电磁感应现象产生的条件

合集下载

高中物理-电磁感应知识点汇总

高中物理-电磁感应知识点汇总

电磁感应1.★电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。

(1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0。

(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。

产生感应电动势的那部分导体相当于电源。

(3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。

2.磁通量(1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:Φ=BS。

如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb求磁通量时应该是穿过某一面积的磁感线的净条数。

任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。

反之,磁通量为负。

所求磁通量为正、反两面穿入的磁感线的代数和。

3.★楞次定律(1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。

楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。

(2)对楞次定律的理解①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。

②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。

③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”。

④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。

(3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种:①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感)。

★★★★4.法拉第电磁感应定律电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。

表达式E=nΔΦ/Δt当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ。

感应电流产生的条件和方向的判断

感应电流产生的条件和方向的判断

感应电流产生的条件和方向的判断一. 教学内容:感应电流产生的条件和方向的判断1. 电磁感应现象(1)利用磁场产生电流的现象叫电磁感应现象,产生的电流叫感应电流。

(2)产生感应电流的条件:穿过闭合电路中的磁通量发生变化。

(3)磁通量变化的几种情况:①闭合电路的面积不变,磁场变化;②磁场不变,闭合电路面积发生变化;③线圈平面与磁场方向的夹角发生变化;④磁场和闭合回路面积都变化(一般不涉及)。

2. 感应电流的方向(1)右手定则:伸开右手,使拇指与四指在同一平面内且跟四指垂直,让磁感线垂直穿入手心,使拇指指向导体的运动方向,这时四指所指的方向就是感应电流的方向。

(2)楞次定律①内容:感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。

②意义:确定了感应电流的磁场方向与引起感应电流的原磁场方向间的关系,当电路中原磁场的磁通量增加时,感应电流的磁场与原磁场的方向相反;当电路中原磁场的磁通量减小时,感应电流的磁场与原磁场的方向相同,这一关系可概括为“增反,减同”。

③应用楞次定律判断感应电流方向的步骤:(i)查明电路中的磁场方向;(ii)查明电路中的磁通量的增减;(iii)根据楞次定律确定感应电流的磁场方向;(iv)由安培定则判断感应电流的方向。

④楞次定律的另一种表述:感应电流的效果总反抗引起感应电流的原因。

说明:①右手定则是楞次定律的特殊情况,它的结论和楞次定律是一致的,当导体做切割磁感线运动时,用右手定则判断感应电流的方向比用楞次定律简便。

②左手定则用于判断磁场对电流的作用力的情况,右手定则用于判断导体切割磁感线产生感应电流的方向。

二. 难点分析:正确理解楞次定律的关键是正确理解“阻碍”的含义。

(1)谁起阻碍作用?要明确起阻碍作用的是“感应电流的磁场”;(2)阻碍什么?感应电流的磁场阻碍的是“引起感应电流的磁通量的变化”,而不是阻碍原磁场,也不是阻碍原磁通量;(3)怎样阻碍?当引起感应电流的磁通量(原磁通量)增加时,感应电流的磁场就与原磁场的方向相反,感应电流的磁场“反抗”原磁通量的增加。

第82讲 磁通量及产生电磁感应的条件(解析版)

第82讲 磁通量及产生电磁感应的条件(解析版)

第82讲磁通量及产生电磁感应的条件一.知识回顾1.磁通量(1)定义:匀强磁场中,磁感应强度B与垂直磁场方向的面积S的乘积叫作穿过这个面积的磁通量,简称磁通。

我们可以用穿过这一面积的磁感线条数的多少来形象地理解。

(2)公式:Φ=BS。

(3)公式的适用条件:①匀强磁场;②S是垂直磁场方向的有效面积。

(4)单位:韦伯(Wb),1 Wb=1T·m2。

(5)标量性:磁通量是标量,但有正负之分。

磁通量的正负是这样规定的:任何一个平面都有正、反两面,若规定磁感线从正面穿出时磁通量为正,则磁感线从反面穿出时磁通量为负。

(6)物理意义:相当于穿过某一面积的磁感线的条数.如图所示,矩形abcd、abb′a′、a′b′cd的面积分别为S1、S2、S3,匀强磁场的磁感应强度B与平面a′b′cd垂直,则:(1)通过矩形abcd的磁通量为BS1cos θ或BS3.(2)通过矩形a′b′cd的磁通量为BS3.(3)通过矩形abb′a′的磁通量为0.2.磁通量的变化量在某个过程中,穿过某个平面的磁通量的变化量等于末磁通量Φ2与初磁通量Φ1的差值,即ΔΦ=Φ2-Φ1。

磁通量变化的常见情况变化情形举例磁通量变化量磁感应强度变化永磁体靠近或远离线圈、电磁铁(螺线管)内电流发生变化ΔΦ=ΔB·S有效面积变化有磁感线穿过的回路面积变化闭合线圈的部分导线做切割磁感线运动,如图ΔΦ=B·ΔS回路平面与磁场夹角变化线圈在磁场中转动,如图磁感应强度和有效面积同时变化弹性线圈在向外拉的过程中,如图ΔΦ=Φ2-Φ1磁通量的变化快慢)磁通量的变化量与发生此变化所用时间的比值,即ΔΦΔt。

4.电磁感应现象与感应电流“磁生电”的现象叫电磁感应,产生的电流叫作感应电流。

5.产生感应电流的条件当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中就产生感应电流。

判断感应电流能否产生的思维导图:6.电磁感应现象的两种典型情况(1)闭合导体回路的一部分做切割磁感线运动。

电磁感应产生条件

电磁感应产生条件

电磁感应产生条件“电磁感应”是一种指当电场和磁场的变化时,其中一个会被影响,而另一个也会发生变化的现象。

这种现象被用来制造电气器件,比如发电机和电动机。

一般来说,电磁感应的产生需要三方面的条件:1.荷:首先,电荷是必需的,因为它是电磁感应发生的条件。

它可以是负电荷,也可以是正电荷,或者是其他形式的电荷。

2.流:其次,电流也是必需的,它是提供电荷的动力,促使电磁感应发生。

3.场:最后,磁场也是必不可少的,因为它是电磁感应所发生的背景,它是电荷和电流交互作用的框架。

这三个条件可以大致分为两类:第一类是电条件,另一类是磁条件。

其中,电条件指的是电荷和电流,而磁条件指的是磁场。

电磁感应的发生首先要求存在电荷和磁场,而且这电荷和磁场必须相互作用。

这种交互作用可以通过电流的流动来实现,也可以通过电荷自身的移动来实现。

电磁感应的内容可以概括如下:当一个电荷和一个磁场处于某种相互作用时,就会产生一个电磁感应电场,使得另一个电荷(或者磁场)也发生改变。

由此可见,电荷、电流、磁场都是电磁感应所必需的条件,而这三者之间的交互作用也是电磁感应所必要的条件之一。

电磁感应的发生可以帮助我们了解电磁学的基本原理,有助于实现电动机和其他电气器件的设计与制造。

电磁感应可以用来制造电动机和发电机。

电动机是利用电磁感应原理把电力转化为机械能的设备,而发电机则是利用机械能转化为电力的装置。

它们都可以利用电荷、电流、磁场交互作用的结果来实现机械能和电力的转换。

此外,电磁感应还可以用于通信设备和多项科学研究的基础中。

电磁感应发生的结果可以用来发出信号,实现无线电通信;也可以用来研究电磁学中的基本原理,揭示自然界的奥秘。

综上所述,电磁感应的发生需要电荷、电流、磁场三种条件,而它们之间的相互作用也是必需的。

在技术应用上,电磁感应可以帮助我们实现电动机和发电机的设计与制造,以及实现通信和科学研究。

电磁感应-知识点总结

电磁感应-知识点总结

第16章:电磁感应一、知识网络二、重、难点知识归纳1. 法拉第电磁感应定律(1).产生感应电流的条件:穿过闭合电路的磁通量发生变化。

以上表述是充分必要条件。

不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过该电路的磁通量也一定发生了变化。

当闭合电路的一部分导体在磁场中做切割磁感线的运动时,电路中有感应电流产生。

这个表述是充分条件,不是必要的。

在导体做切割磁感线运动时用它判定比较方便。

(2).感应电动势产生的条件:穿过电路的磁通量发生变化。

闭合电路中磁通量发生变化时产生感应电流当磁场为匀强磁场,并且线圈平面垂直磁场时磁通量:φ=BS 如果该面积与磁场夹角为α,则其投影面积为S sin α,则磁通量为Φ=BS sin α。

磁通量的单位: 韦伯,符号:Wb 产生感应电流的方法自感电磁感应自感电动势灯管 镇流器 启动器闭合电路中的部分导体在做切割磁感线运动 闭合电路的磁通量发生变 感应电流方向的判定 右手定则, 楞次定律 感应电动势的大小E=BL νsin θtnE ∆∆=φ 实验:通电、断电自感实验大小:tI LE ∆∆= 方向:总是阻碍原电流的变化方向应用日光灯构造日光灯工作原理:自感现象感应现象:这里不要求闭合。

无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。

这好比一个电源:不论外电路是否闭合,电动势总是存在的。

但只有当外电路闭合时,电路中才会有电流。

(3). 引起某一回路磁通量变化的原因a磁感强度的变化b线圈面积的变化c线圈平面的法线方向与磁场方向夹角的变化(4). 电磁感应现象中能的转化感应电流做功,消耗了电能。

消耗的电能是从其它形式的能转化而来的。

在转化和转移中能的总量是保持不变的。

(5). 法拉第电磁感应定律:a决定感应电动势大小因素:穿过这个闭合电路中的磁通量的变化快慢b注意区分磁通量中,磁通量的变化量,磁通量的变化率的不同—磁通量,—磁通量的变化量,c定律内容:感应电动势大小决定于磁通量的变化率的大小,与穿过这一电路磁通量的变化率成正比。

高二选修物理磁感应强度知识点梳理

高二选修物理磁感应强度知识点梳理

高二选修物理磁感应强度知识点梳理高二选修物理《磁感应强度》知识点梳理一.感应电流的产生条件1.电磁感应:利用磁场产生电流的现象叫电磁感应;产生的电流叫感应电流。

2.产生条件:不管是闭合回路的一部分导体做切割磁感线的运动,还是闭合回路中的磁场发生变化,穿过闭合回路的磁感线条数都发生变化,回路中就有感应电流产生—闭合回路中的磁通量发生变化3.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T,1T=1N/A•m二.判断感应电流方向的原则1.右手定则:当导体在磁场中切割磁感线的运动时,其产生的感应电流的方向可用右手定则判定。

伸出右手,磁感线垂直穿过掌心,大拇指指向为导体的运动方向,四指指向为感应电流的方向2.楞次定律:感应电流的方向总阻碍引起感应电流的磁场的磁通量的变化3.步骤 1先判断原磁场的方向 2判断闭合回路的磁通量的变化情况 3判断感应磁场的方向 4由感应磁场方向判断感应电流的方向三.楞次定律的理解和应用楞次定律的主要内容是研究引起感应电流的磁场即原磁场和感应电流的磁场二者之间的关系1.当闭合电路所围面积的磁通量增加时,感应电流的磁场方向与原磁场方向相反;当闭合电路的磁通量减少时,感应电流的磁场方向与原磁场方向相同2、感应电流的方向总阻碍引起感应电流的磁场的磁通量的变化四、磁感应强度定义式及量纲定义式F=ILB表达式B=F/IL量纲在国际单位制SI中,磁感应强度的单位是特斯拉,简称特T。

在高斯单位制中,磁感应强度的单位是高斯Gs ,1T=10KGs等于10的四次方高斯。

由于历史的原因,与电场强度E对应的描述磁场的基本物理量被称为磁感应强度B,而另一辅助量却被称为磁场强度H,名实不符,容易混淆。

通常所谓磁场,均指的是B。

B在数值上等于垂直于磁场方向长1 m,电流为1 A的导线所受磁场力的大小。

B= F/IL F=BIL而来注:磁场中某点的磁感应强度B是客观存在的,与是否放置通电导线无关,定义式F=BIL中要求一小段通电导线应垂直于磁场放置才行,如果平行于磁场放置,则力F为零。

电磁感应-知识点总结

第16章:电磁感应一、知识网络二、重、难点知识归纳1. 法拉第电磁感应定律(1).产生感应电流的条件:穿过闭合电路的磁通量发生变化。

以上表述是充分必要条件。

不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过该电路的磁通量也一定发生了变化。

当闭合电路的一部分导体在磁场中做切割磁感线的运动时,电路中有感应电流产生。

这个表述是充分条件,不是必要的。

在导体做切割磁感线运动时用它判定比较方便。

(2).感应电动势产生的条件:穿过电路的磁通量发生变化。

闭合电路中磁通量发生变化时产生感应电流当磁场为匀强磁场,并且线圈平面垂直磁场时磁通量:φ=BS 如果该面积与磁场夹角为α,则其投影面积为S sin α,则磁通量为Φ=BS sin α。

磁通量的单位: 韦伯,符号:Wb 产生感应电流的方法自感电磁感应自感电动势灯管 镇流器 启动器闭合电路中的部分导体在做切割磁感线运动 闭合电路的磁通量发生变 感应电流方向的判定 右手定则, 楞次定律 感应电动势的大小E=BL νsin θtnE ∆∆=φ 实验:通电、断电自感实验大小:tI LE ∆∆= 方向:总是阻碍原电流的变化方向应用日光灯构造日光灯工作原理:自感现象感应现象:这里不要求闭合。

无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。

这好比一个电源:不论外电路是否闭合,电动势总是存在的。

但只有当外电路闭合时,电路中才会有电流。

(3). 引起某一回路磁通量变化的原因a磁感强度的变化b线圈面积的变化c线圈平面的法线方向与磁场方向夹角的变化(4). 电磁感应现象中能的转化感应电流做功,消耗了电能。

消耗的电能是从其它形式的能转化而来的。

在转化和转移中能的总量是保持不变的。

(5). 法拉第电磁感应定律:a决定感应电动势大小因素:穿过这个闭合电路中的磁通量的变化快慢b注意区分磁通量中,磁通量的变化量,磁通量的变化率的不同—磁通量,—磁通量的变化量,c定律容:感应电动势大小决定于磁通量的变化率的大小,与穿过这一电路磁通量的变化率成正比。

高中物理教科版选修32课件:第一章 第1、2节 电磁感应的发现 感应电流产生的条件

[答案] AD
(1)在闭合电路中是否产生感应电流,取决于穿过电路的 磁通量是否发生变化,而不是取决于电路有无磁通量。
(2)闭合电路的部分导体做切割磁感线运 动是引起电路磁通量变化的具体形式之一。但 闭合电路的部分导体做切割磁感线运动时,不 一定总会引起闭合电路的磁通量变化。如图所示,矩形线框 abcd 在范围足够大的匀强磁场中在垂直磁场的平面内向右平 动,虽然 ad、bc 边都切割磁感线,但穿过线框的磁通量没有 变化,因而没有产生感应电流。
(5)只要闭合电路内有磁通量,闭合电路中就有感应电流产生。(×)
(6)线框不闭合时,即使穿过线框的磁通量发生变化,线框中也没
有感应电流产生。
(√)
2.合作探究——议一议 (1)很多科学家致力于磁与电的关系的探索,为什么他们在磁生电的
研究中没有成功? 提示:很多科学家在实验中没有注意磁场的变化、导体与磁场 之间的相对运动等环节,只想把导体放入磁场中来获得电流, 这实际上违反了能量转化和守恒定律。 (2)怎样理解“电生磁”? 提示:电流周围存在磁场是无条件的,无论电流是恒定不变的, 还是变化的,只要有电流,它的周围就一定有磁场。
(3)S 内有不同方向的磁场时,应先分别计算不同方向磁场 的磁通量,然后规定从某个面穿入的磁通量为正,从该面穿出 的磁通量为负,最后求代数和。
(4)有多匝线圈时,因为穿过线圈的磁感线的条数不受匝数 影响,故磁通量的计算也与匝数无关。
2.求磁通量的变化的三种方法 方法一:当磁感应强度 B 不变,而磁感线穿过的有效面积 S 变化时,则穿过回路的磁通量的变化量 ΔΦ=Φt-Φ0=B·ΔS。 方法二:当磁感应强度 B 变化,而磁感线穿过的有效面积 S 不变时,则穿过回路的磁通量的变化量 ΔΦ=Φt-Φ0=ΔB·S。 方法三:若磁感应强度 B 和回路面积 S 同时变化,则穿过 回路的磁通量的变化量 ΔΦ=Φt-Φ0。 注意:此时,ΔΦ=Φt-Φ0≠ΔB·ΔS。

电磁感应现象电磁感应现象

一、电磁感应现象电磁感应现象二、利用磁场产生的现象叫电磁感应。

1.如何磁生电?产生感应电流的条件:只要穿过电路的发生变化,闭合电路中就会产生感应电流。

当电路中导体切割磁感线时,闭合电路中就会产生感应电流,在这里必须注意电路是闭合的。

2.生成什么方向的电?感应电流方向:(1)、楞次定律:感应电流具有这样的方向,就是感应电流的磁场总要阻碍引起感应电流的磁通量的变化.(2)、右手定则:当导体切割磁感线时,闭合电路中感应电流方向应是:伸开右手,姆指与四指垂直且在一个平面内,让磁感线从穿过,姆指指导线切割磁感线的运动方向,四指指方向。

楞次定律和右手定则都是用来判定感应电流方向的.但右手定则只局限于判定导体切割磁感线的情况;而楞次定律则适用于一切电磁感应过程,因此,可以把右手定则看作是楞次定律的特殊情况.3、生成多少电?感应电流的大小:感应电动势:在现象中产生的电动势叫感应电动势,用表示。

(1)、电路中感应电动势的大小,跟穿过这一电路的的成正比.这就是法拉第电磁感应定律.(2)、导体切割运动感应电动势的大小:。

B为磁感强度,L为切割磁感线导体的长度, 为导体切割运动的速度,【例题精选】1.当线圈中的磁通量发生变化时,下列说法中正确的是[]A.线圈中一定有感应电流B.线圈中有感应电动势,其大小与磁通量成正比C.线圈中一定有感应电动势D.线圈中有感应电动势,其大小与磁通量的变化量成正比2.如图13-12所示,光滑导轨MN水平放置,两根导体棒平行放于导轨上,形成一个闭合回路,当一条形磁铁从上方下落(未达导轨平面)的过程中,导体P、Q的运动情况是[ ]A.P、Q互相靠拢B.P、Q互相远离C.P、Q均静止D.因磁铁下落的极性未知,无法判断3.在匀强磁场中放一电阻不计的平行金属导轨,导轨跟大线圈M相接,如图13-8所示.导轨上放一根导线ab,磁感线垂直于导轨所在平面.欲使M所包围的小闭合线圈N产生顺时针方向的感应电流,则导线的运动可能是[ ]A.匀速向右运动B.加速向右运动C.匀速向左运动D.加速向左运动4.两根光滑的金属导轨,平行放置在倾角θ的斜面上,导轨的左端接有电阻R,导轨自身的电阻可忽略不计.斜面处在一匀强磁场中,磁场方向垂直于斜面向上.质量为m、电阻可不计的金属棒ab,在沿着斜面与棒垂直的恒力F作用下沿导轨匀速上滑,并上升h高度,如图4-75所示.在这过程中 [ ]A.作用于金属棒上的各力的合力所做的功等于零B.作用于金属棒上的各力的合力所做的功等于mgh与电阻R上发出的焦耳热之和C.恒力F与安培力的合力所做的功等于零D.恒力F与重力的合力所做的功等于电阻R上发出的焦耳热5.如图4-76所示,一条形磁铁作自由落体运动,当它通过闭合线圈回路时,其运动情况为 [ ]A.接近线圈和离开线圈时速度都减小B.接近线圈和离开线圈时加速度都小于gC.接近线圈作减速运动,离开线圈作加速运动D.作加速运动,接近线圈加速度小于g,离开线圈加速度大于g6.如图4-77所示,光滑的水平桌面上放着两个完全相同的金属环a和b,当一条形永磁铁的N极竖直向下迅速靠近两环时,则[]A.a,b两环均静止不动B.a,b两环互相靠近C.a,b两环互相远离D.a,b两环均向上跳起7.如图4-80所示,圆形线圈垂直放在匀强磁场里,第1秒内磁场方向指向纸里,如图(b).若磁感应强度大小随时间变化的关系如图(a),那么,下面关于线圈中感应电流的说法正确的是 [ ]A.在第1秒内感应电流增大,电流方向为逆时针B.在第2秒内感应电流大小不变,电流方向为顺时针C.在第3秒内感应电流减小,电流方向为顺时针D.在第4秒内感应电流大小不变,电流方向为顺时针8.如图4-83所示,导体杆op可绕o轴沿半径为r的光滑的半圆形框架在匀强磁场中以角速度ω转动,磁感应强度为B,ao 间接有电阻R,杆和框架电阻不计,则所施外力的功率为 [ ]9.如图所示,理想变压器左线圈与导轨相连接,导体棒ab可在导轨上滑动,磁场方向垂直纸面向里,以下说法正确的是:[]A.ab棒匀速向右滑,c、d两点中c点电势高B.ab棒匀加速右滑,c、d两点中d点电势高C.ab棒匀减速右滑,c、d两点中d点电势高D.ab棒匀加速左滑,c、d两点中c点电势高10.如图所示,水平放置的两平行导轨左侧连接电阻,其它电阻不计.导轨MN放在导轨上,在水平恒力F的作用下,沿导轨向右运动,并将穿过方向竖直向下的有界匀强磁场,磁场边界PQ与MN平行,从MN进入磁场开始计时,通过MN的感应电流i随时间t的变化可能是下图中的()11.如图4-78所示,一个小矩形线圈从高处自由落下,进入较小的有界匀强磁场,线圈平面和磁场保持垂直.设线圈下边刚进入磁场到上边刚接触磁场为A过程;线圈全部进入磁场内运动为B过程;线圈下边出磁场到上边刚出磁场为C过程.则[ ]A.在A过程中,线圈一定做加速运动 B.在B过程中,线圈机械能不变,并做自由落体运动 C.在A和C过程中,线圈内电流方向相同 D.在A和C过程中,通过线圈的截面的电量相同12.铜质金属环从条形磁铁的正上方由静止开始下落,在下落过程中,下列判断中正确的是A.金属环在下落过程中的机械能守恒B.金属环在下落过程动能的增加量小于其重力势能的减少量C.金属环的机械能先减小后增大D.磁铁对桌面的压力始终大于其自身的重力13.如图4-100所示为某一电路装置的俯视图.mn,xy为水平放置的很长的平行金属板,板间有匀强磁场,磁感强度为B,裸导线ab电阻为R0,电阻为R1=R2=R,电容器电容C很大.由于棒ab匀速滑行,一不计重力的带正电粒子以初速度v0水平射入两板间可做匀速直线运动.(1)棒ab向哪边运动?速度多大?(2)棒如果突然停止运动,那么在突然停止时刻作用在棒上的安培力多大?方向如何?14.截面积为0.2m2的100匝电阻可以忽略不计的线圈A,处在均匀磁场中,磁场的方向垂直线圈截面,如图所示,磁感应强度为B=(0.6-0.2t)T(t为时间,以秒为单位),R1=4Ω,R2=6Ω,C=3F,线圈电阻不计,求:(1)闭合S2后,通过R2的电流大小和方向;(2)S1切断后,通过R2的电量。

法拉第电磁感应定律 全文


P
b
Q
外力做的功是多少?电路中产生的热量是多少?
WF=0.1J Q=0.1J
小结:克服安培力做功等于电路产生的 电能,最后电能又转化为内能。
例与练12
如图,一个水平放置的导体框架,宽度L=1.50m, 接有电阻R=0.20Ω,设匀强磁场和框架平面垂直, 磁感应强度B=0.40T,方向如图.今有一导体棒ab 跨放在框架上,并能无摩擦地沿框滑动,框架及 导体ab电阻均不计,当ab以v=4.0m/s的速度向右 匀速滑动时,试求: (1)导体ab上的感应电动势的大小 (2)回路上感应电流的大小
为: ΔS=LvΔt 穿过回路的磁通量的变化 为:
ΔΦ=BΔS =BLvΔt
产生的感应电动势为:
× ×a × × ×a ×
× G
×
×v ×
×
×
××××××
××××××
b
b
E Φ BLvt BLv(V是相对于磁场的速度)
t t
三、导体切割磁感线时的感应电动势
若导体运动方向跟磁感应强度方向有夹角
(1)转过1/4周时ab边产生的瞬时感应电动势
(2)转过1/2周时ab边产生的瞬时感应电动势
E BLv sin nBL1L2 sin

2
a
d
B
b
c 0'
例与练10
如图,水平面上有两根相距0.5m的足够长的平行金
属导轨MN和PQ,它们的电阻不计,在M和P之间接
有R=3.0Ω的定值电阻,导体棒长ab=0.5m,其电阻为
从结果上看 都产生了E(I) 产生的E(I)大小不等
磁通量变化越快,感应电动势越大。
越大?
Φ
磁磁通通量量的的变变化化快率慢
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁感应:从产生条件到应用探究电磁感应现象是指在电磁场的作用下,导体中的电子发生运动形
成感应电流的现象。

那么,导体中的电子为何会发生运动呢?它的产
生条件主要有以下两点:
1. 必须有变化的磁通量
当导体内部被不断地改变磁通量时,就会出现感应电流。

这是因
为导体内的电子会随着磁通量的变化而受到力的影响,从而形成电流。

2. 导体必须是闭合回路
为了确保感应电流的存在,需要将导体设置成一个闭合回路,这
样才能形成环路电流。

除了了解电磁感应现象的产生条件,我们还可以探究一下它的应用。

广泛应用于发电、电动机、变压器等电力行业,电磁感应也在现
代生活中得到广泛应用,如磁卡、感应式炉具、感应加热器等。

这些
应用都是基于电磁感应现象的原理进行的,在生活中起到了极为重要
的作用。

综上所述,深入了解电磁感应现象的产生条件和应用,可以更好
地掌握电磁学的基础知识,从而更好地应对现代社会的各种挑战。

相关文档
最新文档