人教版八年级数学上册第十一章三角形PPT
合集下载
12.2 全等三角形的判定第1课时(课件)-八年级上册(人教版)

想一想:
已知△ABC ≌△ A′B′ C′,找出其中相等的边与角:
A
A′
B
AB =A′B′ ∠A =∠A′
C B′
BC =B′C′ ∠B =∠B′
C′
AC =A′C′
∠C =∠C′
思考:满足这六个条件可以保证△ABC≌△A′B′C′吗?
• 学习目标: 1.通过三角形的稳定性,体验三角形全等的 “边边边”条件. 2.会运用“边边边”定理判定两个三角形的 全等.
∴△AEB ≌ △ADC (SSS).
2.已知AC=FE,BC=DE,点A,D,B,F在一条直线上,
AD=FB(如图),要用“边边边”证明△ABC ≌△ FDE,
除了已知中的AC=FE,BC=DE以外,还应该有什么条件?
怎样才能得到这个条件? 【解析】要证明△ABC ≌△FDE,还 应该有AB=FD这个条件. ∵DB是AB与DF的公共部分,且 AD=FB, ∴AD+DB=BF+DB,即AB=FD.
判定两个三角形全等:
三边对应相等的两个三角形全等.简写为
“边边边”或“SSS”.
课后练习
A
1.如图,AB=AC,AE=AD,BD=CE,
求证:△AEB ≌ △ ADC.
B ED C
【证明】在△∵BADEB=和CE△,A∴DBCD中-,ED=CE-ED,即BE=CD.
AB=AC,
AE=AD,
BE=CD,
解:作图如图所示:
作法:(1)以点O为圆心,任 意长为半径画弧,分别交OA, OB于点D,E; (2)以点C为圆心,OD长为半 径画弧,交OB于点F; (3)以点F为圆心,DE长为半 径画弧,与第2步中所画的弧相 交于点P ; (4)过C,P两点作直线,直线 CP即为要求作的直线.
初中数学人教八年级上册第十一章三角形三角形的模型探究说题PPT

五.说中考:三角形模型的应用
3.(2015•启东市中考)如图,BE与CD相交于点A,CF为 ∠BCD的平分线,EF为∠BED的平分线. (1)试探求:∠F与∠B、∠D之间的关系? (2)若∠B:∠D:∠F=2:4:x.求x的值.
解析:本题充分利用“8字模型”求解角的的问题 :
(1)根据角平分线的定义得到∠1=∠2, ∠3=∠4如下图 所示。再“8字模型”得到 ∠D+∠1=∠F+∠3, ∠B+∠4=∠F+∠2,然后把两式相加即可得到∠F与∠B、 ∠D之间的关系
(2)当∠B:∠D:∠F=2:4:x 时
设∠B=2k 则∠D=4k,∠F=kx ∵2∠F=∠B+∠D, ∴2kx=2k+4k ∴2x=2+4, ∴x=3.
六.说价值:
一叶知秋,题海不是解决问题的最好方法,如 果能够深入研究我们的典型题和一些基本的数学
模型,相信所有的题目都万变不离其宗---就如此题。
(2)设∠B=2k,则∠D=4k,∠F=kx,利用(1)中 的结论得到2kx=2k+4k,然后解关于x的方程即可.
五.说中考:三角形模型的应用
解(1)∵ CF为∠BCD的平分线, EF为∠BED的平分线
∴ ∠1=∠2,∠3=∠4
∵ ∠D+∠1=∠F+∠3 ∠B+∠4=∠F+∠2
∴ ∠B+∠D+∠1+∠4=2∠F+∠3+∠2 ∴ 2∠F=∠B+∠D
D
∴ ∠EOC+ ∠BOF=2300
∴ ∠A+∠B+ ∠C +∠D+∠E+ ∠F=2300
O
B
F
五.说推广:
人教版八年级数学上册《三角形的内角》三角形PPT精品课件

②当∠B=90°时,∠A+∠C=90° 即x°+3x°=90° 解得 x=22.5 ∴∠A=22.5°,∠C=67.5° ∴∠A:∠B=22.5°:90°=1:4 ∴m=4
综上,m的 值为2或4
作业布置
3、(2022·内蒙古鄂尔多斯·八年级期末)如图,B处在A处的南偏西45°方向,C处在A处 的南偏东15°方向,C处在B处的北偏东80°方向,则∠ACB的度数是_8_5_°___。
∠B=∠2(两直线平行,同位角相等)
又∵∠1+∠2+∠ACB=180°(等量代换)
∴∠A+∠B+∠ACB=180°(等量代换)
∴∠A+∠B+∠C=180°(等量代换)
新知讲解
方法三、证明:过点D作DE∥AC,DF∥AB
A E
F
B
D
C
∴∠C=∠EDB,∠B=∠FDC(两直线平行,同位角相等)
∴∠A+∠AED=180°,∠AED+∠EDF=180°(两直线平行,同旁内角互补) ∴∠A=∠EDF ∴∠EDB+∠EDF+∠FDC=180° ∴∠A+∠B+∠C=180°
新知讲解
测量法
600
锐角三角形
480
720
60°+48°+72°=180°
新知讲解
折叠法
B
A
1
2
3
C
演示
新知讲解
C
剪
B C
A
A
B
切
C AB
CA B法Biblioteka BC新知讲解
那么,我们如何通过“数学证明”来解释三角形的内 角和一定是180°呢?
第十一章三角形第一课时三角形的边课件八年级数学人教版上册

△DBE、△CBE、
( C ) 困,你是人类艺术的源泉,你将伟大的灵感赐予诗人。
△ABC、△ABD、△ACE、△ADE 天才是由于对事业的热爱感而发展起来的,简直可以说天才。
△ABC、△ABD、△ACE、△ADE 1 与三角形有关的线段 1 与三角形有关的线段 天才是由于对事业的热爱感而发展起来的,简直可以说天才。
共_4__个等腰三角形为__△__A__B_C__、__△__A__B_D__、__△__A__C_E__、__△__A__D_E__, 有__1__个等边三角形.
三角形的三边关系
【2020·徐州】若一个三角形的两边长分别为 3 cm、6 cm,
则它的第三边的长可能是( C )
A.2 cm
B.3 cm
丈夫志不大,何以佐乾坤。 一个人如果胸无大志,既使再有壮丽的举动也称不上是伟人。
∵a、b、c 是△ABC 的三边长,根据两边之和大于第 儿童有无抱负,这无关紧要,可成年人则不可胸无大志。
鹰爱高飞,鸦栖一枝。 鸟贵有翼,人贵有志。 有志不在年高,无志空活百岁。 困,你是人类艺术的源泉,你将伟大的灵感赐予诗人。
1△D与BE三、角△形C有BE关、的线段
天△才AB是C由、于△对AB事D业、的△热AC爱E感、而△发AD展E起来的,简直可以说天才。
儿△童DB有E、无△抱C负B,E、这无关紧要,可成年人则不可胸无大志。
△ABD、△ABE、△ABC
△ABD、△ABE、△ABC
△ABD、△ABE、△ABC
△DBE、△CBE、
C.6 cm
D.9 cm
名师点评:三角形的三边关系是判断线段能否组成三角形的 依据,一般只需判断三角形的最长边是否小于其余两边之和即可, 不必每个都验证.
最新部编版人教初中数学八年级上册《第十一章(三角形)全章课件》精品优秀完美整章每课PPT

三角形的分类
按边分类
按角分类
三角
形的
分类
(1)按内角的大小判断一个三角形的形状时主要 知识 看三角形中最大内角的度数;(2)等边三角形是 解读 特殊的等腰三角形;(3)三角形按边分类的包含
图,如下图
知识 解读
三角形
例2 下列说法中,描述正确的是___②__④____(填序号). ①三角形按边分类可分为三边都不相等的三角形、等腰 三角形和等边三角形; ②等边三角形是特殊的等腰三角形; ③等腰三角形是特殊的等边三角形; ④两边相等的三角形一定是等腰三角形,但不一定是等 边三角形.
不一定
巧记乐背
中线高线角平分线, 各为三条是线段, 有高可得线垂直, 中线可得等线段, 平分内角角平分线, 灵活运用真简单.
(1)三角形的三条高所在的位置:如图,锐角三角 形的三条高,都在三角形内部;直角三角形的三条高, 其中两条是直角边,另一条在三角形的内部;钝角三角 形的三条高,其中两条在三角形外部,另一条在三角形 内部.
图11-1-1
解:图中共有五个三角形,分别是 △AMN,△ABC,△MBE,△BEC,△ENC. 其中,△AMN的三条边分别是AM,AN,MN,三个角分 别是∠A,∠AMN,∠ANM.
找三角形时,可以按“边”的顺序逐一来找,如此题 中以AB为边的△ABC,以AM为边的△AMN,以BM为 边的△MBE,以NC为边的△ENC,以EC为边的△BEC.
A. 1,2,3.5
B. 4,5,9
C. 5,8,15
D. 6,8,9
解析:选择较短的两条线段,计算它们的和是否 大于最长的线段,若大于,则能组成三角形,否则不 能组成三角形,只有6+8=14>9,所以长度为6,8,9的 三条线段能组成三角形.故选D.
人教版八年级上册数学第十一章三角形全章课件

B
D
A DC
C
锐角三角形的三条高
每人画一个锐角三角形. (1) 你能画出这个三角形的三条高吗? (2) 这三条高之间有怎样的位置关系?
将你的结果与同伴进行交流.
锐角三角形的三条高是
B
在三角形的内部还是外部?
A
F
OE
C D
锐角三角形的三条高交于同一点. 锐角三角形的三条高都在三角形的内部.
直角三角形的三条高
(2)它们所在的直线交于一点吗? D
将你的结果与同伴进行交流.
钝角三角形的三条高不相交于 一点. 钝角三角形的三条高所在直线 交于一点.
O
F
B
C
E
从三角形中的一个顶点向它的对边所在直线作垂线, 顶点和垂足之间的线段 叫做三角形这边的高.
三角形的三条高的特性:
•锐角三角形 •直角三角形 •钝角三角形
E,F为AB上一点,CF⊥AD于H,判断下列说法哪些是正确的,
哪些是错误的. A
①AD是△ABE的角平分线( × )
②BE是△ ABD边AD上的中线( × ) ③BE是△ ABC边AC上的中线( × ) F
12 E G
④CH是△ ACD边AD上的高( √ ) B
H
D
C
三角形的高、中线与角平分线都是线段.
3.(滨州中考)若某三角形的两边长分别为3和4,则下列
长度的线段能作为其第三边的是(
)
A.1
B.5
C.7
D.9
【解析】选B.设第三边为x,则1<x<7.
4.若△ABC的三边为a,b,c,则化简︱a+b-c︱+︱ba-c︱的结果是( ). A. 2a-2b B.2a+2b+2c C. 2a D. 2a-2c
最新人教部编版八年级数学上册《第十一章 三角形【全章】》精品PPT优质课件

2.完成练习册本课时内容。
学习体会 1、本节课你学到了哪些基本知识? 2、本节课你学到了哪些解题方法? 3、还有哪些知识和方法上的问题?
Thank you!
Good Bye!
11.1 与三角形有关的线段
即三角形两边的和大于第三边. B
C
由不等式②③移项可得 BC >AB -AC, BC >AC -AB.由此你能得出什么结论?
A
三角形两边的差小于第三边.
B
C
问题:下列长度的三条线段能否组成三角形?为 什么?(1)3,4,5;(2)5,6,11;(3)5,6,10. 解:(1)能.因为3 + 4>5,3 + 5>4,4 + 5>3,
解:①如果 4 cm 长的边为底边,设腰长为 x cm,则
4 + 2x = 18. 解得 x = 7. ②如果 4 cm 长的边为腰,设底边长为 x cm,则
4×2 + x = 18. 解得 x = 10.
因为4 + 4<10,不符合三角形两边的和大于第 三边,所以不能围成腰长为 4 的等腰三角形.
基础巩固
随堂演练
1.下列说法:①等边三角形是等腰三角形;②
三角形按边分类可分为等腰三角形、等边三角形、
不等边三角形;③三角形的两边之差大于第三边;
④三角形按角分类应分为锐角三角形、直角三角
形、钝角三角形. 其中正确的有( B )
A.1个
B.2个
C.3个
D.4个
2.已知三角形的一边长为 5 cm,另一 边长为 3 cm .则第三边的长 x 的取值范围是 __2_c_m__<__x_<__8_c_m___.
拓展延伸 3.等腰三角形的周长为 20 厘米. (1)若已知腰长是底长的 2 倍,求各边的长; (2)若已知一边长为 6 厘米,求其他两边的长.
学习体会 1、本节课你学到了哪些基本知识? 2、本节课你学到了哪些解题方法? 3、还有哪些知识和方法上的问题?
Thank you!
Good Bye!
11.1 与三角形有关的线段
即三角形两边的和大于第三边. B
C
由不等式②③移项可得 BC >AB -AC, BC >AC -AB.由此你能得出什么结论?
A
三角形两边的差小于第三边.
B
C
问题:下列长度的三条线段能否组成三角形?为 什么?(1)3,4,5;(2)5,6,11;(3)5,6,10. 解:(1)能.因为3 + 4>5,3 + 5>4,4 + 5>3,
解:①如果 4 cm 长的边为底边,设腰长为 x cm,则
4 + 2x = 18. 解得 x = 7. ②如果 4 cm 长的边为腰,设底边长为 x cm,则
4×2 + x = 18. 解得 x = 10.
因为4 + 4<10,不符合三角形两边的和大于第 三边,所以不能围成腰长为 4 的等腰三角形.
基础巩固
随堂演练
1.下列说法:①等边三角形是等腰三角形;②
三角形按边分类可分为等腰三角形、等边三角形、
不等边三角形;③三角形的两边之差大于第三边;
④三角形按角分类应分为锐角三角形、直角三角
形、钝角三角形. 其中正确的有( B )
A.1个
B.2个
C.3个
D.4个
2.已知三角形的一边长为 5 cm,另一 边长为 3 cm .则第三边的长 x 的取值范围是 __2_c_m__<__x_<__8_c_m___.
拓展延伸 3.等腰三角形的周长为 20 厘米. (1)若已知腰长是底长的 2 倍,求各边的长; (2)若已知一边长为 6 厘米,求其他两边的长.
人教版数学八年级上册-第11章-三角形-复习(共38张PPT)省公开课获奖课件市赛课比赛一等奖课件

形旳外角中必有两个角是钝角;
D、锐角三角形中两锐角旳和必然不不小于
60O;
随堂检测
• 1.一种三角形旳三边长是整数,周1 长为5,则最
小边为
;
• 2三.木角形工具师有稳傅定做性 完门框后,为预防变形,通常在 角上钉一斜条,根据3是60
•
90O
;
• 3.小明绕五边形各边走一圈,他共转了 度
。
(1)、(2)、(4)
可表达为:五边形ABCDE 或五边形AEDCB
B
内角
E
外角
C
对角线:连接多边形不相邻旳两个 顶点旳线段。
1
D
对角线
10、多边形旳分类
请分别画出下列两个图形各边所在旳直线,你能得到什么结论?
D
E
A
G C
B
(1)
H F
(2)
如图(1)这么,画出多边形旳任何一条边所在旳直线,整个多边形都在这 条直线旳同一侧,那么这个多边形就是凸多边形。本节我们只讨论凸多边形。
那么(C )
A、只有一种截法 B、只有两种截法 C、有三种截法 D、有四种截法
3、等腰三角形旳腰长为a,底为X,则X旳取值范围是( A )
A、0<X<2a B、0<X<a C、0<X<a/2 D、0<X≤2a
随堂检测
4、一种正多边形每一种内角都是120o,这个多边形是( C )
A、正四边形
B、正五边形
随堂检测
101试卷库 三角形旳复习 随堂测试
同学们要仔细答题哦!
随堂检测
1、三角形三个内角旳度数分别是(x+y)o, (x-y)o,xo,且x>y>0,则该三角形有一种
内角为 ( C )