钢结构管道支架的优化设计
钢管脚手架结构设计与优化

钢管脚手架结构设计与优化钢管脚手架是一种广泛应用于建筑施工中的搭建工具,其结构设计和优化对于施工安全和工作效率具有重要意义。
本篇文章将从材料选择、构件设计和工程应用等方面探讨钢管脚手架结构的设计和优化。
一、材料选择钢管脚手架所使用的主要材料是钢管和连接件。
在选择材料时需要考虑材料强度、稳定性和耐用性等因素。
1. 钢管钢管是钢管脚手架的主要支撑材料,其强度和稳定性对于整个结构的安全性至关重要。
目前市场上常见的钢管材料有铁管、镀锌管和无缝钢管等。
其中,无缝钢管具有强度高、稳定性好、耐腐蚀性强的特点,是选择钢管的首选材料。
在采购无缝钢管时,需注意管壁厚度符合规范要求,同时避免购买次品或已经过期的钢管。
2. 连接件连接件是钢管脚手架中用于连接钢管的关键部件。
连接件的质量和稳定性对于整个结构的安全性也具有重要影响。
目前市场上常见的连接件有钢板螺栓式连接件、钢筋套筒式连接件和锻造连接件等。
其中,锻造连接件具有强度高、耐久性好的特点,是选择连接件的首选。
二、构件设计构件设计是钢管脚手架结构中最关键的部分,需要考虑的因素较多。
在设计时需要考虑结构的负荷承受能力、稳定性、安全性和施工效率等方面。
1. 稳定性稳定性是钢管脚手架结构设计中最基础的要求,对于确保结构整体的平稳和可靠具有重要意义。
钢管脚手架的稳定性设计需要考虑的因素有材料强度、支撑方式、支撑高度、支撑跨度等。
在设计时需尽可能地减少构件的纵向位移和弯曲,采用稳定和坚固的支撑方式。
2. 承载能力承载能力是钢管脚手架结构的重要考量因素,对于保证结构的承重能力和安全性非常关键。
在设计时需合理优化钢管的形状和布置,同时采用合适的支撑方式,确保钢管的承载能力满足规范要求。
3. 安全性安全性是钢管脚手架结构设计中最重要的因素,对于施工人员和工作人员的安全具有直接影响。
在设计时需考虑结构的整体安全性和稳定性,尽可能减少结构中的异物和危险因素,确保施工和使用过程中的安全性。
钢结构架空管道支架的设计

[] H 99 石 油化 工 企业 排 气 筒 和 火 炬 塔 架 设计 规 范 【】 5 S J —1 2 S 【 稿 日期 ] 0 00 .4 收 2 1—42
管架 内力 , 选择 与管 架匹配的管托和基础 形式, 对管架设计的
科学性、 安全性、 经济性十分重要 。
【 关键词】 架空管架; 荷载; 计算长度 ; 长细比
【 中图分类号】 u 9 T 31 【 文献标志码】 A
当于 支承 在 一 个有 限变 位 的弹性 支座 上 ,管 道在 柱
b t h o mai n o p c y tm n o wo k t g t e . oh te fr t fa s a e s s o e a d t r o eh r De e dn f tep p c t cu a a u e , a o a l h i e p n i gO ier ksr t r le t r s a e s n b e oc h a u f r c f r r c - p , d t r ie h p p r c la s al wi g h o ak t e y eem n te i e a k o d , l o n t e s n e e s ai n a c l o f e g h t ec re t n l s n l d r s t a dc lu  ̄i no ln t , o r c ay i a d e n r o h a s
u e f me a d b scf m f a e t i er c e i s in i , t b a n a i r so r , o p p a k d s ce t c r o c n g i f s ft , c n myiv r mp r n . aey e o o s eyi o t t a
钢结构设计如何实现最优化设计

钢结构设计如何实现最优化设计钢结构设计是建筑工程中重要的一环,其优化设计能够提高结构的安全性、经济性和可靠性。
本文将讨论如何实现钢结构设计的最优化,并提出相应的方法和策略。
一、钢结构设计优化的背景和意义钢结构具有重量轻、强度高、抗震性能好等特点,广泛应用于建筑工程领域。
然而,对于大型复杂的钢结构,传统的设计方法难以满足要求,因此,优化设计成为改善钢结构性能和降低成本的关键。
二、钢结构设计优化的目标钢结构设计的优化目标主要包括以下几个方面:1. 结构强度和刚度的最优匹配:合理选择截面尺寸和材料,确保结构在正常工作状态下具有足够的强度和刚度。
2. 最小化结构重量:在满足强度和刚度要求的前提下,尽量减小结构的自重,实现轻量化设计,以降低建筑物整体的负荷。
3. 成本最小化:通过合理的结构布置和构造设计,降低材料使用量和施工成本,实现整体经济效益的提高。
三、钢结构设计优化的方法和策略1. 选取适当的优化算法:常用的优化算法包括遗传算法、粒子群算法、模拟退火算法等。
根据具体问题及要求,选择相应的算法进行优化计算。
2. 多目标优化设计:钢结构设计往往涉及多个目标函数,例如结构重量、成本和刚度等。
通过多目标优化方法,将多个目标函数综合考虑,得到一组最优解,由设计人员进行最终选择。
3. 以性能为导向的设计:传统的设计方法往往以规范要求为基础,而性能导向的设计注重结构的整体性能。
通过预测和分析结构的性能指标,优化设计可以更好地满足具体的功能要求。
4. 结构参数的灵活调整:通过改变结构参数的取值范围和组合方式,进行灵活调整,找到最优设计方案。
这一策略可以利用计算机辅助设计软件实现。
5. 结构与施工的协同设计:在设计过程中,与施工方进行密切合作,共同解决设计和施工中的问题。
通过结构施工一体化的方式,实现结构设计的最优化。
四、钢结构设计优化的应用案例1. 高层建筑钢结构设计优化:通过结构参数的调整和最优化算法的应用,实现高层建筑的结构材料和重量的优化,提高抗震和抗风能力。
钢结构设计优化

钢结构设计优化钢结构设计在建筑工程中扮演着重要的角色,其优化设计可以有效提高结构的安全性、经济性和美观性。
本文将探讨钢结构设计的优化方法,以及在实际工程中如何有效地实施这些方法,从而达到最佳的设计效果。
1. 结构优化设计原则钢结构设计的优化首先要遵循一些基本原则,包括承载力充分、材料利用率高、施工方便等。
在设计过程中,要结合建筑类型、荷载特点及使用功能等因素,合理确定结构体系、截面尺寸等参数,以满足结构的强度和刚度要求,并在经济允许范围内尽量减小结构自重和减小节点连接数量,降低施工难度。
2. 结构参数优化对于钢结构而言,截面尺寸、横截面形状、材料强度等参数都是影响结构性能的重要因素。
通过合理选择这些参数,可以达到结构的最佳设计效果。
在实际工程中,可以采用有限元分析等先进技术手段,对结构进行详细的受力计算和优化设计,从而优化结构形式、减小结构重量、提高结构整体性能。
3. 节点设计优化节点是结构中承载荷载的重要部位,其设计优化至关重要。
在节点的设计中,要考虑节点的承载性能、连接形式、变形控制等因素,确保节点连接牢固可靠、变形合理有利于整体结构的稳定性。
在节点设计中,还要考虑节点的施工便利性和维修性,确保工程实用性和经济性。
4. 施工过程优化在钢结构施工中,施工过程的优化也是优化设计的重要环节。
合理的施工工艺和流程可以提高工程进度,减少施工成本,保证结构的质量和安全。
因此,在进行钢结构设计时,要考虑到施工过程中的各种因素,优化结构形式和参数,以便于施工实施。
5. 结构维护优化钢结构在使用过程中需要进行定期维护和检修,结构的维护优化也是设计的重要内容。
在结构设计中,要考虑结构的易维护性和耐久性,合理安排设备的排布和便利的维修通道,确保结构的长期稳定性和安全性。
结语钢结构设计的优化是一个复杂而综合的工程,需要设计师在结合工程实际情况的基础上,综合考虑结构的各种因素,采用先进的设计方法和技术手段,不断探索创新,才能实现结构设计的最佳效果。
钢结构管道支架设计要点分析

钢结构管道支架设计要点分析发布时间:2022-10-11T07:51:54.373Z 来源:《建筑实践》2022年10期5月(下)作者:冯密林[导读] 管道支架一般可以分为固定支架、单向滑动支架、双向滑动支架等几种形式冯密林中冶沈勘秦皇岛工程设计研究总院有限公司河北省秦皇岛市 066000摘要:管道支架一般可以分为固定支架、单向滑动支架、双向滑动支架等几种形式。
固定管道支架主要承受一段范围内的水平力的作用,所以应采用四柱式有支撑的空间钢框架结构支架。
一般每100m就要设置一道固定管道支架。
由于滑动管道支架仅承担由管道引起的竖向荷载,不承担管道所产生的水平荷载,顶端可随着管道的变形而滑移,所以滑动管道支架可采用单个或者单榀支架(两根支架柱)的形式。
关键词:管道支架、固定、刚接、铰接引言随着国家基建进程的加快,冶金企业也开始走上了快速发展的道路。
冶金企业的介质输送管线属于重要节点工程,对各个部门车间的正常运行和生产起到了至关重要的作用。
而作为管线中不可或缺的一环,管道支架的设计与施工也逐渐被大众所注意。
由于其庞大的数量,为了保证管道的安全性和可靠性,在结构设计中考虑全面和合理就势在必行。
由于钢结构支架有着重量轻、施工方便、造价低等多个优点,所以钢结构支架广泛适用于管道支架的设计及施工中。
本文就钢结构支架的设计要点进行剖析,以使钢结构支架达到优化设计、经济合理的目的。
1 管道支架的基本规定通常情况下,钢结构管道支架的设计使用年限控制在30年~50年以内,在使用年限内,还要每3~5年进行一次钢结构表面涂装的维护,以保证主材不会受到空气腐蚀。
根据输送介质管道的危害性及被破坏后产生的后果,可以将管道支架的安全等级划分为一级和二级。
造成破坏后果很严重,直接危及人的生命安全活造成重大经济损失的情况为一级,要求进行结构设计时结构重要性系数不小于1.1。
其他情况为二级,要求进行结构设计时重要性系数不小于1.0。
管道支架一般可以分为固定支架、单向滑动支架、双向滑动支架等几种形式。
论工业建筑钢结构管道支架设计

论工业建筑钢结构管道支架设计摘要:管道支架是工业设计中常见的结构形式,但是真正会做,做的好的人却不多。
12 年出了本《钢铁企业管道支架设计规范》GB50709,里面的内容相对来说还是比较详细的,但对不熟悉管道支架的人却会感到无从下手。
对于管道支架设计,乍一看是很简单的东西,往往遭到专业人员的轻视,但实际中,大多数结构设计人员对它均不够了解,在实际设计过程中会碰到很多疑难问题,因为关系到有毒易爆气体等情况,性质还是比较严重的。
另外,对于大型钢厂众多管道组成的“管廊式”①管道操作上也存在很多争议的问题,比如并排铺设多根大管道后支架顶梁如何设计等,且迄今为止没有人专门提出这些问题,更不用说给出相对合理的解决思路和方法。
本文结合个人工作实践,给大家明确认识,理清思路,并对管道支架设计中容易碰到的几个棘手问题,给出自己的解决方案。
供结构设计人员参考。
关键词:支架;钢结构支架;管道支架;煤气支架1 支架分类工业大型管道支架均为架空结构,根据刚度的强弱可分为摇摆、柔性和刚性管道支架;根据外观可分为单片和空间管道支架两种。
其实这几种分类之间概念是有一定交叉的,比如单片支架可以是摇摆支架也可以是柔性支架,也可能是刚性支架。
另一方面,各专业根据以往的经验或者说传统,他们会对管道支架有一个自己的分类。
对燃气专业一般习惯分为全铰、半铰及固定管道支架,对于综合管道专业、水道专业以及热力专业更多的是分为滑动支架和固定支架。
这是其专业管道体系的特点决定的,也是以往传统做法的体现。
上游工艺人员无法正确理解这些叫法之间的区别,真正用于工程实践中也就往往出现工艺表述与结构设计理解之间出现信息缺失等问题。
要想解决此问题需要结构人员对管道体系有足够的了解,只有在充分的了解管道体系的前提下才能准确把握工艺资料以及发现问题。
由于各专业之间管道工艺设计有不同特点,本文把目标锁定在大型管道(较为常见的是燃气管道)支架设计。
2 燃气管道体系燃气专业管道主要有焦炉煤气(COG),高炉煤气(BFG),转炉煤气(LDG),COREX 煤气(CRG)等几类。
管道设计中支架的合理及优化设计

管道设计中支架的合理及优化设计发表时间:2016-04-20T13:44:32.070Z 来源:《工程建设标准化》2016年1月供稿作者:白冰[导读] 山东省冶金设计院股份有限公司现阶段热力专业的施工图对管道、风道、桥架等设备管线的支架没有深入的详细描述,只是标注了各专业管线的相应标高,这就造成在施工过程中各专业管线交叉,给施工带来困难,严重影响相关专业的施工进度(山东省冶金设计院股份有限公司,山东,济南,250014)【摘要】现阶段热力专业的施工图对管道、风道、桥架等设备管线的支架没有深入的详细描述,只是标注了各专业管线的相应标高,这就造成在施工过程中各专业管线交叉,给施工带来困难,严重影响相关专业的施工进度。
通过对热力专业管道支架因地制宜的优化设计和安装可以使设备管道安装达到坚固美观、感官良好的效果,并能大大促进施工安装的进度。
【关键词】管道设计;支架;优化设计前言架空输送管道在介质和大气温度变化的作用下,将产生热胀冷缩现象。
为适应这种热胀冷缩的要求,保证管道稳定和满足正常生产的要求,通常每隔一段距离,设置一个固定点,在两个固定点之间,设置补偿器。
这样管道系统就分为若干区段,每个区段的热胀冷缩能量由这一段的补偿器吸收,活动支架所受的力也通过该段管道传给固定支座,整个系统就成为—个稳定的系统。
一、管道支架设计原则1、共同工作原则(1)管道支架是支承管道的结构,而管道在一定程度上也支承着管道支架,两者形成一个空间体系而共同工作。
(2)柱顶相当于支承在一个有限变位的弹性支座上,即管道在柱顶起着支承的作用,因此管架柱的计算长度就比独立的悬臂柱小。
2、牵制作用(1)多管共架的管线,各管道同时产生温度动作的可能性是不存在的。
(2)在任一瞬间有温度作用的管道力图推动管道支架唯一;无温度动作的管道,非但不推动管架位移,反而起着阻止管道支架位移的作用。
(3)管道支架承受的实际摩擦力及由此产生的弹性位移值,通过上述作用一般可减少30%以上,这种现象说明了管线的不同时工作对管道支架的受力具有牵制作用。
管道设计中支架的合理及优化设计

架 对管 道 的变 形适 应 能 力 最 强 , 因而 最 为 经 济 。但 摇 摆支 架制 作较 麻烦 , 铰 性能 可靠 度不 足 , 半 且半 铰
差 ; 管道 固定 点至 所计算 的管架顶 之 间的距离 。 I为
对矩 形 断面 的管道 支 架来说 , 根据 上 面公式 , 可
以推 出 以下 判 断公式 :
所 受 的风荷 载 。它 作 用 在管 道 中心 线上 , 以集 中 并 力 加弯矩 的形式 传 给支 架 。 ( ) 梁式 管 架 纵梁 所 2纵 受 的风荷 载 。对 独 立管 架 来说 , 柱子 所 受 的 风荷 载 般 可忽 略不计 , 纵梁 式 管 架要 考 虑作 用 到纵 梁 但
-
某常 温 工 作 的 高 架 输 水 管 道 , 称 直 径 8 0 公 0 mm, 中心距 地 面 75m; 管 . 管重 15 N/ 充 满水 .9k m,
时 , 重 5 0 N/ 采 用 T 形 钢 筋 混 凝 土 独 立 活 水 . 2k m;
动支 架 , 跨度 1 m, 架 柱 高 8m; 装 时 温度 5C, 4 支 安  ̄ 运行 时 管 内水 温 最 高 达 5 " 支 架 顶 部 做 成 u型 0 C; 槽, 加卡 箍 限制钢 管 的径 向移 动 , 用 橡 胶 衬 垫 , 并 如
表格 ( 文献 E- 5 3 ; 为作 用 在 1个 管 架顶 如 ]I — )G 表
上 的总计垂 直荷 载 私为 管道 与支座 问 的摩 擦 系数 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钢结构管道支架的优化设计
发表时间:2016-11-18T16:56:00.933Z 来源:《低碳地产》2016年9月第18期作者:祁君[导读] 近年来,在我国工业建筑项目中钢结构管道支架应用越来越广泛,它也是管道工程设计的重要组成部分,管道介质主要有热力管道、蒸汽管道、水管、除尘风管、烟气管道、压缩空气管道、硫铵溶液输送管道等。
中国新时代国际工程公司陕西省 710018 【摘 要】文章从钢结构管道支架设计的原则,钢结构管道支架常用结构类型,管道支架的选型,支架柱长细比的选择,管道支座的选择,某大型蒸汽管道支架优化设计实例分析六方面来介绍,【关键词】管道支架,有限元模型,优化设计近年来,在我国工业建筑项目中钢结构管道支架应用越来越广泛,它也是管道工程设计的重要组成部分,管道介质主要有热力管道、蒸汽管道、水管、除尘风管、烟气管道、压缩空气管道、硫铵溶液输送管道等。
一、钢结构管道支架设计的原则钢结构管道支架(以下简称管架或支架)设计应满足施工及正常使用状态下各种作用,偶然事故情况下结构维持必要的稳定。
以可靠指标度量结构构件的可靠度,用含分项系数设计表达式进行计算,一般采用有限元或PKPM 计算软件,通过对支架的受力模型及动力特的分析,抗震地区还应考虑支架的抗震性能分析,从而设计出合理的钢结构管道支架。
支架设计的一般原则主要有以下几个方面:
1、管道支架设计使用年限为50年。
安全等级取一级,结构重要性系数γ0 取1.1。
2、所有结构构件均应进行承载力计算;有抗震设防要求的结构,尚应按规定进行结构构件抗震承载力验算。
3、管道支架横梁在垂直荷载及水平推力作用下,按照双向受弯构件计算。
固定管道支架横梁的最大挠度不宜大于梁跨度的1/500;其他管道支架横梁的最大挠度不应大于梁跨度的1/250。
竖向荷载(标准值)作用下的挠度容许值不大于L/400;管道水平推力(标准值)作用下的挠度容许值不大于L/400。
沿管道横向风荷载标准值作用下的柱顶位移不大于H/400;固定管道支架沿管道纵向在管道水平推力作用下的柱顶位移为H/400;H 为支架高度。
(4)地震基本烈度为8 度及8 度以上地区的活动管道支架应采用刚性活动管道支架。
二、钢结构管道支架常用结构类型独立式管架包括固定管架、刚性管架、柔性管架、半铰管架、双向活动管架(摇摆管架)。
相对于固定管架,其他均属于活动管架。
(1)固定管架上的管道一般采用固定管座,管架下端与基础固定,且多采用四柱式的双片支架。
(2)刚性管架上的管道在管架上均采用滑动或滚动管座,管架下端与基础固定,一般采用双柱式单片支架。
(3)柔性管架上的主动管道采用滑动或者铰接管座,其他管道可采用滑动管座,管架下端与基础固定,一般采用单柱式独立支架。
(4) 半铰接管架上的主动管道采用铰接管座,管架下端沿纵向为半铰接,沿横向为固定。
三、管道支架的选型管道支架按材料可分为钢筋混凝土支架、钢支架等;按用途可分为固定支架和活动支架;按结构受力特点可分为刚性支架、柔性支架和半绞接支架;按外形
可分为T 形支架、Π形支架、单层支架、双层支架、多层支架、单片支架、空间刚支架或塔支架等。
管道支架的选型,一般按以下几个原则综合考虑。
1、管道支架的结构材料选择一般在经济条件允许或在新建厂的管道支架设计中,施工工期要求紧且场地施工交叉多的情况下,管道支架宜优先采用钢结构;对于厂前区的管道支架,宜优先采用钢结构。
采用钢结构的断面比采用钢筋混凝土结构的截面尺寸小,整体效果轻巧、协调、美观。
2、组合式支架的选择当管道跨越铁路或道路时,在管道的允许跨度不满足铁路或道路宽度要求的情况下,需要采用组合式支架,即在相邻支架上附加钢桁架、纵横梁等辅助跨越结构。
为了道路的安全通行和机组的安全运行,跨铁路的辅助跨越结构底面(附加钢桁架的下弦或纵横梁的梁底)到铁路轨顶的最小垂直净距离不小于5.5m,跨道路的辅助跨越结构底面到道路路面的最小垂直净距不小于5m。
3、固定支架的选择固定支架的位置由工艺专业确定,支架型式通常为门形支架或Π形支架。
当门形支架或Π形支架承受的纵向水平推力较大时,宜优先采用四柱式固定支架,即相邻的Π形或门形的单片支架采用纵梁连接。
固定支架在纵向(沿管道轴向)和横向(垂直于管道轴向)均视为管道的不移动支点,应有足够的刚度,以保证管道系统的稳定,减小水平位移。
高支架不宜作为固定支架。
固定支架除了要承受固定点两侧相邻活动支架之间的垂直荷载外,还要承受2 个固定点之间所有的纵向水平推力。
此时,固定支架结构受的水平力大,垂直力相对较小,这样使得基础的偏心距较大。
如果高支架作为固定支架,相对作为固定支架的低支架来说,会增大支架柱的基础底面积和支架柱的断面,增加基础和柱的配筋,从经济角度不尽合理。
因此,在土建专业施工图具体设计中,在固定支架允许跨距的条件下,适当调整位置,避开高支架作为固定支架。
组合式支架不宜作为固定支架。
组合式支架是跨铁路、道路的高支架,其纵向刚度较弱,故不宜作为固定支架。
4、门形支架和Π形支架的选择门形支架和Π形支架的抗扭能力和整体刚度都较强,特别适用于管道直径较大、根数较多的情况。
只要条件允许,宜优先选用门形支架;当管道数量多,支架横梁跨度及横梁截面过大时,为减小横梁跨度和横梁截面,可选择Π形支架;当支架遇到挡土墙、地下沟道等障碍物时,可采用Π形支架,在不改变横梁位置的同时,调整支架柱的位置,使支架柱基础和支架柱避开障碍物。
四、支架柱长细比的选择实践效果表明,管道支架柱的截面尺寸大小,不仅要满足本身安全稳定性的要求,而且要注意与管道直径大小协调,避免产生头重脚轻或头轻脚重的感觉。
根据经验,长细比范围为:对于钢筋混凝土结构的固定支架柱,一般在25~30;对于钢筋混凝土结构的活动支架柱,一般在35~40;对于钢结构的固定支架柱,一般在100~125;对于钢结构的活动支架柱,一般在125~150。
五、管道支座的选择
管道支座主要分固定支座、滑动支座和滚动支座。
管道的固定支座用在固定支架上。
由于管道的纵向水平推力较大,需要通过固定支座传递到固定支架上,所以一般采用管道与管托焊接,管托与支架柱顶部埋件焊接的连接方式。
同时,为了保证顶部埋件的受力安全可靠,常常在顶部埋件下设置抗剪连接件。
管道的滑动支座和滚动支座用在活动支架上。
活动支架主要承受管道的垂直荷载和一定的水平摩擦力。
为了减小水平摩擦力,以前常常采用低摩擦系数的滚动支座。
由于滚动支座的滚轴在长时间的使用过程中容易生锈,阻碍滚轴的滚动,影响滚动摩擦的效果,因此,目前很少采用滚动支座。
为了解决滚动支座中出现的问题,并同时达到滚动支座低摩擦系数的效果,目前常常采用聚四氟乙烯滑动支座,即在钢板之间的滑动面上涂上聚四氟乙烯材料。
由于聚四氟乙烯具有低摩擦系数和很高的承载能力,其滑动支座不但滑动摩擦系数在0.10 以下(当施工安装有保障时,可达0.06;而钢板之间的滑动摩擦系数为0.30),而且具有较长的使用寿命和较长的低摩擦效果。
六、某大型蒸汽管道支架优化设计实例分析
1、有限元模型建立
采用SAP2000 有限元软件计算,建立有限元模型时,蒸汽管道支架可视为空间钢支架,模型和设计中,所有梁柱、立面斜撑节点均设置为铰接节点。
计算不同高度、相同荷载工况下的固定支架和半铰接支架,两种支架形式分别采用型钢和钢管截面。
2、管道支架截面设计分析
从表1 可看出,当支架的高度为10 m 时,钢支架分别采用型钢和圆钢管截面形式,在同等工况条件作用下,钢构件的应力比控制在20% ~ 60% 之间,长细比控制在150 之内( 长度系数取1.0) 。
固定钢支架采用圆钢管截面形式耗钢量是采用型钢截面形式的65% ,可以节约35% 的钢材量; 半铰支架采用圆钢管截面形式耗钢量是采用型钢截面形式的64% ,可以节约36% 的钢材量。
从表2 可看出,当支架的高度为14 m 时,钢支架分别采用型钢和圆钢管截面形式,在同等工况条件作用下,钢构件的应力比控制在20%~ 60%之间,长细比控制在150 之内( 长度系数取1.0) 。
固定钢支架采用圆钢管截面形式耗钢量是采用型钢截面形式的76%,可以节约24%的钢材量; 半铰支架采用型钢截面形式耗钢量是采用圆钢管截面形式的80%,可以节约20%的钢材量。
根据表1,表2 的数据进行综合分析,固定支架采用圆钢管截面形式在耗钢量上占优势,可以优化设计,更为经济合理; 半铰支架采用圆钢管截面形式时,主要受到平面外长细比的制约,支架越高,钢柱长细比越不容易满足规范要求,因此用钢量也会随着支架的高度而增大,耗钢量甚至会高于型钢截面形式,因此对于半铰支架的优化设计,应根据支架的高度情况综合分析,选择合理经济的截面形式。
在实际工程中,圆形钢管在外型上简洁美观,在一定的条件下更为经济合理,达到优化设计的目的,但是圆形钢管的加工制作比较复杂,人工成本费用偏高,在钢支架设计时,不仅在结构计算上需要进行优化设计,在钢材加工及施工方面,也需要进行优化,才能达到整体优化设计的目的,还需要进行进一步的研究和探讨。
参考文献:
[1]罗邦富,魏明钟等,钢结构设计手册(第三版)北京,中国建筑工业出版社,2009.
[2]《钢结构设计手册》编辑委员会.《钢结构设计手册》.中国建筑工业出版社,2004.
[3] 祝远驰.余热利用电厂钢管道支架设计[J].山西建筑,2012。
38(10):26-28.。