹣30=0,因式分解得:(x﹣5)(x+6)=0,可得x﹣5=0或x+6=0,解得:x1=5,x2=﹣6(舍去),则这两个数是5和6.故答案为:5和6点评:此题考查了一元二次方程的应用,其中弄清题意,列出相应的方程是解本题的关键.15.已知x1,x2是方程x2=2x+1的两个根,则的值是﹣2 .考点:根与系数的关系.分析:先把方程化为一般式,再根据根与系数的关系得到x1+x2=2,x1x2=﹣1,然后把通分得到,再利用整体代入的方法计算.解答:解:方程化为一般式x2﹣2x﹣1=0,根据题意得x1+x2=2,x1x2=﹣1,所以===﹣2.故答案为﹣2.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.16.如图所示,某小区规划在一个长为40m、宽为26m的矩形场地ABCD上修建三条同样宽的甬路,使其中两条与AB平行,另一条与AD平行,其余部分种草.若使所有草坪的面积和为864m2,求甬路的宽度.若设甬路的宽度为xm,则x满足的方程为(40﹣2x)(26﹣x)=864 .考点:由实际问题抽象出一元二次方程.专题:几何图形问题.分析:把甬道移到小区的上边及左边,根据草坪的面积得到相应的等量关系即可.解答:解:草坪可整理为一个矩形,长为40﹣2x,宽为26﹣x,即列的方程为(40﹣2x)(26﹣x)=864,故答案为(40﹣2x)(26﹣x)=864.点评:考查列一元二次方程;得到草坪的形状及相应的边长是解决本题的突破点.三、解方程(本大题共1小题,每小题20分,共20分)17.(1)x2﹣3x=﹣1(配方法);(2)2x2+7x﹣4=0;(3)3(x﹣2)2=x(x﹣2);(4)(y+2)2=(3y﹣1)2.考点:解一元二次方程-因式分解法;解一元二次方程-配方法.分析:(1)利用配方法,首先方程两边同加上一次项系数一半的平方,再开方求解即可求得答案;(2)利用十字相乘法求解,即可求得答案;(3)首先移项,提取公因式(x﹣2),即可利用因式分解的方法求解;(4)移项,利用平方差公式分解因式,继而求得答案.解答:解:(1)∵x2﹣3x=﹣1,∴x2﹣3x+=﹣1+,∴(x﹣)2=,∴x﹣=±,∴x1=,x2=;(2)∵2x2+7x﹣4=0,∴(2x﹣1)(x+4)=0,∴2x﹣1=0或x+4=0,解得:x1=,x2=﹣4;(3)∵3(x﹣2)2=x(x﹣2),∴3(x﹣2)2﹣x(x﹣2)=0,∴(x﹣2)(3x﹣6﹣x)=0,∴x﹣2=0或3x﹣6﹣x=0,解得:x1=2,x2=3;(4)∵(y+2)2=(3y﹣1)2,∴(y+2)2﹣(3y﹣1)2=0,∴(y+2+3y﹣1)(y+2﹣3y+1)=0,∴y+2+3y﹣1=0或y+2﹣3y+1=0,解得:y1=﹣,y2=.点评:此题考查了一元二次方程的解法.注意准确选择解方程的方法是关键.四、解答题(本大题共6小题,共52分)18.已知关于x的一元二次方程x2+(k+3)x+k=0的一个根是x=﹣2,求k的值以及方程的另一根.考点:根与系数的关系;一元二次方程的解.专题:计算题.分析:根据一元二次方程的解的定义把x=﹣2代入方程可得到关于k的一次方程,求出k=﹣2,然后利用根与系数的关系求出另一根.解答:解:把x=﹣2代入原方程得4﹣2(k+3)+k=0,解得k=﹣2,所以原方程为x2+x﹣2=0,设方程另一个根为t,则t+(﹣2)=﹣1,解得t=1,即k的值为﹣2,方程的另一根为1.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.也考查了一元二次方程的解.19.方程x2﹣9x+18=0的两个根分别是等腰三角形的底和腰长,求这个三角形的周长.考点:解一元二次方程-因式分解法;三角形三边关系;等腰三角形的性质.专题:计算题.分析:利用因式分解法解方程得到x1=3,x2=6,然后分类讨论:当3和3为腰时,底边为6时不符合三角形三边的关系,舍去;当腰为6,底边为3时,根据三角形周长定义计算.解答:解:(x﹣3)(x﹣6)=0,x﹣3=0或x﹣6=0,所以x1=3,x2=6,当3和3为腰时,底边为6,3+3=6,不符合三角形三边的关系,舍去;当腰为6,底边为3时,三角形的周长=6+6+3=15.点评:本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了三角形三边的关系.20.已知a、b均为实数,且,则求ax2﹣bx﹣3=0的根.考点:解一元二次方程-因式分解法;非负数的性质:偶次方;非负数的性质:算术平方根.专题:计算题.分析:根据非负数的性质得到a﹣1=0,2a+b=0,解得a=1,b=﹣2,则方程ax2﹣bx﹣3=0变形为x2+2x﹣3=0,然后利用因式分解法解方程.解答:解:∵,∴a﹣1=0,2a+b=0,∴a=1,b=﹣2,∴方程ax2﹣bx﹣3=0变形为x2+2x﹣3=0,(x+3)(x﹣1)=0,x+3=0或x﹣1=0,所以x1=﹣3,x2=1.点评:本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了非负数的性质.21.在一幅长8分米,宽6分米的矩形风景画(如图①)的四周镶宽度相同的金色纸边,制成一幅矩形挂图(如图②).如果要使整个挂图的面积是80平方分米,求金色纸边的宽.考点:一元二次方程的应用.专题:几何图形问题.分析:设金色纸边的宽为x分米,则矩形挂图的长为(2x+8)分米,宽为(2x+6)分米,根据等量关系:矩形挂图的长×宽=80,列出方程,从而可求出解.解答:解:设金色纸边的宽为x分米,根据题意,得(2x+6)(2x+8)=80.整理得:x2+7x﹣8=0,∴(x﹣1)(x+8)=0,解得:x1=1,x2=﹣8(不合题意,舍去).答:金色纸边的宽为1分米.点评:对于面积问题,图形的面积公式一般是这类问题的等量关系,是列方程的依据,应熟记各类图形的面积公式.22.已知x的一元二次方程x2+2(k﹣2)x+k2+4=0有两个实数根,设它的两个根分别为x1、x2.(1)求k的取值范围.(2)若x1、x2满足x1x2﹣(x1+x2)=3,求k的值.考点:根的判别式;根与系数的关系.分析:(1)根据判别式的意义得到△=4(k﹣2)2﹣4(k2+4)=﹣16k≥0,然后解不等式即可;(2)根据根与系数的关系得到得x1+x2=﹣2(k﹣2)=﹣2k+4,x1x2=k2+4,将两根之和和两根之积代入代数式求k的值即可.解答:解:(1)∵一元二次方程x2+2(k﹣2)x+k2+4=0有两个实数根,∴△=4(k﹣2)2﹣4(k2+4)=﹣16k≥0,∴k≤0;(2)∵一元二次方程x2+2(k﹣2)x+k2+4=0的两个根分别为x1、x2,∴x1+x2=﹣2(k﹣2)=﹣2k+4,x1x2=k2+4,∴x1x2﹣(x1+x2)=k2+4﹣(﹣2k+4)=k2+2k=3,解得:k1=﹣3,k2=1,∵k≤0,∴k=﹣3.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.23.某商场2014年7月份的营业额为180万元,9月份的营业额达到304.2万元,7月份到9月份的月平均增长率相等.(1)求7月份到9月份的月平均增长率?(2)按照此增长速率,10月份的营业额预计达到多少?考点:一元二次方程的应用.专题:增长率问题.分析:(1)设7月份到9月份的月平均增长率为x,由增长率问题的数量关系建立方程求出其解即可;(2)根据(1)求出的x的值由增长率问题就可以求出结论.解答:解:(1)设7月份到9月份的月平均增长率为x,根据题意可得:则180(1+x)2=304.2,(1+x)2=1.69,1+x=±1.3,x1=0.3=30%,x2=﹣2.3(不合题意,舍去).答:7月份到9月份的月平均增长率为30%;(2)10月份的营业额预计达到:304.2×(1+30%)=395.46(万元).答:10月份的营业额预计达到395.46万元.点评:本题考查了根据增长率问题的数量关系列一元二次方程解实际问题的运用,一元二次方程的解法的运用,解答时由增长率问题的数量关系建立方程是关键.。
九年级(上)第一次月考数学试卷(含答案)
九年级(上)第一次月考数学试卷一、选择题(每小题3分,共24分在下列各个小题中,均给出了四个答案,其中有且只有一个正确答案,将正确答案代号填入括号内)1.下列方程是一元二次方程的是()A. B.C. D.2.如果,则的值为()A. B. C. D.3.如右图所示,折叠矩形,使点落在边的点处,为折痕,已知,,则的长等于()A. B. C. D.4.一元二次方程的解是()A. B.C.,D.,5.若代数式与代数式的值相等,则的值是()A.或B.或C.或D.或6.方程的左边配成完全平方后所得方程为()A. B.C. D.以上答案都不对7.关于的一元二次方程的一根为,则的值是()A. B. C. D.8.三角形两边的长分别是和,第边的长是一元二次方程的一个实数根,则该三角形的周长是()A. B.或 C. D.或二、填空题(每小题3分,共24分)9.根据下列表格的对应值,判断(,,,为常数)的一个解的取值范围是________10.如图,中,∠,把绕点逆时针旋转,得,则∠的度数为________.11.已知是关于的方程的一个根,则________.12.方程的根是________.13.已知是方程的根,求的值为________.14.关于的方程有两个相等的实根,则________.15.已知是方程的一个根,则代数式的值是________.16.某种药品经过两次降价,由每盒元调至元,若设平均每次降价的百分率为,则由题意可列方程为________.三、解答题(第17-20题28分,21题8分24题8分,25题10分共54分)17.解方程:(配方法).18.解方程:.19.解方程:(分解因式法).20.解方程.21.如图,在中,∠,点从点开始沿边向点以的速度匀速移动,同时另一点由点开始以的速度沿着匀速移动,几秒时,的面积等于?22.如图,是一张边长为的正方形纸片,,分别为,的中点,沿过点的折痕将角翻折,使得点落在上的点′处,折痕交于点,则________.23.在方格中的位置如图所示.请在方格纸上建立平面直角坐标系,使得、两点的坐标分别为、.并求出点的坐标;作出关于横轴对称的,再作出以坐标原点为旋转中心、旋转后的,并写出,两点的坐标.四、解答题24.李大妈加盟了“红红”全国烧烤连锁店,该公司的宗旨是“薄利多销”,经市场调查发现,当羊肉串的单价定为角时,每天能卖出串,在此基础上,每加价角李大妈每天就会少卖出串,考虑了所有因素后李大妈的每串羊肉串的成本价为角,若李大妈每天销售这种羊肉串想获得利润是元,那么请问这种羊肉串应怎样定价?25.如图甲,在中,∠为锐角.点为射线上一动点,连接,以为一边且在的右侧作正方形.解答下列问题:如果,∠.①当点在线段上时(与点不重合),如图乙,线段、之间的位置关系为________,数量关系为________.②当点在线段的延长线上时,如图丙,①中的结论是否仍然成立,为什么?如果,∠,点在线段上运动.试探究:当满足一个什么条件时,(点、重合除外)?画出相应图形,并说明理由.(画图不写作法)26.阅读下面的例题,范例:解方程,解:当时,原方程化为,解得:,(不合题意,舍去).当时,原方程化为,解得:,(不合题意,舍去).∴原方程的根是,请参照例题解方程.答案1. 【答案】B【解析】本题根据一元二次方程的定义求解.一元二次方程必须满足三个条件:是整式方程;含有一个未知数,且未知数的最高次数是;二次项系数不为.以上三个条件必须同时成立,据此即可作出判断.【解答】解:、不是方程,错误;、符合一元二次方程的定义,正确;、原式可化为,是一元四次方程,错误;、是分式方程,错误.故选.2. 【答案】C【解析】先把原式的右边利用完全平方公式展开,再利用等式的对应项的系数相等可求.【解答】解:∵,∴,∴.故选.3. 【答案】A【解析】由为折痕,可得,由矩形,可得,∠,设出的长,在直角三角形中利用勾股定理列出方程,通过解方程可得答案.【解答】解:设,则,∵矩形,∴,∠,∵为折痕,∴,中,,∴,解得.故选.4. 【答案】C【解析】观察发现方程的两边同时加后,左边是一个完全平方式,即,即原题转化为求的平方根.【解答】解:移项得:,∴,即,.故选:.5. 【答案】B【解析】由两个代数式的值相等,可以列出一个一元二次方程,分析方程的特点,用分组分解法进行因式分解,求出方程的两个根.【解答】解:因为这两个代数式的值相等,所以有:,,,或,∴或.故选.6. 【答案】A【解析】把方程变形得到,方程两边同时加上一次项的系数一半的平方,两边同时加上即可.【解答】解:∵∴∴∴.故选.7. 【答案】A【解析】根据一元二次方程解的定义把代入方程求,然后根据一元二次方程的定义确定满足条件的的值.【解答】解:把代入方程得,解得,而,所以.故选.8. 【答案】C【解析】由于第边的长是一元二次方程的一个实数根,那么求出方程的根就可以求出三角形的周长.【解答】解:∵,∴,∴或,当时,三角形的三边分别为、和,∴该三角形的周长是;当时,三角形的三边分别为、和,而,∴三角形不成立.故三角形的周长为.故选.9. 【答案】【解析】根据上面的表格,可得二次函数的图象与轴的交点坐标即为方程的解,当时,;当时,;则二次函数的图象与轴的交点的横坐标应在和之间.【解答】解:∵当时,;当时,;∴方程的一个解的范围是:.故答案为:.10. 【答案】【解析】直接利用旋转的性质求解.【解答】解:∵绕点逆时针旋转,得,∴∠.故答案为.11. 【答案】【解析】根据一元二次方程解的定义把代入得到关于的方程,然后解关于的方程即可.【解答】解:把代入得,解得.故答案为.12. 【答案】或【解析】原方程的左边是两个一次因式乘积的形式,而方程的右边为,可令每个一次因式的值为,得到两个一元一次方程,解这两个一元一次方程即可求出原方程的解.【解答】解:,或,解得或.13. 【答案】【解析】把方程的解代入方程,两边同时除以,可以求出代数式的值.【解答】解:把代入方程有:两边同时除以有:.故答案是:.14. 【答案】【解析】由方程有两个相等的实数根结合根的判别式即可得出关于的一元二次方程,解方程即可得出结论.【解答】解:∵方程有两个相等的实根,∴,解得:.故答案为:.15. 【答案】【解析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.【解答】解:把代入方程,得到,所以.故本题答案为.16. 【答案】【解析】本题可设平均每次降价的百分率是,则第一次降价后药价为元,第二次在元的基础之又降低,变为即元,进而可列出方程,求出答案.【解答】解:设平均每次降价的百分率是,则第二次降价后的价格为元,根据题意得:,故答案为:.17. 【答案】解:∵,,即,∴,∴,.【解析】先移项得到,再把方程两边加上得到,即,然后利用直接开平方法求解.【解答】解:∵,,即,∴,∴,.18. 【答案】解:由原方程,得,∴,∴,或解得,,或.【解析】将原方程转化为一般形式,然后利用因式分解法解方程即可.【解答】解:由原方程,得,∴,∴,或解得,,或.19. 【答案】解:∵,∴,∴,∴,∴或,∴,.【解析】先移项,然后利用平方差公式分解因式,这样转化为两个一元一次方程,解一元一次方程即可.【解答】解:∵,∴,∴,∴,∴或,∴,.20. 【答案】解:,则有,∴;解得,或;①当时,;②当时,.【解析】设,则原方程变为,然后解关于的方程,最后再来求的值.【解答】解:,则有,∴;解得,或;①当时,;②当时,.21. 【答案】解:设秒后,的面积等于平方米,或.∵,∴应舍去,所以当秒时面积平方米.【解析】根据勾股定理先求出的长,然后根据运动速度,设秒后,的面积等于平方米,从而可列方程求解.【解答】解:设秒后,的面积等于平方米,或.∵,∴应舍去,所以当秒时面积平方米.22. 【答案】【解析】由是一张边长为的正方形纸片,,分别为,的中点,可得,,由翻折可得′,′,在′与′中,利用勾股定理可求得答案.【解答】解:∵是一张边长为的正方形纸片,、分别为,的中点,∴,,为折痕,∴′,′,′中,′′,∴′,′中,设,则′,∴′,解得.故答案为:.23. 【答案】解:坐标系如图所示,;; ,如图所示,,.【解析】根据已知点的坐标,画出坐标系,由坐标系确定点坐标;; 由轴对称性画,由关于原点中心对称性画,可确定写出,两点的坐标.【解答】解:坐标系如图所示,;; ,如图所示,,.24. 【答案】解:设这种羊肉串定价为角,,化简得:,解得:(舍去),,故这种羊肉串应定价为角.【解析】设这种羊肉串定价为角,根据当羊肉串的单价定为角时,每天能卖出串,在此基础上,每加价角李大妈每天就会少卖出串,考虑了所有因素后李大妈的每串羊肉串的成本价为角,若李大妈每天销售这种羊肉串想获得利润是元,可列方程求解.【解答】解:设这种羊肉串定价为角,,化简得:,解得:(舍去),,故这种羊肉串应定价为角.25. 【答案】垂直,相等; 当∠时,(如图).理由:过点作交的延长线于点,则∠,∵∠,∠∠,∴∠,∴∠∠,∴,在与中,∠∠,∴,∴∠∠,∠∠∠,即.【解析】①根据正方形的性质得到∠∠,推出,根据全等三角形的性质即可得到结论;②由正方形的性质可推出,根据全等三角形的性质得到,∠∠,根据余角的性质即可得到结论;; 过点作交或的延长线于点,于是得到∠,可推出∠∠,证得,根据的结论于是得到结果.【解答】解:①正方形中,,∵∠∠,∴∠∠,在与中,∠∠,∴,∴,∠∠,∴∠∠,即;; 当∠时,(如图).理由:过点作交的延长线于点,则∠,∵∠,∠∠,∴∠,∴∠∠,∴,在与中,∠∠,∴,∴∠∠,∠∠∠,即.26. 【答案】解:,当时,原方程化为,解得:,(不合题意,舍去).; 当时,原方程化为,解得:,(不合题意,舍去).故原方程的根是,.【解析】分为两种情况:当时,原方程化为,; 当时,原方程化为,求出方程的解即可.【解答】解:,当时,原方程化为,解得:,(不合题意,舍去).; 当时,原方程化为,解得:,(不合题意,舍去).故原方程的根是,.。
20150926九年级上第一次月考数学试卷附答案
九年级上学期第一次月考数学试卷一、选择题(本题共8个小题,每小题3分,共24分)1.(3分)下列方程中,关于x的一元二次方程是()A.x2+2x=x2﹣1 B.C.a x2+bx+c=0 D.3(x+1)2=2(x+1)2.(3分)如图,AB是⊙O直径,∠AOC=130°,则∠D=()A.65°B.25°C.15°D.35°3.(3分)如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6B.5C.4D.34.(3分)如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于()A.20°B.25°C.40°D.50°5.(3分)已知x1,x2是一元二次方程x2﹣4x+1=0的两个实数根,则x1•x2等于()A.﹣4 B.﹣1 C.1D.46.(3分)在△ABC中,O为内心,∠A=70°,则∠BOC=()A.140°B.135°C.130°D.125°7.(3分)下列语句:①相等的圆周角所对的弧是等弧;②经过三个点一定可以作一个圆;③等腰直角三角形的外心不在这个三角形顶角的角平分线上;④等边三角形的内心到三角形三个顶点的距离相等,正确的个数为()A.1B.2C.3D.48.(3分)已知Rt△ABC中,∠C=90°,AC=3,BC=4,以C为圆心,r为半径的圆与边AB 有两个交点,则r的取值范围是()A.r=B.r>C.3<r<4 D.二、填空题(本题共10个小题,每小题3分,共30分)9.(3分)已知关于x的方程x2+mx﹣6=0的一个根为2,则m=.10.(3分)已知圆O的直径为6,点M到圆心O的距离为4,则点M与⊙O的位置关系是.11.(3分)如图,⊙O的半径为3,P是CB延长线上一点,PO=5,PA切⊙O于A点,则PA=.12.(3分)如图,AD是正五边形ABCDE的一条对角线,则∠BAD=.13.(3分)如图,量角器上的C、D两点所表示的读数分别是80°、50°,则∠DBC的度数为.14.(3分)如图,AB是⊙O的直径,CB切⊙O于B,连接AC交⊙O于D,若BC=8cm,DO⊥AB,则⊙O的半径OA=cm.15.(3分)若α,β是方程x2﹣2x﹣1=0的两个实数根,则α2+β2=.16.(3分)如图,四边形ABCD内接于⊙O,若∠BOD=140°,则它的一个外角∠DCE=.17.(3分)如图,矩形ABCD的边AB过⊙O的圆心,E、F分别为AB、CD与⊙O的交点,若AE=3cm,AD=4cm,DF=5cm,则⊙O的直径等于.18.(3分)已知等腰直角三角形ABC的腰长为4,半圆的直径在△ABC的边上,且半圆的弧与△ABC的其他两边相切,则半圆的半径为.三、解答题(本题共10个小题,共96分,解答时应写出文字说明、证明过程或演算步骤)19.(8分)解下列方程:(1)x2﹣4x+8=0;(2)3x(x﹣1)=2(1﹣x).20.(8分)已知关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,求k的值.21.(8分)每位同学都能感受到日出时美丽的景色.右图是一位同学从照片上剪切下来的画面,“图上”太阳与海平线交于A﹑B两点,他测得“图上”圆的半径为5厘米,AB=8厘米,若从目前太阳所处位置到太阳完全跳出海面的时间为16分钟,求“图上”太阳升起的速度.22.(8分)如图,在⊙O中,半径OC垂直于弦AB,垂足为点E.若点D在⊙O的外且∠DAC=∠BAC,求证:直线AD是⊙O的切线.23.(10分)如图:已知P是半径为5cm的⊙O内一点.解答下列问题:(1)用尺规作图找出圆心O的位置.(要求:保留所有的作图痕迹,不写作法)(2)用三角板分别画出过点P的最长弦AB和最短弦CD.(3)已知OP=3cm,过点P的弦中,长度为整数的弦共有条.24.(10分)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均的每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为万元.(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率x.25.(10分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D点,连接CD.(1)求证:∠A=∠BCD;(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由.26.(10分)已知关于x的方程x2﹣(2m+1)x+m2+m=0.(1)用含m的代数式表示这个方程的实数根.(2)若Rt△ABC的两边a、b恰好是这个方程的两根,另一边长c=5,求m的值.27.(12分)如图1,AB是圆O的直径,点C在AB的延长线上,AB=4,BC=2,P是圆O 上半部分的一个动点,连接OP,CP.(1)求△OPC的最大面积;(2)求∠OCP的最大度数;设∠OCP=α,当线段CP与圆O只有一个公共点(即P点)时,求α的范围(直接写出答案);(3)如图2,延长PO交圆O于点D,连接DB,当CP=DB,求证:CP是圆O的切线.28.(12分)阅读材料:已知,如图(1),在面积为S的△ABC中,BC=a,AC=b,AB=c,内切圆O的半径为r.连接OA、OB、OC,△ABC被划分为三个小三角形.∵S=S△OBC+S△OAC+S△OAB=BC•r+AC•r+AB•r=(a+b+c)r.∴r=.(1)类比推理:若面积为S的四边形ABCD存在内切圆(与各边都相切的圆),如图(2),各边长分别为AB=a,BC=b,CD=c,AD=d,求四边形的内切圆半径r;(2)理解应用:如图(3),在四边形ABCD中,⊙O1与⊙O2分别为△ABD与△BCD的内切圆,⊙O1与△ABD切点分别为E、F、G,设它们的半径分别为r1和r2,若∠ADB=90°,AE=4,BC+CD=10,S△DBC=9,r2=1,求r1的值.参考答案与试题解析一、选择题(本题共8个小题,每小题3分,共24分)1.(3分)下列方程中,关于x的一元二次方程是()A.x2+2x=x2﹣1 B.C.a x2+bx+c=0 D.3(x+1)2=2(x+1)考点:一元二次方程的定义.分析:本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.解答:解:A、原方程可化为:2x+1=0,是一元一次方程,错误;B、是分式方程,错误;C、方程二次项系数可能为0,错误;D、原方程可化为:3x2+4x+1=0,符合一元二次方程定义,正确.故选D.点评:本题考查了一元二次方程的概念,解答时要先观察方程特点,再依据以上四个方面的要求进行有针对性的判断.2.(3分)如图,AB是⊙O直径,∠AOC=130°,则∠D=()A.65°B.25°C.15°D.35°考点:圆周角定理.专题:压轴题.分析:先根据邻补角的定义求出∠BOC,再利用圆周角定理求解.解答:解:∵∠AOC=130°,∴∠BOC=180°﹣∠AOC=180°﹣130°=50°,∴∠D=×50°=25°.故选B.点评:本题利用了圆周角定理和邻补角的概念求解.3.(3分)如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6B.5C.4D.3考点:垂径定理;勾股定理.分析:过O作OC⊥AB于C,根据垂径定理求出AC,根据勾股定理求出OC即可.解答:解:过O作OC⊥AB于C,∵OC过O,∴AC=BC=AB=12,在Rt△AOC中,由勾股定理得:OC==5.故选:B.点评:本题考查了垂径定理和勾股定理的应用,关键是求出OC的长.4.(3分)如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于()A.20°B.25°C.40°D.50°考点:切线的性质;圆心角、弧、弦的关系.专题:几何图形问题.分析:连接OA,根据切线的性质,即可求得∠C的度数.解答:解:如图,连接OA,∵AC是⊙O的切线,∴∠OAC=90°,∵OA=OB,∴∠B=∠OAB=25°,∴∠AOC=50°,∴∠C=40°.故选:C.点评:本题考查了圆的切线性质,以及等腰三角形的性质,已知切线时常用的辅助线是连接圆心与切点.5.(3分)已知x1,x2是一元二次方程x2﹣4x+1=0的两个实数根,则x1•x2等于()A.﹣4 B.﹣1 C.1D.4考点:根与系数的关系.专题:计算题.分析:直接根据根与系数的关系求解.解答:解:根据韦达定理得x1•x2=1.故选:C.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.6.(3分)在△ABC中,O为内心,∠A=70°,则∠BOC=()A.140°B.135°C.130°D.125°考点:三角形的内切圆与内心.分析:根据三角形的内角和定理求出∠ABC+∠ACB的度数,根据三角形的内心,求出∠OBC+∠OCB=(∠ABC+∠ACB),代入求出∠OBC+∠OCB,根据三角形的内角和定理求出∠BOC即可.解答:解:∵∠A=70°,∴∠ABC+∠ACB=180°﹣∠A=110°,∵点O是△ABC的内心,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=125°.故选D.点评:本题考查了三角形的内角和定理,三角形的内心,角平分线定义等知识点的应用,关键是求出∠OBC+∠OCB的度数,题目比较典型,主要训练了学生的推理能力和计算能力.7.(3分)下列语句:①相等的圆周角所对的弧是等弧;②经过三个点一定可以作一个圆;③等腰直角三角形的外心不在这个三角形顶角的角平分线上;④等边三角形的内心到三角形三个顶点的距离相等,正确的个数为()A.1B.2C.3D.4考点:圆周角定理;确定圆的条件;三角形的外接圆与外心;三角形的内切圆与内心.分析:由圆周角定理,可得在同圆或等圆中,相等的圆周角所对的弧是等弧;由确定三角形的条件可知经过不在同一直线上三个点一定可以作一个圆;由三角形的外心与内心的知识可知等腰直角三角形的外心在这个三角形顶角的角平分线上,等边三角形的内心到三角形三个顶点的距离相等.解答:解:①在同圆或等圆中,相等的圆周角所对的弧是等弧,故错误;②经过不在同一直线上三个点一定可以作一个圆;故错误;③等腰直角三角形的外心在这个三角形顶角的角平分线上;故错误;④等边三角形的内心到三角形三个顶点的距离相等;正确.故选A.点评:此题考查了圆周角定理、确定圆的条件以及三角形外心与外心的知识.此题难度不大,注意熟记定理是解此题的关键.8.(3分)已知Rt△ABC中,∠C=90°,AC=3,BC=4,以C为圆心,r为半径的圆与边AB 有两个交点,则r的取值范围是()A.r=B.r>C.3<r<4 D.考点:直线与圆的位置关系.分析:要使圆与斜边AB有两个交点,则应满足直线和圆相交,且半径不大于AC.要保证相交,只需求得相切时,圆心到斜边的距离,即斜边上的高即可.解答:解:如图,∵BC>AC,∴以C为圆心,R为半径所作的圆与斜边AB有两个交点,则圆的半径应大于CD,小于或等于AC,由勾股定理知,AB==5.∵S△ABC=AC•BC=CD•AB=×3×4=×5•CD,∴CD=,即R的取值范围是<r≤3.故选D.点评:本题利用了勾股定理和垂线段最短的定理,以及直角三角形的面积公式求解.特别注意:圆与斜边有两个交点,即两个交点都应在斜边上.二、填空题(本题共10个小题,每小题3分,共30分)9.(3分)已知关于x的方程x2+mx﹣6=0的一个根为2,则m=1.考点:一元二次方程的解.分析:把x=2代入方程x2+mx﹣6=0得到一个关于m的一元一次方程,求出方程的解即可.解答:解:把x=2代入方程x2+mx﹣6=0,得:4+2m﹣6=0,解方程得:m=1.故答案为:1.点评:本题主要考查对解一元一次方程,等式的性质,一元二次方程的解等知识点的理解和掌握,能得到方程4+2m﹣6=0是解此题的关键.10.(3分)已知圆O的直径为6,点M到圆心O的距离为4,则点M与⊙O的位置关系是在圆外.考点:点与圆的位置关系.分析:要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;若设点到圆心的距离为d,圆的半径为r,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.解答:解:∵⊙O的直径为6,∴⊙O的半径为3,∵点M到圆心O的距离为4,∴4>3,∴点M在⊙O外.故答案为:在圆外.点评:本题考查了点与圆的位置关系的判断.解决此类题目的关键是首先确定点与圆心的距离,然后与半径进行比较,进而得出结论.11.(3分)如图,⊙O的半径为3,P是CB延长线上一点,PO=5,PA切⊙O于A点,则PA=4.考点:切线的性质;勾股定理.专题:计算题.分析:先根据切线的性质得到OA⊥PA,然后利用勾股定理计算PA的长.解答:解:∵PA切⊙O于A点,∴OA⊥PA,在Rt△OPA中,OP=5,OA=3,∴PA==4.故答案为:4.点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了勾股定理.12.(3分)如图,AD是正五边形ABCDE的一条对角线,则∠BAD=72°.考点:正多边形和圆.分析:利用多边形内角和公式求得∠E的度数,在等腰三角形AED中可求得∠EAD的读数,进而求得∠BAD的度数.解答:解:∵正五边形ABCDE的内角和为(5﹣2)×180°=540°,∴∠E=×540°=108°,∠BAE=108°又∵EA=ED,∴∠EAD=×(180°﹣108°)=36°,∴∠BAD=∠BAE﹣∠EAD=72°,故答案是:72°.点评:本题考查了正多边形的计算,重点掌握正多边形内角和公式是关键.13.(3分)如图,量角器上的C、D两点所表示的读数分别是80°、50°,则∠DBC的度数为15°.考点:圆周角定理.分析:首先连接OC,OD,即可求得∠COD的度数,又由圆周角定理,即可求得∠DBC 的度数.解答:解:连接OC,OD,∵量角器上的C、D两点所表示的读数分别是80°、50°,∴∠AOC=50°,∠AOD=80°,∴∠COD=∠AOD﹣∠AOC=30°,∴∠DBC=∠COD=15°.故答案为:15°.点评:此题考查了圆周角定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.14.(3分)如图,AB是⊙O的直径,CB切⊙O于B,连接AC交⊙O于D,若BC=8cm,DO⊥AB,则⊙O的半径OA=4cm.考点:切线的性质.分析:欲求OA,已知BC=8cm,则可根据等腰直角三角形转化未知边为已知,从而求解.解答:解:由切线的性质知BC⊥AB;∵DO⊥AB,∴OD∥BC,又∵O点为AB的中点,∴OD是△ABC的中位线,所以OA=OD=BC=4cm.点评:本题综合考查了切线的性质和三角形中位线的性质.15.(3分)若α,β是方程x2﹣2x﹣1=0的两个实数根,则α2+β2=6.考点:根与系数的关系.分析:欲求α2+β2的值,先把此代数式变形为(α+β)2﹣2αβ=22的形式,代入数值计算即可.解答:解:∵α,β是方程x2﹣2x﹣1=0的两个实数根,∴α+β=2,αβ=﹣1,∴α2+β2=(α+β)2﹣2αβ=22﹣2×(﹣1)=6.故答案为:6.点评:此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.16.(3分)如图,四边形ABCD内接于⊙O,若∠BOD=140°,则它的一个外角∠DCE=70°.考点:圆内接四边形的性质;圆周角定理.专题:探究型.分析:先根据圆周角定理求出∠BAD的度数,再由圆内接四边形的性质求出∠BCD的度数,由补角的定义即可得出结论.解答:解:∵∠BOD与∠BAD是同弧所对的圆心角与圆周角,∠BOD=140°,∴∠BAD=∠BOD=×140°=70°,∵四边形ABCD内接于⊙O,∴∠BCD=180°﹣∠BAD=180°﹣70°=110°,∵∠DCE+∠BCD=180°,∴∠DCE=180°﹣∠BCD=180°﹣110°=70°.故答案为:70°.点评:本题考查的是圆内接四边形的性质,即圆内接四边形的对角互补.17.(3分)如图,矩形ABCD的边AB过⊙O的圆心,E、F分别为AB、CD与⊙O的交点,若AE=3cm,AD=4cm,DF=5cm,则⊙O的直径等于10.考点:垂径定理;勾股定理;矩形的性质.分析:连接OF,作FG⊥AB于点G,则EG=DF﹣AE=5﹣3=2cm,设⊙O的半径是R,在直角△OFG中利用勾股定理即可得到一个关于R的方程,解方程求得半径,则圆的直径即可求解.解答:解:连接OF,作FG⊥AB于点G.则EG=DF﹣AE=5﹣3=2cm.设⊙O的半径是R,则OF=R,OG=R﹣2.在直角△OFG中,OF2=FG2+OG2,即R2=(R﹣2)2+42,解得:R=5.则直径是10cm.故答案是:10.点评:本题考查了勾股定理,正确作出辅助线是关键.18.(3分)已知等腰直角三角形ABC的腰长为4,半圆的直径在△ABC的边上,且半圆的弧与△ABC的其他两边相切,则半圆的半径为2或﹣4+.考点:切线的性质;等腰直角三角形.分析:有两种情况:①是直径在斜边上,首先连接OD,由切线的性质,易得OD⊥AB,即可得OD是△ABC的中位线,继而求得OD的长.②是直径在腰上,首先连接OD,由切线的性质,易得OD⊥BC,即可根据勾股定理求得OD的长.解答:解:①∵半圆的直径在△ABC的斜边上,且半圆的弧与△ABC的两腰相切,切点为D、E,如图,连接OD,OA,∵AB与⊙O相切,∴OD⊥AB,∵在等腰直角三角形ABC中,AB=AC=4,O为BC的中点,∴AO⊥BC,∴OD∥AC,∵O为BC的中点,∴OD=AC=2.②∵半圆的直径在△ABC的腰上,且半圆的弧与△ABC的斜边相切,切点为D,如图2,连接OD,设半圆的半径为r,∴OB=4﹣r,∵在等腰直角三角形ABC中,AB=AC=4,∴∠B=45°,∴△OBD是等腰直角三角形,∴OD=BD=r,∴2r2=(4﹣r)2,解得r=﹣4+4,r=﹣4﹣4(舍去),故答案为2或﹣4+4.点评:此题考查了切线的性质、切线长定理以及等腰直角三角形性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.三、解答题(本题共10个小题,共96分,解答时应写出文字说明、证明过程或演算步骤)19.(8分)解下列方程:(1)x2﹣4x+8=0;(2)3x(x﹣1)=2(1﹣x).考点:解一元二次方程-因式分解法;解一元二次方程-配方法.分析:(1)用直接开平方法解答;(2)用提公因式法解答.解答:解:(1)方程可化为(x﹣2)2=0,解得x1=x2=2;(2)移项得3x(x﹣1)﹣2(1﹣x)=0,提公因式得(3x+2)(x﹣1)=0,解得x1=﹣,x2=1.点评:本题考查了因式分解法和配方法解方程,根据式子的特点找到合适的方法是解题的关键.20.(8分)已知关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,求k的值.考点:根的判别式;一元二次方程的定义.分析:根据根的判别式令△=0,建立关于k的方程,解方程即可.解答:解:∵关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,∴△=0,∴[﹣(k﹣1)]2﹣4(k﹣1)×=0,整理得,k2﹣3k+2=0,即(k﹣1)(k﹣2)=0,解得:k=1(不符合一元二次方程定义,舍去)或k=2.∴k=2.点评:本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.21.(8分)每位同学都能感受到日出时美丽的景色.右图是一位同学从照片上剪切下来的画面,“图上”太阳与海平线交于A﹑B两点,他测得“图上”圆的半径为5厘米,AB=8厘米,若从目前太阳所处位置到太阳完全跳出海面的时间为16分钟,求“图上”太阳升起的速度.考点:垂径定理的应用;勾股定理.专题:探究型.分析:连接OA,过点O作OD⊥AB,由垂径定理求出AD的长,再根据勾股定理求出OD的长,进而可计算出太阳在海平线以下部分的高度,根据太阳从所处位置到完全跳出海平面的时间为16分钟即可得出结论.解答:解:连接OA,过点O作OD⊥AB,∵AB=8厘米,∴AD=AB=4厘米,∵OA=5厘米,∴OD==3厘米,∴海平线以下部分的高度=OA+OD=5+3=8(厘米),∵太阳从所处位置到完全跳出海平面的时间为16分钟,∴“图上”太阳升起的速度==0.5厘米/分钟.点评:本题考查的是垂径定理在实际生活中的运用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.22.(8分)如图,在⊙O中,半径OC垂直于弦AB,垂足为点E.若点D在⊙O的外且∠DAC=∠BAC,求证:直线AD是⊙O的切线.考点:切线的判定.专题:证明题.分析:首先得出∠OCA+∠CAE=90°,进而求出∠DAC+∠OAC=90°,即可得出答案.解答:证明:∵半径OC垂直于弦AB,∴∠OCA+∠CAE=90°,∵CO=OA,∴∠OCA=∠OAC,∵∠DAC=∠BAC,∴∠DAC+∠OAC=90°,∴OA⊥AD,即直线AD是⊙O的切线.点评:此题主要考查了切线的判定,得出∠DAC+∠OAC=90°是解题关键.23.(10分)如图:已知P是半径为5cm的⊙O内一点.解答下列问题:(1)用尺规作图找出圆心O的位置.(要求:保留所有的作图痕迹,不写作法)(2)用三角板分别画出过点P的最长弦AB和最短弦CD.(3)已知OP=3cm,过点P的弦中,长度为整数的弦共有4 条.考点:作图—复杂作图;勾股定理;垂径定理.分析:(1)利用过不在同一直线上的三点可以确定一个圆,进而求出即可;(2)利用最长弦AB即为直径和最短弦CD,即为与AB垂直的弦,进而得出答案;(3)求出CD的长,进而得出长度为整数的弦,注意长度为9cm,的有两条.解答:解:(1)如图所示:点O即为所求;(2)如图所示:AB,CD即为所求;(3)如图:连接DO,∵OP=3cm,DO=5cm,∴在Rt△OPD中,DP==4(cm),∴CD=8cm,∴过点P的弦中,长度为整数的弦共有:4条.故答案为:4.点评:此题主要考查了复杂作图以及勾股定理和垂径定理,注意长度为整数的弦不要漏解.24.(10分)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均的每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为2.6(1+x)2万元.(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率x.考点:一元二次方程的应用.专题:增长率问题.分析:(1)根据增长率问题由第1年的可变成本为2.6万元就可以表示出第二年的可变成本为2.6(1+x),则第三年的可变成本为2.6(1+x)2,故得出答案;(2)根据养殖成本=固定成本+可变成本建立方程求出其解即可.解答:解:(1)由题意,得第3年的可变成本为:2.6(1+x)2,故答案为:2.6(1+x)2;(2)由题意,得4+2.6(1+x)2=7.146,解得:x1=0.1,x2=﹣2.1(不合题意,舍去).答:可变成本平均每年增长的百分率为10%.点评:本题考查了增长率的问题关系的运用,列一元二次方程解实际问题的运用,一元二次方程的解法的运用,解答时根据增长率问题的数量关系建立方程是关键.25.(10分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D点,连接CD.(1)求证:∠A=∠BCD;(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由.考点:切线的判定.专题:几何综合题.分析:(1)根据圆周角定理可得∠ADC=90°,再根据直角三角形的性质可得∠A+∠DCA=90°,再由∠DCB+∠ACD=90°,可得∠DCB=∠A;(2)当MC=MD时,直线DM与⊙O相切,连接DO,根据等等边对等角可得∠1=∠2,∠4=∠3,再根据∠ACB=90°可得∠1+∠3=90°,进而证得直线DM与⊙O相切.解答:(1)证明:∵AC为直径,∴∠ADC=90°,∴∠A+∠DCA=90°,∵∠ACB=90°,∴∠DCB+∠ACD=90°,∴∠DCB=∠A;(2)当MC=MD(或点M是BC的中点)时,直线DM与⊙O相切;解:连接DO,∵DO=CO,∴∠1=∠2,∵DM=CM,∴∠4=∠3,∵∠2+∠4=90°,∴∠1+∠3=90°,∴直线DM与⊙O相切,故当MC=MD(或点M是BC的中点)时,直线DM与⊙O相切.点评:此题主要考查了切线的判定,以及圆周角定理,关键是掌握切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.26.(10分)已知关于x的方程x2﹣(2m+1)x+m2+m=0.(1)用含m的代数式表示这个方程的实数根.(2)若Rt△ABC的两边a、b恰好是这个方程的两根,另一边长c=5,求m的值.考点:根的判别式;根与系数的关系;勾股定理.分析:(1)根据一元二次方程的求根公式,列出算式,再进行整理即可;(2)根据a、b是这个方程的两根,得出a+b=2m+1,ab=m2+m,再根据Rt△ABC另一边长c=5,得出(2m+1)2﹣2(m2+m)=25,然后进行整理求出m的值即可.解答:解:(1)∵x==,∴x1=m,x2=m﹣1;(2)∵若a、b恰好是这个方程的两根,∴a+b=2m+1,ab=m2+m,∵Rt△ABC另一边长c=5,∴a2+b2=c2,∴(a+b)2﹣2ab=c2,∴(2m+1)2﹣2(m2+m)=25,∴m1=3,m2=﹣4(舍去),∴m的值是3.点评:本题考查了根与系数的关系,用到的知识点是求根公式、勾股定理、根与系数的关系,关键是根据勾股定理和根与系数的关系列出关于m的方程,注意把不合题意的解舍去.27.(12分)如图1,AB是圆O的直径,点C在AB的延长线上,AB=4,BC=2,P是圆O 上半部分的一个动点,连接OP,CP.(1)求△OPC的最大面积;(2)求∠OCP的最大度数;设∠OCP=α,当线段CP与圆O只有一个公共点(即P点)时,求α的范围(直接写出答案);(3)如图2,延长PO交圆O于点D,连接DB,当CP=DB,求证:CP是圆O的切线.考点:圆的综合题.分析:(1)在△OPC中,底边OC长度固定,因此只要OC边上高最大,则△OPC的面积最大;观察图形,当OP⊥OC时满足要求;(2)PC与⊙O相切时,∠OCP的度数最大,根据切线的性质即可求得.再根据α的最大度数即可得出结论;(3)连接AP,BP通过△ODB≌△BPC可求得DP⊥PC,从而求得PC是⊙O的切线.解答:(1)解:∵AB=4,∴OB=2,OC=OB+BC=4.在△OPC中,设OC边上的高为h,∵S△OPC=OC•h=2h,∴当h最大时,S△OPC取得最大值.观察图形,当OP⊥OC时,h最大,如答图1所示:此时h=半径=2,S△OPC=2×2=4.∴△OPC的最大面积为4.(2)解:当PC与⊙O相切时,∠OCP最大.如答图2所示:∵sin∠OCP===,∴∠OCP=30°∴∠OCP的最大度数为30°.∴设∠OCP=α,当线段CP与圆O只有一个公共点(即P点)时,0<α≤30°;(3)证明:图3,连接AP,BP.∴∠A=∠D=∠APD=∠ABD,∵=,∴=,∴AP=BD,∵CP=DB,∴AP=CP,∴∠A=∠C∴∠A=∠D=∠APD=∠ABD=∠C,在△ODB与△BPC中,,∴△ODB≌△BPC(SAS),∴∠D=∠BPC,∵PD是直径,∴∠DBP=90°,∴∠D+∠BPD=90°,∴∠BPC+∠BPD=90°,∴DP⊥PC,∵DP经过圆心,∴PC是⊙O的切线.点评:本题考查的是圆的综合题,涉及到全等三角形的判定和性质,切线的判定和性质,作出辅助线构建直角三角形是解题的关键.28.(12分)阅读材料:已知,如图(1),在面积为S的△ABC中,BC=a,AC=b,AB=c,内切圆O的半径为r.连接OA、OB、OC,△ABC被划分为三个小三角形.∵S=S△OBC+S△OAC+S△OAB=BC•r+AC•r+AB•r=(a+b+c)r.∴r=.(1)类比推理:若面积为S的四边形ABCD存在内切圆(与各边都相切的圆),如图(2),各边长分别为AB=a,BC=b,CD=c,AD=d,求四边形的内切圆半径r;(2)理解应用:如图(3),在四边形ABCD中,⊙O1与⊙O2分别为△ABD与△BCD的内切圆,⊙O1与△ABD切点分别为E、F、G,设它们的半径分别为r1和r2,若∠ADB=90°,AE=4,BC+CD=10,S△DBC=9,r2=1,求r1的值.考点:圆的综合题.分析:(1)连接OA,OB,OC,OD,根据所给出的例子即可得出结论;(2)根据题中所给出的例子得出BD的长,再由AE=4,可得出AD+AB+BD的长,再根据勾股定理求出DG的长,由r1=即可得出结论.解答:解:(1)连接OA,OB,OC,OD,∵S四边形ABCD=S△AOB+S△BOC+S△AOD+S△COD=(a+b+c+d)r,∴r=;(2)∵S△DBC=9,r2=1,∴BC+CD+BD==18,∵BC+CD=10,∴BD=8.∵⊙O1是△ABD的内切圆,∴AE=AG=4,BE=BF,DF=DG,∴DG+BE=BD=8,∴设DG=x,则BE=8﹣x,∵∠ADB=90°,∴AD2+BD2=AB2,即(4+x)2+82=(4+8﹣x)2,解得x=2,∴AD=AG+DG=4+2=6,∴S△ABD=AD•BD=×6×8=24,∵AD+AB+BD=AG+AE+(DG+BE)+BD=4+4+8+8=24,∴r1===2.点评:本题考查的是圆的综合题,涉及到切线的性质、勾股定理等知识,难度适中.。
2015上9年级数学试题卷20160114
2017学年第一学期月考考试卷九年级数学试题卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的. 注意可以用多种不同的方法来选取正确答案.1.2.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是A.第①块B.第②块C.第③块D.第④块3.排水管的截面如图,水面宽AB=8,圆心O到水面的距离OC=3,则排水管的半径等于A.5 B.6 C.8 D.44.如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是A.cm BcmC. cm D.cm5. 已知a:b=c:d,则下列式子中正确的是A.a:b=c2:d2B.a:d=c:bC.a:b=(a+c):(b+d)D.a:b=(a﹣d):(b﹣d)2015学年第一学期九年级数学试题卷第1 页共6 页6. 一个不透明的袋子里有若干个小球,它们除了颜色外,其它都相同,甲同学从袋子里随机摸出一个球,记下颜色后放回袋子里,摇匀后再次随机摸出一个球,记下颜色,…,经过反复大量实验后,甲同学根据白球出现的频率绘制了如图所示的统计图,则下列说法正确的是 A .袋子里一定有三个白球B .袋子中白球占小球总数的十分之三C .再摸三次球,一定有一次是白球D .再摸1000次,摸出白球的次数会接近330次7. 如图是抛物线y=ax 2+bx+c (a≠0)图象的一部分,抛物线的顶点坐标A (1,3),与x 轴的一个交点B (4,0),有下列结论:①2a+b =0; ②abc >0;③方程ax 2+bx+c =3有两个相等的实数根; ④当y <0时,-2<x <4. 其中正确的是 A .①②③ B .①③④C .①③D .①②③④8. 如图,两正方形彼此相邻且内接于半圆,若大正方形的面 积为16cm 2,则小正方形的面积为 A .6cm 2 B .5cm 2 C .4cm 2 D .3cm 29.如图,Rt △ABC 中,AC =BC =2,正方形CDEF 的顶点D 、F 分别在AC 、BC 边上,C 、D 两点不重合,设CD 的长度为x , △ABC 与正方形CDEF 重叠部分的面积为y ,则下列图象中能 表示y 与x 之间的函数关系的是2015学年第一学期九年级数学试题卷 第 3 页 共 6 页10. 如图,△ABC 内接于⊙ O ,其外角平分线AD 交⊙ O 于D ,DM ⊥ AC 于M ,下列结论中正确的是 ①DB=DC ; ②AC+AB =2CM ; ③AC ﹣AB =2AM ; ④ABD ABC S S ∆∆= . A .① B .①②③ C .③④ D .①②③④二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案. 11.如图,⊙ O 是△ ABC 的外接圆,∠ AOB =70°,则∠ C 为 ▲ 度. 12.为了解学生的实验操作能力,某区组织学生进行科学实验调 演,共设12个实验项目,其中物理5个,化学4个,生物3个, 规定由实验者本人抽签,以确定某一个项目的实验演示.小虎同学 参加了这次调演,那么他抽到化学实验的概率是 ▲ 13.将函数21432y x x =-+-化为2()y a x m k =-+ 的形式,得 ▲ ,它的图象顶点坐标是 ▲ .14. 在△ABC 中,AB =6cm ,AC =5cm ,点D 、E 分别在AB 、AC 上.若△ADE 与△ABC 相似,且S △ ADE :S 四边形BCED =1:8,则AD = ▲ cm . 15.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上, 点D (5,3)在边AB 上,以C 为中心,把△CDB 旋转90°, 则旋转后点D 的对应点D ′的坐标是 ▲ .16. 如图,n +1个边长为2的等边三角形有一条边在同一直线上,设211B D C ∆ 的面积为1S ,322B D C ∆的面积为2S ,…,(第11题)2015学年第一学期九年级数学试题卷 第 4 页 共 6 页1n n n B D C +∆的面积为n S ,则3S = ▲ ;n S = ▲ .(用含n 的代数式表示) 三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤. 如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17. (本小题6分)小红用下面的方法来测量学校教学大楼CD 的高度:如图,在水平地面点P 处放一平面镜,镜子与教学大楼的距离 PD =20米.当她与镜子的距离BP =2.5米时,她刚 好能从镜子中看到教学大楼的顶端C .已知她的眼 睛距地面高度AB =1.6米,请你帮助小红测量出大楼 CD 的高度.18.(本小题8分)已知:如图,AB 为⊙ O 的直径,点 C 、D 在⊙ O 上,且BC =6cm ,AC =8cm ,∠ABD =45°. (1)求弧.BD ..的长;(2)求图中阴影部分的面积.19.(本小题8分)如图,点P 在⊙ O 外,PB 交⊙ O 于 A 、B 两点,PC 交⊙ O 于D 、C 两点.(1)选出图中的四条成比例线段,得比例式 ▲ ; (2)请证明(1)的结论.20. (本小题10分)小南、小铭和两个陌生人甲、乙同在如图所示 的地下车库等电梯,已知两个陌生人到1至4层的任意一层出电梯.(1)用列表或画树状图求出甲、乙二人在同一层楼出电梯的概率; (2)小南和小铭比赛,规则是:若甲、乙在同一层或相邻楼层出 电梯,则小南胜,否则小铭胜.该游戏是否公平?若公平,说明理 由;若不公平,请修改游戏规则,使游戏公平.21.(本小题10分)某商场试销一种商品,成本为每件200元,规定试销期间销售单价不低于成本单价,且获利不得高于50%,一段时间后,发现销售量y (件)与销售单价x (元)之间的函数关系如下表: (1)请根据表格中所给数据,求出y 关于x 的函数关系式;(2)设商场所获利润为W 元,将商品销售单价定为多少时,才能使所获利润最大?最大利润是多少?22.(本小题12分)如图,四边形ABCD 内接于半径为4的⊙O ,BD =. (1)求∠C 的度数;(2)连接AC 交BD 于E ,必有△ABE ∽△CDE . 若E 为AC 的中点,且AB ,请在图中找到一个不同于△CDE 的三角形,使它与△ABE 相似,并证明你的结论. (3)在(2)的条件下,求四边形ABCD 的面积.23.(本小题12分)如图,在平面直角坐标系中,有抛物线y=ax2+bx+3,已知OA=OC=3OB,动点P在过A,B,C三点的抛物线上.(1)求抛物线的解析式;(2)求过A,B,C三点圆的半径;(3)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(4)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.2015学年第一学期九年级数学试题卷第6 页共6 页。
2015-2016学年上学期九年级第一次月考数学试题及答案(新人教版)
2015-2016学年上学期九年级第一次月考数 学 试 题(新人教版)时间120分钟 满分120分 2015.10.20一、选择题(每小题3分,共30分.)1.下面有4个汽车标志图案,其中是中心对称图形的是( ) A .B .C .D .2.下列方程是一元二次方程的是( )A. ax 2+bx+c=0B. x 2+2x=x 2﹣1C. (x ﹣1)(x ﹣3)=0D.=23.一元二次方程x 2+5x ﹣4=0根的情况是( )A. 两个不相等的实数根B. 两个相等的实数根C. 没有实数根D. 不能确定4.二次函数y=6(x ﹣2)2+1,则下列说法正确的是( )A. 图象的开口向下B. 函数的最小值为1C. 图象的对称轴为直线x=﹣2D. 当x <2时,y 随x 的增大而增大 5.若点A (n ,2)与B (﹣3,m )关于原点对称,则n ﹣m 等于( ) A. -1 B. -5 C. 1 D. 56.已知二次函数=a (x ﹣2)2+k 的图象开口向上,若点M (﹣2,y 1),N (﹣1,y 2), K (8,y 3)在二次函数y=a (x ﹣2)2+k 的图象上,则下列结论正确的是( ) A. y 1<y 2<y 3 B . y 2<y 1<y 3 C . y 3<y 1<y 2 D . y 1<y 3<y 27.抛物线y=3x 2向右平移1个单位,再向下平移2个单位,所得到的抛物线是( ) A. y=3(x ﹣1)2﹣2 B. y=3(x+1)2﹣2 C. y=3(x+1)2+2 D. y=3(x ﹣1)2+2 8.某款手机连续两次降价,售价由原来的1185元降到580元.设平均每次降价的百分率 为x ,则下面列出的方程中正确的是( )A. 1185x 2=580B. 1185(1﹣x )2=580C. 1185(1﹣x 2)=580D. 580(1+x )2=1185 9.在同一坐标系中,一次函数y=ax+b 与二次函数y=bx 2+a 的图象可能是( ) A .B .C .D .10.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,有下列结论: ①abc <0;②b 2﹣4ac >0;③3a+c <0;④16a+4b+c >0.其中正确结论的个数是( )A .1个B .2个C .3个D .4个二、填空题:(每小题3分,共24分)11. 若关于x 的方程2x 2﹣3x+c=0的一个根是1,则另一个根是 . 12.若012)1(1)2(=-+--+mx xm m m 是关于x 的一元二次方程, 则m 的值是 .13.二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,则函数值y >0时,x 的取值范围是 .14.如果抛物线y=x 2﹣6x+c ﹣2的顶点到x 轴的距离是3,那么c 的值等于 .15.若关于x 的一元二次方程x 2+kx+4k 2﹣3=0的两个实数根x 1,x 2,且满足x 1+x 2=x 1•x 2,则k的值为 .16.已知三角形两边长分别为2和9,第三边的长为二次方程x 2﹣14x+48=0的根,则这个三角形的周长为 .17.己知a ,b 为一元二次方程x 2+3x ﹣2014=0的两个根,那么a 2+2a ﹣b 的值为 . 18.在Rt △ABC 中,∠C=90°,AC=1,BC=3,点O 为Rt △ABC 内一点,连接A0、BO 、CO ,且∠AOC=∠COB=BOA=120°,以点B 为旋转中心,将△AOB 绕点B 顺时针方向旋转60°(A 、O 的对应点分别为点A ′、O ′),得到△A ′O ′B,则OA+OB+OC= .三、解答题(共66分)19.解方程:(共16分)①(x ﹣1)2=9; ②x 2﹣4x+3=0;③3(x ﹣2)2=x (x ﹣2); ④x 2﹣4x+10=0.20.(6分)已知x 1,x 2是关于x 的一元二次方程x 2﹣6x+k=0的两个实数根,且x 12x 22﹣x 1﹣x 2=115. (1)求k 的值; (2)求x 12+x 22+8的值21.(7分)已知二次函数y=ax2+bx+c,当x=1时,函数有最大值4,且|a|=1.(1)求它的解析式;(2)若上述函数的图象与x轴交点为A、B,其顶点为C.求三角形ABC的面积.22.(8分)某水果批发商经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)现该商场要保证每天盈利6080元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?23.(8分)如图1,△ABC与△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,AB、EF的中点均为O,连接BF,CD,CO.(1)求证:CD=BF;(2)如图2,当△DEF绕O点顺时针旋转的过程中,探究BF与CD间的数量关系和位置关系,并证明;24.(9分)某公司销售一种进价为20元/个的计算器,其销售量y(万个)与销售价格x(元/个)的变化如下表:价格x(元/个)…30 40 50 60 …销售量y(万个)… 5 4 3 2 …同时,销售过程中的其他开支(不含进价)总计40万元.(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数或二次函数的有关知识写出y (万个)与x(元/个)的函数解析式.(2)求出该公司销售这种计算器的净得利润z(万元)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?25.(12分)如图,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.(1)求抛物线的解析式;(2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标;(3)在(2)的条件下,连接BD,点P为抛物线上一点,且∠DBP=45°,求点P的坐标.参考答案一.1-5 D C A B D 6-10 B A B C C11. 2112. -3 13. x <-1或 x >3 14.8或1415. 4316.19 17. 2017 18.19.①1x =-2 2x =4 ②1x =1 2x =3③ 1x =2 2x =3 ④232,23221-=+=x x 20.解:(1)∵x 1,x 2是方程x 2﹣6x+k=0的两个根,∴x 1+x 2=6,x 1x 2=k , ∵x 12x 22﹣x 1﹣x 2=115,∴k 2﹣6=115,解得k 1=11,k 2=﹣11, 当k 1=11时,△=36﹣4k=36﹣44<0,∴k 1=11不合题意当k 2=﹣11时,△=36﹣4k=36+44>0,∴k 2=﹣11符合题意,∴k 的值为﹣11; (2)∵x 1+x 2=6,x 1x 2=﹣11∴x 12+x 22+8=(x 1+x 2)2﹣2x 1x 2+8=36+2×11+8=66. 21.解:(1)∵有最大值,且|a|=1,∴a=﹣1,又∵当x=1时,函数有最大值,∴顶点坐标为(1,4), ∴y=﹣(x ﹣1)2+4,即y=﹣x 2+2x+3;(2)令y=0可得﹣(x ﹣1)2+4=0,解得x=3或x=﹣1,∴A、B两点的坐标为(﹣1,0)、(3,0),且顶点坐标为C(1,4),AB=|3﹣(﹣1)|=4,且C到x轴的距离为4,则S△ABC=×4×4=8.22.解:(1)设每千克水果涨了x元,(10+x)(500﹣20x)=6080,解得:x1=6,x2=9.因为要顾客得到实惠,所以应该上涨6元.(2)设总利润为y,则:y=(10+x)(500﹣20x)=﹣20x2+300x+5000=﹣20(x﹣)2+6125,即每千克这种水果涨价7.5元,能使商场获利最多.23.(1)证明:∵△ABC与△DEF都是等腰直角三角形,∴AB、EF的中点均为O,∴CO=BO,OD=OF,∴CD=OC+OD=OB+OF=BF;(2)解:BF=CD,BF⊥CD.理由如下:连结OC、OD,BF与CD相交于H,如图2,∵△ABC与△DEF都是等腰直角三角形,∴OC⊥AB,OD⊥EF,∴∠BOC=90°,∠DOF=90°,∴∠BOF=∠DOC,在△BOF和△COD中,,∴△BOF≌△COD,∴BF=CD,∠OBF=∠OCD,∴∠CHB=∠COB=90°,∴BF⊥CD;24.解:(1)根据表格中数据可得出:y与x是一次函数关系,设解析式为:y=ax+b,则,解得:,故函数解析式为:y=﹣x+8;(2)根据题意得出:z=(x﹣20)y﹣40=(x﹣20)(﹣x+8)﹣40=﹣x2+10x﹣200,=﹣(x2﹣100x)﹣200=﹣[(x﹣50)2﹣2500]﹣200=﹣(x﹣50)2+50,故销售价格定为50元/个时净得利润最大,最大值是50万元.(3)当公司要求净得利润为40万元时,即﹣(x﹣50)2+50=40,解得:x1=40,x2=60.上图,通过观察函数y=﹣(x﹣50)2+50如的图象,可知按照公司要求使净得利润不低于40万元,则销售价格的取值范围为:40≤x≤60.而y与x的函数关系式为:y=﹣x+8,y随x的增大而减少,因此,若还需考虑销售量尽可能大,销售价格应定为40元/个.25.解:(1)∵抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,∴,解得,∴抛物线的解析式为y=﹣x2+3x+4;(2)∵点D(m,m+1)在抛物线上,∴m+1=﹣m2+3m+4,即m2﹣2m﹣3=0∴m=﹣1或m=3∵点D在第一象限∴点D的坐标为(3,4)由(1)知OC=OB∴∠CBA=45°设点D关于直线BC的对称点为点E∵C(0,4)∴CD∥AB,且CD=3∴∠ECB=∠DCB=45°∴E点在y轴上,且CE=CD=3∴OE=1∴E(0,1)即点D关于直线BC对称的点的坐标为(0,1);(3)过点D作BD的垂线交直线PB于点Q,过点D作DH⊥x轴于H,过Q点作QG⊥DH 于G,∵∠PBD=45°,∴QD=DB,∴∠QDG+∠BDH=90°,又∵∠DQG+∠QDG=90°,∴∠DQG=∠BDH,∴△QDG≌△DBH,∴QG=DH=4,DG=BH=1由(2)知D(3,4),∴DH=4,∴HG=3,QF=1,∴Q(﹣1,3)∵B(4,0)∴直线BQ的解析式为y=﹣x+解方程组得,∴点P的坐标为(,).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
芦淞区2015年上学期第一次月考九年级数学试卷
(时量:120分钟 满分:100分)
温馨提示:本次考试设置了试卷和答卷,请务必将试题的答案填写在答卷相应的位置。
一、选择题(本题共8小题,满分 24分)
1.(0)a a ≠的相反数是
A .a -
B .a D .
1a 2.计算22
2x x -+的结果为
A .2-
B .x -
C .23x -
D .2x -
3.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为中心对称....图形的是
4.不等式组1231x x >-⎧⎨-≤⎩
的解集在数轴上表示正确的是 A . B . C . D .
5.若一次函数5)3(+-=x m y 的函数值y 随x 的增大而增大,则
A .0m >
B .0<m
C .3>m
D .3<m
6.小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.66米,下列说法错误..
的是 A .1.65米是该班学生身高的平均水平 B .班上比小华高的学生人数不会超过25人
C .这组身高数据的中位数不一定是1.65米
D .这组身高数据的众数不一定是1.65米
7.如图,菱形ABCD 的边长为4,过点A 、C 作对角线AC 的垂线,分别交CB 和AD 的延长线于点E 、F ,AE =3,则四边形AECF 的周长为
A .22
B .18
C .14
D .11
8.如图所示,株洲芦淞大桥的主桥主孔为拱梁刚构组合体,小明发现拱梁的路面部分有均匀排列着9根支柱,他回家上网查到了拱梁是抛物线,其跨度为20米,拱高(中柱)10米,于是他建立如下右图的坐标系,将余下的8根支柱的高度都算出来了,你认为中柱右边第二根支柱CD 的高度是
A .7.6米
B .8米
C .8.4米
D .8.8米
二、填空题(本题共8小题,每小题3分,共24分)
9.设n 为正整数,且1n n <+,则n 的值为 .
10.某细胞的直径是0.000120米,把0.000120用科学记数法表示为 .
11.在一个不透明的口袋中,装有若干个出颜色不同其余都相同的球.如果口袋中装有3个红球且摸到红球的概率为5
1,那么口袋中球的总个数为 . 12.如图,直线a ∥b ,点B 在直线b 上,且AB ⊥BC ,∠1=55°,则∠2的度数为 . 13.如图,已知A 点是反比例函数(0)k y k x =
≠的图象上一点,AB y ⊥轴于B ,且ABO △的面积为3,则k 的值为 .
14.在一次夏令营活动中,小明同学从营地A 出发,要到A 地的北偏东60°方向的C 处,他先沿正东方向走了200米到达B 地,再沿北偏东30°方向走,恰能到达目的地C (如图),那么,由此可知,B C 、两地相距 米.
15.如图所示,圆O 的半径为6cm ,直线AB 是⊙O 的切线,切点为点B ,弦BC ∥AO ,若∠A =30°,则劣弧的长为 cm .
16. 把奇数列成下表,根据表中数的排列规律,则上起第8行,左起第6列的数是 .
三、解答题(本大题共8小题,共52分,需要有必要的解答和推理过程)
17.(满分4分)01()23tan 303-+︒
18.(满分4分)先化简,再求值:24(1)42
x x x +
÷--,其中12x =-.
19.(满分6分)四边形ABCD 是正方形,E 、F 分别是DC 和CB 的延长线上的点,且DE =BF ,连接AE 、AF 、EF .
(1)求证:△ADE ≌△ABF ;
(2)若BC =8,DE =6,求△AEF 的面积.
20.(满分6分)某服装店用6000元购进A ,B 两种新式服装,按标价售出后可获得毛利润3800
(1(2)如果A 中服装按标价的8折出售,B 中服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?
21.(满分6分)如图,D 为O ⊙上一点,点C 在直径BA 的延长线上,CDA CBD ∠=∠. ⑴.求证:CD 是O ⊙的切线;
⑵.过点B 作O ⊙的切线交CD 的延长线于点E ,若26t a n 3
B C C D A =∠=,,求BE 的长.
22.(满分8分) 某市某中学开展以“我最喜欢的职业”为主题的调查活动,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制成的不完整统计图.
(1)求出被调查的学生人数;
(2)把折线统计图补充完整;
(3)求出扇形统计图中,公务员部分对应的圆心角的度数;
(4)若从被调查的学生中任意抽取一名,求抽取的这名学生最喜欢的职业是“教师”的概率.
23.(满分8分)已知在△ABC中,∠ABC=90°,AB=3,BC=4.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.(1)当点P在线段AB上时,求证:△APQ∽△ABC;
(2)当△PQB为等腰三角形时,求AP的长.
24.(满分10分)如图,直线33
=-+与x轴、y轴分别交于点A、B,抛物线
y x
2
=-+经过点A、B,并与x轴交于另一点C,其顶点为P.
(2)
y a x k
(1)求a,k的值;
(2)抛物线的对称轴上有一点Q,使ABQ
∆是以AB为底边的等腰三角形,求Q点的坐标.
A C M N为顶点的四边形为正方形,(3)在抛物线及其对称轴上分别取点M、N,使以,,,
求此正方形的边长.。