苏教版七年级数学上册数轴

合集下载

金老师教育培训苏教版数学讲义含同步练习七年级上册03数轴 知识讲解

金老师教育培训苏教版数学讲义含同步练习七年级上册03数轴  知识讲解

数轴——知识讲解【学习目标】1.理解数轴的概念及三要素,能正确画出数轴;2.能用数轴上的点表示有理数,初步感受数形结合的思想方法;3.能利用数轴比较有理数的大小.【要点梳理】要点一、数轴定义:规定了原点、正方向和单位长度的直线叫做数轴.要点诠释:(1)定义中的“规定”二字是说原点的选定、正方向的取向、单位长度大小的确定,都是根据需要“规定”的.通常,习惯取向右为正方向.(2)长度单位与单位长度是不同的,单位长度是根据需要选取的代表“1”的线段,而长度单位是为度量线段的长度而制定的单位.有km、m、dm、cm等.要点二、数轴的画法(1)画一条直线(通常画成水平位置);(2)在这条直线上取一点作为原点,这点表示0;(3)规定直线上向右为正方向,画上箭头;(4)再选取适当的长度,从原点向右每隔一个单位长度取一点,依次标上1,2,3,…从原点向左,每隔一个单位长度取一点,依次标上-1,-2,-3,…要点诠释:(1)原点的位置、单位长度的大小可根据实际情况适当选取.(2)确定单位长度时根据实际情况,有时也可以每隔两个(或更多的)单位长度取一点.要点三、数轴与有理数的关系任何一个有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数,还可以表示其他数,比如 .要点诠释:(1)一般地,数轴上原点右边的点表示正数,左边的点表示负数;反过来也对,即正数用数轴上原点右边的点表示,负数用原点左边的点表示,零用原点表示.(2)一般地,在数轴上表示的两个数,右边的数总比左边的数大.【典型例题】类型一、数轴的概念及画法1.下列各图中,能正确表示数轴的是()A. B.C. D.【思路点拨】根据数轴的三要素:原点、正方向、单位长度,即可解答.【答案】D【解析】解:由数轴的三要素:原点、正方向、单位长度,可知D正确;故选:D.【总结升华】数轴是一条直线,可以向两端无限延伸;数轴的三要素:原点、正方向、单位长度缺一不可.2.一只蚂蚁沿数轴从点A向右直爬15个单位到达点B,点B表示的数为﹣2,则点A所表示的数为()A. 15B. 13C. -13D.-17 【答案】D 【解析】设点A 所表示的数为x ,x+15=﹣2,解得:x=﹣17,故选:D . 【总结升华】本题考查的是数轴的知识,掌握数轴的概念和性质是解题的关键,点在数轴上的运动规律是向左减,向右加.举一反三:【变式】如图为北京地铁的部分线路.假设各站之间的距离相等且都表示为一个单位长.现以万寿路站为原点,向右的方向为正,那么木樨地站表示的数为________,古城站表示的数为________;如果改以古城站为原点,那么木樨地站表示的数变为________.【答案】3,-5,8类型二、利用数轴比较大小3.在数轴上表示2.5,0,34-,-1,-2.5,114,3有理数,并用“<”把它连接起来. 【思路点拨】根据数轴的三要素先画好数轴,表示数的字母要依次对应有理数,然后根据在数轴上表示的两个数,右边的数总比左边的数大,比较大小.【答案与解析】如图所示,点A 、B 、C 、D 、E 、F 、G 分别表示有理数2.5,0,34-,-1,-2.5,114,3.由上图可得:312.5101 2.5344-<-<-<<<< 【总结升华】注意数轴上整单位的点一般用细短线表示,而表示题目中的数的点,应画成实心的小圆点. 举一反三:【变式1】有理数a 、b 在数轴上的位置如图所示,下列各式不成立的是( )A .b ﹣a >0B .﹣b <0C .﹣a >﹣bD .﹣ab <0【答案】D【变式2】填空:大于763-且小于767的整数有______个; 比533小的非负整数是____________. 【答案】11;0,1,2,34.若p ,q 两数在数轴上的位置如下图所示,请用“<”或“>”填空.①p______q; ②-p______0; ③-p______-q ; ④-p______q ;【答案】>;<;<;>【解析】根据相反数的几何意义,将p,q,-p,-q均表示在数轴上,如下图:然后再根据数轴上右边的数比左边的数大,及原点右边的点表示大于0的正数,而原点左边的点表示小于0的负数,可得上述答案.【总结升华】在数轴上表示的两个数,右边的数总比左边的数大.正数都大于0;负数都小于0;正数大于一切负数.【巩固练习】一、选择题1.如图所示的数轴中,画得正确的是( )2.下列说法正确的是( )A.数轴上一个点可以表示两个不同的有理数B.数轴上的两个不同的点表示同一个有理数C.有的有理数不能在数轴上表示出来D.任何一个有理数都可以在数轴上找到与它对应的唯一点3. 如图所示,在数轴上点A表示的数可能是()A.1.5 B.-1.5 C.-2.6 D.2.64.如图,数轴上有A,B,C,D四个点,其中到原点距离相等的两个点是()A.点B与点DB. 点A与点CC. 点A与点DD. 点B与点C5.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这条数轴上任意画出一条长为2004厘米的线段AB,则线段AB盖住的整点的个数是( )A.2002或2003 B.2003或2004C.2004或2005 D.2005或20066.北京、纽约等5个城市的国际标准时间(单位:小时)可在数轴上表示如图若将两地国际标准时间的差简称为时差,则()A.首尔与纽约的时差为13小时B.首尔与多伦多的时差为13小时C.北京与纽约的时差为14小时D.北京与多伦多的时差为14小时二、填空题7.不大于4的正整数的个数为.8.数轴上到-3的距离等于2的数是 ________.9.数轴上点A、B的位置如图所示,若点B关于点A的对称点为C,则点C表示的数为.10.长为2个单元长度的木条放在数轴上,最多能覆盖个整数点.11.如图,点A,B在数轴上对应的实数分别为m,n,则A,B间的距离是.(用含m,n的式子表示)12.已知-1<a<0<1<b,请按从小到大的顺序排列-1,-a,0,1,-b为__________.三、解答题13.把下列各数在数轴上表示出来,并用“>”号把它们连接起来.+2,0,1-32,-2,-1.5,11214.某中学位于东西方向的人民路上,这天学校的王老师出校门去家访,她先向东走100米到聪聪家,再向西走150米到青青家,再向西走200米到刚刚家.(1)如果把这条人民路看作一条数轴,以向东为正方向,以校门口为原点.请你在这条数轴上标出他们三家与学校的大概位置(一格表示50米).(2)聪聪家与刚刚家相距多远?(3)聪聪家向西210米是体育场,体育场所在的点表示的数是多少?15.在数轴上有三个点A、B、C(如图).请回答:(1)写出数轴上距点B三个单位的点所表示的数;(2)将点C向左移动6个单位到达点D,用“<”号把A、B、D三点所表示的数连接起来;(3)怎样移动A、B、C中的两个点才能使三个点所表示的数相同(写出一种移动方法即可).【答案与解析】一、选择题1.【答案】B【解析】A错,没有正方向;B正确,满足数轴的三要素;C错,负数排列错误;D错,单位长度不统一.2.【答案】D【解析】A、B、C都错误,因为所有的有理数都能在数轴上表示出来,但数轴上的点不都表示有理一个有理数在数轴上只有一个表示它的点.数轴上表示有理数的点一个点对应一个有理数.3.【答案】C【解析】:∵点A位于﹣3和﹣2之间,∴点A表示的实数大于﹣3,小于﹣2.4.【答案】C.5.【答案】C【解析】若线段AB的端点与整数重合,则线段AB盖住2005个整点;若线段AB的端点不与整点重合,则线段AB盖住2004个整点.可以先从最基础的问题入手.如AB=2为基础进行分析,找规律,所以答案:C.6.【答案】B【解析】本题以“北京等5个城市的国际标准时间”为材料,编拟了一道与数轴有关的实际问题.从选项上分析可得:两个城市之间相距几个单位长度,两个点之间的距离即为时差.所以首尔与纽约的时差为14小时,首尔与多伦多的时差为13小时,北京与纽约的时差为13小时,北京与多伦多的时差为12小时,因此答案:B.二、填空题7.【答案】4个.【解析】解:如图所示:由数轴上4的位置可知:不大于4的正整数有1、2、3、4共4个.故答案为:4个.8.【答案】-5或-1【解析】若该数在-3的左边,这个数为-3-2=-5;若该数在-3右边,则该数为-3+2=-1;所以答案为:-5或-1.9.【答案】-5【解析】首先确定C点应在原点的左边即为负数,又点A与点B之间的距离为4,再由对成性得:点C 表示的数为-5.10.【答案】3【解析】如图所示:长为2个单元长度的木条放在数轴上,最多能覆盖3个整数点.11.【答案】n-m【解析】∵n>0,m<0.∴它们之间的距离为:n-m12.【答案】-b<-1<0<-a<1三、解答题13.【解析】解:在数轴上表示出来如图所示.根据这些点在数轴上的排列顺序,从右至左分别用“>”连接为:+2>112>0>-1.5>-2>1-3214.【解析】解:(1)如图所示:;(2)150+200=350(米);(3)体育场所在点所表示的数是100﹣210=﹣110.15.【解析】解:(1)因为点B所表示的数是-2,则距点B三个单位的点所表示的数有-2-3=-5,-2+3=1;(2)点C向左移动6个单位到达点D,则点D表示的数为-3,所以-4<-3<-2.(3)把A点向右移动2个单位,C点向左移动5个单位.(答案不唯一)。

苏教版七年级上册第二单元数轴习题附答案

苏教版七年级上册第二单元数轴习题附答案

a b a c §2.2 数轴一、选择题1.图1中所画的数轴,正确的是( )-1A 21543B -1210C 210D2.在数轴上,原点及原点左边的点所表示的数是( )A .正数B .负数C .非负数D .非正数3.与原点距离是2.5个单位长度的点所表示的有理数是( )A .2.5B .-2.5C .±2.5D .这个数无法确定4.关于-32这个数在数轴上点的位置的描述,正确的是( ) A .在-3的左边 B .在3的右边 C .在原点与-1之间 D .在-1的左边5.一个点从数轴的原点开始,先向左移动3个单位长度,再向右移动6个单位长度,这个点最终所对应的数是( )A .+6B .-3C .+3D .-96.不小于-4的非正整数有( )A .5个B .4个C .3个D .2个7.如图所示,是数a ,b 在数轴上的位置,下列判断正确的是( )A .a<0B .a>1C .b>-1D .b<-1二、填空题1.数轴的三要素是_____________.2.数轴上表示的两个数,________边的数总比________边的数大.3.在数轴上表示数6的点在原点_______侧,到原点的距离是_______个单位长度,表示数-8的点在原点的______侧,到原点的距离是________个单位长度.表示数6的点到表示数-8的点的距离是_______个单位长度.4.有理数a ,b ,c 在数轴上的位置如图所示,用“<”将a ,b ,•c•三个数连接起来________.5.大于-3.5小于4.7的整数有_______个. 6.用“>”、“<”或“=”填空.(1)-10______0;(2)32________-23;(3)-110_______-19;(4)-1.26________114; (5) 23________-12;(6)- _______3.14;(7)-0.25______-14;(8)-14________15. 7.在数轴上到表示-2的点相距8个单位长度的点表示的数为_________.三、解答题1.画出数轴并标出表示下列各数的点,并用“〈”把下列各数连接起来.-312,4,2.5,0,1,7,-5. 2.如图所示,根据数轴上各点的位置,写出它们所表示的数. -2-4F ED C B A3.一个点从数轴上表示-2的点开始,按下列条件移动后,到达终点,•说出终点所表示的数,并画图表示移动过程.(1)先向右移动3个单位,再向右移动2个单位.(2)先向左移动5个单位,再向右移动3个单位.(3)先向左移动3.5个单位,再向右移动1.5个单位.(4)先向右移动2个单位,再向左移动6.5个单位.四、创新题1.初一(4)班在一次联欢活动中,把全班分成5个队参加活动,游戏结束后,5个队的得分如下:A 队:-50分;B 队:150分;C 队:-300分;D 队:0分;E 队:100分.(1)将5个队按由低分到高分的顺序排序;(2)把每个队的得分标在数轴上,并将代表该队的字母标上;(3)从数轴上看A 队与B 队相差多少分?C 队与E 队呢?2.超市、书店、•玩具店依次坐落在一条东西走向的大街上,•超市在书店西边20米处,玩具店位于书店东边50米处.小明从书店出来沿街向东走了50米,接着又向东走了-80米,此时小明的位置在何处?在数轴上标出超市、书店、•玩具店的位置,以及小明最后的位置.五、竞赛题1.比较a 与-a 的大小.2.如图所示,数轴上标出若干个点,每相邻两点相距一个单位长度,点A ,B ,C ,•D 对应的数分别是数a ,b ,c ,d ,且d-2a=10,那么数轴的原点应是哪一点?D C B A六、中考题1.冬季某天我国三个城市的最高气温分别是-10℃,1℃,-7℃,把它们从高到低排列正确的是( )A .-10℃,-7℃,1℃;B .-7℃,-10℃,1℃C .1℃,-7℃,-10℃;D .1℃,-10℃,-7℃2.比较大小:-1_______-2; -23_______-34; -3________2答案一、1.D 2.D 3.C 4.D 5.C 6.A 7.D二、1.原点、正方向和单位长度 2.右 左 3.右 6 左 8 14 4.c<a<b • 5.86.(1)< (2)> (3)> (4)< (5)> (6)< (7)= (8)< 7.6或-10三、1.画图(略) -5<-312<-112<0<1<2.5<4<7 2.A0 B-1 C413 D-2.5 E213 F-4 3.如图所示:(1)3(2)-4(3)-4(4)-4四、1.(1)C 队 A 队 D 队 E 队 B 队;(2)如图所示:100-200200-100E D CB A(3)A 队与B 队相差200分,C 队与E 队相差400分.2.如图所示,小明位于超市西边10米处.玩具店书店超市五、1.(1)当a>0时,a>-a ;(2)当a=0时,a=-a ;(3)当a<0时,a<-a .2.B 为原点.六、1.C 2.> 3.> 4.-3<2.。

苏教版七年级数学上第二章2.3数轴专题训练(一)(含答案)

苏教版七年级数学上第二章2.3数轴专题训练(一)(含答案)

制作整理:麦老师最新2020年苏教版七年级数学上第二章 2.3数轴专题训练(一)一、选择题1.在数轴上到原点距离等于3的数是()A. 3B.C. 3或D. 不知道2.若数轴上表示-1和3的两点分别是点A和点B,则点A和点B之间的距离是()A. B. C. 2 D. 43.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是()A. B.C. D.4.下列选项中正确表示数轴的是()A. B. C. D.5.在数轴上,到表示1的点的距离等于6的点表示的数是()A. B. 7 C. 或7 D. 56.如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为()A. B. 6 C. 0 D. 无法确定7.数轴上点A表示a,将点A沿数轴向左移动3个单位得到点B,设点B所表示的数为x,则x可以表示为A. B. C. D.8.若数轴上点A、B分别表示数2、-2,则A、B两点之间的距离可表示为()A. B. C. D.二、填空题9.数轴上,将表示的点向右移动3个单位后,对应点表示的数是______ .10.如图,点O,A在数轴上表示的数分别是0,l,将线段OA分成1000等份,其分点由左向右依次为M1,M2 (999)将线段OM1分成1000等份,其分点由左向右依次为N1,N2 (999)将线段ON1分成1000等份,其分点由左向右依次为P1,P2 (999)则点P314所表示的数用科学记数法表示为______.11.数a、b在数轴上对应点的位置如图所示,则①a ______ 0,②b ______ 0,③a ______ b(填“>”、“<”或“=”)12.如果在数轴上A点表示-2,那么在数轴上与点A距离3个长度单位的点所表示的数是______.13.若点A表示数-3,将点A向左移动1个单位长度,再向右移动5个单位长度,那么终点表示的数是______.14.将数轴上一点P先向右移动3个单位长度,再向左移动5个单位长度,此时它表示的数是4,则原来点P表示的数是______.15.点A在数轴上的位置如图所示,则点A表示的数的相反数是______.16.将数轴上表示-1的点A向右移动5个单位长度,此时点A所对应的数为______.三、解答题点A、B在数轴上的位置如图所示:(1)点A表示的数是______,点B表示的数是______;(2)在原图中分别标出表示+1.5的点C、表示-3.5的点D;(3)在上述条件下,B、C两点间的距离是______,A、C两点间的距离是______.17.(1)画出数轴,并在数轴上画出表示下列各数的点:-4.5,-2,3,0,4;(2)用“<”号将(1)中各数连接起来;(3)直接填空:数轴上表示3和表示1的两点之间的距离是______,数轴上A点表示的数为4,B点表示的数为-2,则A、B之间的距离是______.18.如图,数轴上点A对应的有理数为20,点P以每秒2个单位长度的速度从点A出发,点Q以每秒4个单位长度的速度从原点O出发,且P,Q两点同时向数轴正方向运动,设运动时间为t秒.(1)当t=2时,P,Q两点对应的有理数分别是______,______,PQ=______;(2)当PQ=10时,求t的值.19.已知|a|=2,|b|=2,|c|=3,且有理数a,b,c在数轴上的位置如图所示,计算a+b+c的值.20.在数轴上表示下列各数:0,-4.2,,-2,+7,,并用“<”号连接.21.如图,已知A,B分别为数轴上的两点,点A表示的数是-30,点B表示的数是50.(1)请写出线段AB中点M表示的数是______.(2)现有一只蚂蚁P从点B出发,以每秒3个单位长度的速度沿数轴向左移动,同时另一只蚂蚁Q恰好从点A出发,以每秒2个单位长度的速度沿数轴向右移动,设两只蚂蚁在数轴上的点C相遇.①求A、B两点间的距离;②求两只蚂蚁在数轴上的点C相遇时所用的时间;③求点C对应的数是多少?(3)若蚂蚁P从点B出发,以每秒3个单位长度的速度沿数轴向左运动,同时另一只蚂蚁恰好从A点出发,以每秒2个单位长度的速度沿数轴也向左运动,设两只蚂蚁在数轴上的D点相遇,求D点表示的数是多少?22.已知,A、B在数轴上对应的数分别用a、b表示,且(a-20)2+|b+10|=0,P是数轴上的一个动点.(1)在数轴上标出A、B的位置,并求出A、B之间的距离;(2)已知线段OB上有点C且|BC|=6,当数轴上有点P满足PB=2PC时,求P点对应的数;(3)动点P从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…….点P能移动到与A或B重合的位置吗?若不能,请直接回答;若能,请直接指出,第几次移动,与哪一点重合.23.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A、B两点的位置,分别写出它们所表示的有理数A:______ B:______;(2)观察数轴,与点A的距离为4的点表示的数是:______;(3)若将数轴折叠,使得A点与-3表示的点重合,则B点与数______表示的点重合.答案1、C2、D3、B4、D5、C6、B7、A8、B9、110、3.14×10-7 11、<;>;<12、-5或1 13、1 14、615、-2 16、417、(1)-2;3;(2)如图,(3)1.5;3.518、(1)如图:;(2)-4.5<-2<0<3<4;(3)2;6.19、(1)24,8,16;20、a+b+c=2-2+3=3.21、-4.2<-2<0<<<+7.22、(1)10;(2)①A、B两点间的距离为:50-(-30)=80,②两只蚂蚁在数轴上的点C相遇时所用的时间为:80÷(3+2)=16(秒),③点C对应的数是:50-16×3=2;(3)D点表示的数是:50-[50-(-30)]÷(3-2)×3=-190.26、(1)1 ,-2.5 ;(2)5或-3 ;(3)0.5 .。

苏教版七年级数学上册 2.3 数轴 同步练习(含答案解析)

苏教版七年级数学上册 2.3 数轴 同步练习(含答案解析)

2.3数轴一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•溧水区期末)如图,数轴的单位长度为1,如果点A表示的数为﹣2,那么点B表示的数是()A.3 B.2 C.0 D.﹣12.(2020•丰县模拟)如图,数轴的单位长度为1,如果点A表示的数为﹣2,那么点B表示的数是()A.﹣1 B.0 C.3 D.43.(2019秋•东海县期末)在数轴上与表示﹣2的点相距5个单位长度的点所表示的数是()A.3 B.﹣7 C.7 D.3或﹣74.(2019秋•云龙区期末)点M为数轴上表示﹣2的点,将点M沿数轴向右平移5个单位到点N,则点N 表示的数是()A.3 B.5 C.﹣7 D.3或﹣75.(2019秋•阜宁县期末)在数轴上与表示﹣2的点距离等于3的点所表示的数是()A.1 B.5 C.1或5 D.1或﹣56.(2019秋•泗阳县期末)数轴上表示整数的点称为整点,某数轴的单位长度为1cm,若在数轴上画出一条长2015cm的线段AB,则AB盖住的整点个数是()A.2015或2016 B.2014或2015 C.2016 D.20157.(2019秋•仪征市校级期末)在数轴上距离原点2个单位长度的点所表示的数是()A.2 B.﹣2 C.2或﹣2 D.1或﹣18.(2019秋•贵港期末)数轴上的点A到原点的距离是4,则点A表示的数为()A.4 B.﹣4 C.4或﹣4 D.2或﹣29.(2019秋•建湖县期中)如图,将刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“0cm”和“3cm”分别对应数轴上的3和0,那么刻度尺上“5.8cm”对应数轴上的数为()A.5.8 B.﹣2.8 C.﹣2.2 D.﹣1.810.(2019秋•南京月考)北京等5个城市的当地时间(单位:时)可在数轴上表示如下:如果将两地时间的差简称为时差,那么()A.汉城与多伦多的时差为13小时B.汉城与纽约的时差为13小时C.北京与纽约的时差为14小时D.北京与多伦多的时差为14小时二、填空题(本大题共10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在横线上)11.(2019秋•秦淮区期末)数轴上到原点的距离等于2个单位长度的点表示的数是.12.(2019秋•栖霞区期末)点A、B在数轴上对应的数分别为﹣2和5,则线段AB的长度为.13.(2019秋•黄冈期末)若点A、B是数轴上的两个点,点A表示的数是﹣4,点B与点A的距离是2,点B表示的数是.14.(2019秋•宿州期末)数轴上的点A所对应的有理数是2,那么在数轴上与A点相距5个单位长度的点所对应的有理数.15.(2019秋•苏州期末)在数轴上,与﹣3表示的点相距4个单位的点所对应的数是.16.(2020春•南岗区期末)在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是.17.(2019秋•织金县期末)一个点从数轴的原点开始,向右移动5个单位长度,再向左移动8个单位长度,到达的终点表示的数是.18.(2019秋•琅琊区期末)写出一个在和1之间的负整数:.19.(2019秋•邗江区校级期中)数轴上点M表示的有理数是﹣3,将点M向右平移2个单位长度到达点N,则N表示的有理数为.20.(2019秋•宿豫区期中)如图,把半径为1的圆形纸片放在数轴上,圆形纸片上的A点对应2,将圆形纸片沿着数轴无滑动的逆时针滚动一周,点A到达点A′的位置,则点A′表示的数是.三、解答题(本大题共4小题,共40分.解答时应写出文字说明、证明过程或演算步骤)21.(2019秋•洪泽区期末)数轴上,点M表示﹣2,现从M点开始先向右移动3个单位到达P点,再从P 点向左移动5个单位到达Q点.(1)点P、Q各表示什么数?(2)到达Q点后,再向哪个方向移动几个单位,才能回到原点?22.(2019秋•建邺区期中)已知数轴上的点A、B、C、D分别表示﹣3、﹣1.5、0、4.(1)请在数轴上标出A、B、C、D四个点;(2)B、C两点之间的距离是;(3)如果把数轴的原点取在点B处,其余条件都不变,那么点A、C、D分别表示的数是.23.(2019秋•鄂城区期中)邮递员骑车从邮局出发,先向西骑行2km到达A村,继续向西骑行3km到达B 村,然后向东骑行7km到达C村,最后回到邮局.(1)以邮局为原点,向东方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示A、B、C三个村庄的位置;(2)C村离A村多远?(3)邮递员一共骑行了多少千米?24.(2019秋•兴化市期中)小明骑车从家出发,先向东骑行4km到达A村,继续向东骑行3km到达B村.然后向西骑行10km到达C村,最后回到家.(1)以家为原点.以向东方向为正方向.用lcm表示1km.画出数轴.并在数轴上表示出A.B.C三个村庄的位置.(2)小明一共行了多少km?答案解析一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•溧水区期末)如图,数轴的单位长度为1,如果点A表示的数为﹣2,那么点B表示的数是()A.3 B.2 C.0 D.﹣1【分析】由题意得AB=5,即﹣2+5即为点B表示的数.【解析】﹣2+5=3,故选:A.2.(2020•丰县模拟)如图,数轴的单位长度为1,如果点A表示的数为﹣2,那么点B表示的数是()A.﹣1 B.0 C.3 D.4【分析】根据数轴的单位长度为1,点B在点A的右侧距离点A5个单位长度,直接计算即可.【解析】点B在点A的右侧距离点A有5个单位长度,∴点B表示的数为:﹣2+5=3,故选:C.3.(2019秋•东海县期末)在数轴上与表示﹣2的点相距5个单位长度的点所表示的数是()A.3 B.﹣7 C.7 D.3或﹣7【分析】分点在﹣2的左边和右边两种情况讨论求解.【解析】若点在﹣2的左边,则﹣2﹣5=﹣7,若点在﹣2的右边,则﹣2+5=3,所以,在数轴上与表示﹣2的点相距5个单位长度的点所表示的数是﹣7或3.故选:D.4.(2019秋•云龙区期末)点M为数轴上表示﹣2的点,将点M沿数轴向右平移5个单位到点N,则点N 表示的数是()A.3 B.5 C.﹣7 D.3或﹣7【分析】根据在数轴上平移时,左减右加的方法计算即可求解.【解析】由M为数轴上表示﹣2的点,将点M沿数轴向右平移5个单位到点N可列:﹣2+5=3,故选:A.5.(2019秋•阜宁县期末)在数轴上与表示﹣2的点距离等于3的点所表示的数是()A.1 B.5 C.1或5 D.1或﹣5【分析】根据数轴上到一点距离相等的点有两个,位于该点的左右,可得答案.【解析】数轴上与表示﹣2的点距离等于3的点所表示的数是﹣5或1,故选:D.6.(2019秋•泗阳县期末)数轴上表示整数的点称为整点,某数轴的单位长度为1cm,若在数轴上画出一条长2015cm的线段AB,则AB盖住的整点个数是()A.2015或2016 B.2014或2015 C.2016 D.2015【分析】某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2015厘米的线段AB,则线段AB盖住的整点的个数可能正好是2016个,也可能不是整数,而是有两个半数那就是2015个.【解析】依题意得:①当线段AB起点在整点时覆盖2016个数,②当线段AB起点不在整点,即在两个整点之间时覆盖2015个数,综上所述,盖住的点为:2015或2016.故选:A.7.(2019秋•仪征市校级期末)在数轴上距离原点2个单位长度的点所表示的数是()A.2 B.﹣2 C.2或﹣2 D.1或﹣1【分析】分点在原点左边与右边两种情况讨论求解.【解析】①在原点左边时,∵距离原点2个单位长度,∴该点表示的数是﹣2;②在原点右边时,∵距离原点2个单位长度,∴该点表示的数是2.综上,距离原点2个单位长度的点所表示的数是﹣2或2.故选:C.8.(2019秋•贵港期末)数轴上的点A到原点的距离是4,则点A表示的数为()A.4 B.﹣4 C.4或﹣4 D.2或﹣2【分析】在数轴上点A到原点的距离为4的数有两个,意义相反,互为相反数.即4和﹣4.【解析】在数轴上,4和﹣4到原点的距离为4.∴点A所表示的数是4和﹣4.故选:C.9.(2019秋•建湖县期中)如图,将刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“0cm”和“3cm”分别对应数轴上的3和0,那么刻度尺上“5.8cm”对应数轴上的数为()A.5.8 B.﹣2.8 C.﹣2.2 D.﹣1.8【分析】根据数轴上点的表示方法,直接判断即可.【解析】刻度尺上5.8cm对应数轴上的点距离数轴上原点(刻度尺上表示3的点)的距离为2.8,且该点在原点的左侧,故刻度尺上“5.8cm”对应数轴上的数为﹣2.8.故选:B.10.(2019秋•南京月考)北京等5个城市的当地时间(单位:时)可在数轴上表示如下:如果将两地时间的差简称为时差,那么()A.汉城与多伦多的时差为13小时B.汉城与纽约的时差为13小时C.北京与纽约的时差为14小时D.北京与多伦多的时差为14小时【分析】理解两地国际标准时间的差简称为时差.根据有理数减法法则计算,减去一个数等于加上这个数的相反数.【解析】汉城与多伦多的时差为9﹣(﹣4)=13小时;汉城与纽约的时差为9﹣(﹣5)=14小时;北京与纽约的时差为8﹣(﹣5)=13小时;北京与多伦多的时差为8﹣(﹣4)=12小时.故选:A.二、填空题(本大题共10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在横线上)11.(2019秋•秦淮区期末)数轴上到原点的距离等于2个单位长度的点表示的数是±2.【分析】根据数轴上两点间距离的定义进行解答即可.【解析】设数轴上,到原点的距离等于2个单位长度的点所表示的有理数是x,则|x|=2,解得,x=±2.故答案为:±2.12.(2019秋•栖霞区期末)点A、B在数轴上对应的数分别为﹣2和5,则线段AB的长度为7.【分析】根据数轴上两点距离公式进行计算即可.【解析】AB=|﹣2﹣5|=7,故答案为:7.13.(2019秋•黄冈期末)若点A、B是数轴上的两个点,点A表示的数是﹣4,点B与点A的距离是2,点B表示的数是﹣6或﹣2.【分析】根据题意,分两种情况:(1)点B在点A的左边;(2)点B在点A的右边;求出点B表示的数为多少即可.【解析】(1)点B在点A的左边时,点B表示的数为:﹣4﹣2=﹣6.(2)点B在点A的右边时,点B表示的数为:﹣4+2=﹣2.∴点B表示的数为﹣6,﹣2.故答案为﹣6或﹣2.14.(2019秋•宿州期末)数轴上的点A所对应的有理数是2,那么在数轴上与A点相距5个单位长度的点所对应的有理数﹣3或7.【分析】此题注意考虑两种情况:当点在已知点的左侧;当点在已知点的右侧.【解析】在A点左边与A点相距5个单位长度的点所对应的有理数为﹣3;在A点右边与A点相距5个单位长度的点所对应的有理数为7.故答案为:﹣3或7.15.(2019秋•苏州期末)在数轴上,与﹣3表示的点相距4个单位的点所对应的数是1或﹣7.【分析】根据题意得出两种情况:当点在表示﹣3的点的左边时,当点在表示﹣3的点的右边时,列出算式求出即可.【解析】分为两种情况:①当点在表示﹣3的点的左边时,数为﹣3﹣4=﹣7;②当点在表示﹣3的点的右边时,数为﹣3+4=1;故答案为:1或﹣7.16.(2020春•南岗区期末)在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是﹣1和5.【分析】点A所表示的数为2,到点A的距离等于3个单位长度的点所表示的数有两个,分别位于点A 的两侧,分别是﹣1和5.【解析】2﹣3=﹣1,2+3=5,则A表示的数是:﹣1或5.故答案为:﹣1或5.17.(2019秋•织金县期末)一个点从数轴的原点开始,向右移动5个单位长度,再向左移动8个单位长度,到达的终点表示的数是﹣3.【分析】根据向右为“+”、向左为“﹣”分别表示为+5和﹣8,再相加即可得出答案.【解析】点从数轴的原点开始,向右移动5个单位长度,表示为+5,在此基础上再向左移动8个单位长度,表示为﹣8,则到达的终点表示的数是(+5)+(﹣8)=﹣3,故答案为:﹣3.18.(2019秋•琅琊区期末)写出一个在和1之间的负整数:﹣2,﹣1.【分析】把和1之间的负整数在数轴上表示出来,通过观察数轴来解答,正整数、0、负整数统称为整数.【解析】如图所未,通过数轴观察,可以确定出和1之间的负整数为:﹣2,﹣1.故答案为:﹣2,﹣1.19.(2019秋•邗江区校级期中)数轴上点M表示的有理数是﹣3,将点M向右平移2个单位长度到达点N,则N表示的有理数为﹣1.【分析】根据题意画出数轴,借助数轴找出点N的位置即可.【解析】根据题意画图如下:M表示的有理数是﹣3,将点M向右平移2个单位长度到达点N,则N表示的有理数为﹣1;故答案为:﹣1.20.(2019秋•宿豫区期中)如图,把半径为1的圆形纸片放在数轴上,圆形纸片上的A点对应2,将圆形纸片沿着数轴无滑动的逆时针滚动一周,点A到达点A′的位置,则点A′表示的数是2﹣2π.【分析】因为圆形纸片从2沿数轴逆时针即向左滚动一周,可知OA′=2π,再根据数轴的特点即可解答.【解析】∵半径为1个单位长度的圆形纸片从2沿数轴向左滚动一周,∴OA′之间的距离为圆的周长=2π,A′点在2的左边,∴A′点对应的数是2﹣2π.故答案是:2﹣2π.三、解答题(本大题共4小题,共40分.解答时应写出文字说明、证明过程或演算步骤)21.(2019秋•洪泽区期末)数轴上,点M表示﹣2,现从M点开始先向右移动3个单位到达P点,再从P 点向左移动5个单位到达Q点.(1)点P、Q各表示什么数?(2)到达Q点后,再向哪个方向移动几个单位,才能回到原点?【分析】(1)利用数轴上点的移动规律:左减右加得出点P、Q各表示什么数即可;(2)根据得出Q点表示的数与原点的位置,回答问题即可.【解析】(1)点M表示﹣2,P点表示﹣2+3=1,Q点表示1﹣5=﹣4;(4)﹣4在原点的左边,距离原点4个单位,所以向右移动4个单位,才能回到原点.22.(2019秋•建邺区期中)已知数轴上的点A、B、C、D分别表示﹣3、﹣1.5、0、4.(1)请在数轴上标出A、B、C、D四个点;(2)B、C两点之间的距离是 1.5;(3)如果把数轴的原点取在点B处,其余条件都不变,那么点A、C、D分别表示的数是﹣1.5,0,1.5,5.5.【分析】(1)在数轴上描出四个点的位置即可;(2)根据两点之间的距离公式可求B、C两点的距离;(3)原点取在B处,相当于将原数加上1.5,从而计算即可.【解析】(1)如图所示:(2)B、C两点的距离=0﹣(﹣1.5)=1.5;(3)点A表示的数为:﹣3+1.5=﹣1.5,点B表示的数为0,点C表示的数为0+1.5=1.5,点D表示的数为4+1.5=5.5.故答案为:1.5;﹣1.5,0,1.5,5.5.23.(2019秋•鄂城区期中)邮递员骑车从邮局出发,先向西骑行2km到达A村,继续向西骑行3km到达B 村,然后向东骑行7km到达C村,最后回到邮局.(1)以邮局为原点,向东方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示A、B、C三个村庄的位置;(2)C村离A村多远?(3)邮递员一共骑行了多少千米?【分析】(1)根据已知条件在数轴上表示出来即可;(2)根据题意列出算式,即可得出答案;(3)根据数轴把邮递员骑行的路程相加即可求解.【解析】(1)如图所示:(2)C村离A村的距离为2+2=4(km);(3)邮递员一共行驶了2+3+7+2=14(千米).故邮递员一共骑行了14千米.24.(2019秋•兴化市期中)小明骑车从家出发,先向东骑行4km到达A村,继续向东骑行3km到达B村.然后向西骑行10km到达C村,最后回到家.(1)以家为原点.以向东方向为正方向.用lcm表示1km.画出数轴.并在数轴上表示出A.B.C三个村庄的位置.(2)小明一共行了多少km?【分析】(1)画出数轴,然后根据题意标注点A、B、C即可;(2)根据图形列出算式计算即可得解.【解析】(1)A,B,C三个村庄的位置,如图所示;(2)小明一共行:4+3+10+3=20km.。

苏教版七年级数学上册基本知识点

苏教版七年级数学上册基本知识点

苏教版七年级数学学问点一、有理数1、正数:比0大的数是正数;2、负数:比0小的数是负数;3、0既不是正数也不是负数。

4、有理数包括整数和分数;整数包括正整数、0和负整数;分数包括正分数和负分数。

5、数轴:规定了原点、正方向和单位长度的直线叫做数轴,它包括三个方面:1)数轴的三要素:原点、正方向和单位长度,缺一不行。

2)数轴是一条直线,可以向两边无限延长。

3)原点的选定、正方向的取向、单位长度大小的确定都是依据须要“规定〞的。

6、数轴的画法1)画:画一条程度直线。

2)取:在直线上选取一点为原点,并在原点的下面标上“0〞。

3)定:确定正方向,画上箭头〔向右为正〕。

4)选:依据须要选取适当的长度作为单位长度。

依据须要从原点右向左选取各点。

7、数轴上的点及有理数的关系1)任何一个有理数都可以数轴的一个点来表示。

2)正数可以用原点右边的点表示,负数可以用原点左边的点表示,0用原点表示。

3)数轴上的点右边的点总比左边的点表示的数大(右边为数轴正方向)。

8、最小的正整数是“1〞;最大的负正数是“-1〞;没有最大的正整数,也没有最小的负整数。

9、肯定值的概念1)肯定值的几何意义:一个数a的肯定值就是数轴上表示a的点及原点的间隔,数a的肯定值记作“│a│〞。

2)肯定值的代数意义:一个正数的肯定值是它本身;一个负数的肯定值是它的相反数;0的肯定值是0.也就是说:假如a>0那么│a│=a;假如a< 0那么│a│=-a;假如a=0那么│a│=03) 肯定值的非负性:任何一个有理数的肯定值都不行能是一个负数,即非负数。

│a│≥04〕要求一个数〔或一个代数式〕的肯定值,首先应推断这个数〔或这个代数式的值〕是正数、0,还是负数。

再依据肯定值的意义确定去掉肯定值符号后的形式。

如:是正数,就等于它的本身;是负数,就等于它的相反数。

是0,就等于0。

5〕0是肯定值最小的有理数;肯定值等于同一正数的有理数有两个,它们互为相反数。

苏教版七年级--数轴上动点问题

苏教版七年级--数轴上动点问题

例1:如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足|a+2|+(b+3a)2=0(1)求A、B两点之间的距离;(2)若在数轴上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①分别表示甲、乙两小球到原点的距离(用t表示);①求甲、乙两小球到原点的距离相等时经历的时间.例2:如图,有一数轴原点为O,点A所对应的数是-12,点A沿数轴匀速平移经过原点到达点B.(1)如果OA=OB,那么点B所对应的数是什么?(2)从点A到达点B所用时间是3秒,求该点的运动速度.(3)在(2)的条件下,从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且KC=KA,分别求点K和点C所对应的数。

例3动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.已知动点A、B的速度比是1:4.(速度单位:单位长度/秒)(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间;(3)在(2)中A、B两点继续同时向数轴负方向运动时,另一动点C同时从B点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后立即返回向A点运动,如此往返,直到B追上A时,C立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单位长度.例4:已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?例5数轴上两个质点A、B所对应的数为-8、4,A、B两点各自以一定的速度在上运动,且A点的运动速度为2个单位/秒.(1)点A、B两点同时出发相向而行,在原点处相遇,求B点的运动速度;(2)A、B两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;(3)A、B两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,且在运动过程中,始终有CB:CA=1:2,若干秒钟后,C停留在-10处,求此时B点的位置?例6:在数轴上,点A表示的数是-30,点B表示的数是170.(1)求A、B中点所表示的数.(2)一只电子青蛙m,从点B出发,以4个单位每秒的速度向左运动,同时另一只电子青蛙n,从A点出发以6个单位每秒的速度向右运动,假设它们在C点处相遇,求C点所表示的数.(3)两只电子青蛙在C点处相遇后,继续向原来运动的方向运动,当电子青蛙m处在A 点处时,问电子青蛙n处在什么位置?(4)如果电子青蛙m从B点处出发向右运动的同时,电子青蛙n也向右运动,假设它们在D点处相遇,求D点所表示的数例7、已知数轴上有A、B、C三点,分别代表- 24,- 10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。

2江苏版初中数学七年级上册专题课件.3 数轴

2江苏版初中数学七年级上册专题课件.3 数轴
3.数轴上表示-2与表示5的两点间的距离是_______. 4.数轴上到原点距离等于4个单位长度的点是_______. 5.一个点从原点的位置开始先向右移动3个单位长度,再 向右移动5个单位长度,这时的点表示的数是________.
二、利用数轴比较有理数的大小
问题:把-2℃, -3℃,0℃,5℃,1 ℃按从低到高的顺序 排列.
A
B
-4 -3 -2 -1 0 1 2
因为点A在点B的左边,所以-3.5<-1.5.
1.用“<”或“>”填空: (1) 3.6___2.5 ;
(3) -16___-1.6;
(5) -2.1___+1.2;

3 2
_(_7_)_
2 3
.
(2) -3___0; (4) +1___-10; (6) -9___-7;
2. 在数轴上画出表示下列各数的点,并用“<”把这些 数按从小到大的顺序连接起来:
1 ,0,2,- 3,5,-1.5. 2
3.如图,数轴上A,B,C三个点分别表示有理数a,b,
c.
· · · C
A
B
-3 -2 -1 0 1 2 3 4 5 6
(1)把a,b,c按从小到大的顺序排列起来. (2)如果将点B向左移动6个单位长度,同时将点C向右移 动5个单位长度,点A不动,移动后,a,b,c三个数的 大小关系如何?最大的数比最小的数大多少?
2.规定直线上从原点向右为正方向(画箭头表示),向 左为负方向.
3.取适当长度(如1cm)为单位长度,在直线上,从原点 向右每隔一个单位长度取一点,依次表示1,2,3,4,… 从原点向左每隔一个单位长度取一点,依次表示-1,-2, -3,-4,….

苏教版初一年级数学上册知识点

苏教版初一年级数学上册知识点

2019苏教版初一年级数学上册知识点同学们,查字典数学网为您整理了2019苏教版初一年级数学上册知识点,希望帮助您提供多想法。

正数与负数在以前学过的0以外的数前面加上负号-的数叫负数(negative number)。

与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上+)。

1.2 有理数正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。

整数和分数统称有理数(rational number)。

通常用一条直线上的点表示数,这条直线叫数轴(number axis)。

数轴三要素:原点、正方向、单位长度。

在直线上任取一个点表示数0,这个点叫做原点(origin)。

只有符号不同的两个数叫做互为相反数(opposite number)。

(例:2的相反数是-2;0的相反数是0)数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

两个负数,绝对值大的反而小。

1.3 有理数的加减法有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

3.一个数同0相加,仍得这个数。

有理数减法法则:减去一个数,等于加这个数的相反数。

1.4 有理数的乘除法有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。

乘积是1的两个数互为倒数。

有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

两数相除,同号得正,异号得负,并把绝对值相除。

0除以任何一个不等于0的数,都得0。

m求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。

在a的n次方中,a叫做底数(base number),n 叫做指数(exponent)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数轴
教学目标: 1、会用数轴上的点表示有理数;
2、借助数轴了解相反数的概念,知道有理数的大小。

画数轴的步骤是:
1、画一条水平直线,并在直线上取一点表示O,我们把这个点称为原点。

2、规定直线上从原点向右为正方向(画箭头表示),向左为负方向。

3、取适当长度(如1cm)为单位长度,在直线上,从原点向右每隔一个单位长度取一点,一次表示1,2,3……从原点向左每隔一个单位长度取一点,一次表示-1,-2,-3……。

像这样规定了原点、正方形和单位长度的直线叫做数轴。

数轴的要素是:原点、正方向、单位长度;
如何确定一个正方向:向右为正方向;
如何确定一条数轴的长度单位呢?:可以由自己确定,例如以1cm为一个单位长度,也可以以0.5厘米为一个单位长度,但是在同一条数轴上的单位一旦确定下来,就不能再更改。

注意:在数轴上表示的两个数,右边的数总比左边的数大。

正数都大于0,负数都小于0,正数大于负数。

1、如果数轴上点A到原点的距离为3,点B到原点的距离为5,则点A、点B各代表什么数?A、B 两点间的距离是多少?
2、小明从A地向东跑了100米,然后掉头向西跑了80米,又折回向东跑了60米,你能否用数轴求出小明最终位于A地哪个方向?有多远?
3、一个蚂蚱在数轴上跳动,先从A点向左跳1个单位到B点,然后由B点向右跳2个单位到C点.如果C点表示的数是-3,则A点表示的数是
1、在数轴上,表示-5的数在原点的侧,它到原点的距离是个单位长度。

2、在数轴上,离原点距离等于3的数是。

3、在数轴上,表示+2的点在原点的侧,距原点个单位;表示-7的点在原点的侧,
距原点个单位;两点之间的距离为个单位长度。

4、在数轴上,把表示3的点沿着数轴向负方向移动5个单位,则与此位置相对应的数是。

5、与原点距离为2.5个单位长度的点有个,它们表示的有理数是。

6、到原点的距离不大于3的整数有个,它们是:。

若数轴上表示―3的点记为A,表示2的点记为B,那么把A点向____边移动_____个单位长度就得到了B点.
7、下列说法错误的是()
A.没有最大的正数,却有最大的负数
B.数轴上离原点越远,表示数越大
C.0大于一切非负数
D.在原点左边离原点越远,数就越小
8、下列结论正确的有( )个:
① 规定了原点,正方向和单位长度的直线叫数轴 ② 最小的整数是0 ③ 正数,负数和零统称有理数 ④ 数轴上的点都表示有理数
A.0
B.1
C.2
D.3
9、数轴上A 和B 点表示的数分别为-2和1,要使A 点表示的数是B 的3倍,应把A 点 ( )
A.向左移动5个单位
B.向右移动5个单位
C.向右移动4个单位
D.向左移动1个单位或向右移动5个单位
10、判断下列所画的数轴是否正确,如不正确,请指出. -10(1)1 0(2) -10(3)1 -2-10(4)12 (5)1234-3-2
-10(6)123
11、在数轴上,原点及原点左边的点所表示的数是( )
A .正数
B .负数
C .非负数
D .非正数
12、与原点距离是2.5个单位长度的点所表示的有理数是( )
A .2.5
B .-2.5
C .±2.5
D .这个数无法确定
13、关于-3
2这个数在数轴上点的位置的描述,正确的是( )
A .在-3的左边
B .在3的右边
C .在原点与-1之间
D .在-1的左边
14、不小于-4的非正整数有( )
A .5个
B .4个
C .3个
D .2个
15、用“>”、“<”或“=”填空.
(1)-10______0;(2)3
2________-2
3;(3)-110_______-1
9;
(4)-1.26________11
4; (5) 2
3________-1
2;(6)- _______3.14;
16、在数轴上到表示-2的点相距8个单位长度的点表示的数为______.
17、图中表示数轴的是( )
18、在数轴上画出下列各点,它们分别表示:
+3, 0,-31
4
, 1
1
2
,-3,-1.25
并把它们用“<”连接起来。

19、在数轴上,原点和原点左边的点所表示的数统称为。

20、在数轴上3
-与6
-之间的有理数有()
A. 2个
B. 3个
C. 4个
D. 无数个
21、一个点从数轴上表示-1的点开始,向右移动6个单位长度,再向左移动5个单位长度,最后
到达的终点所表示的数是。

22、一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动7个单位长度,这时点所
对应的数是 ( )
A.-3
B.-1
C.-2
D.-4
23、把数轴上表示2的点移动5个单位后,所得的对应点表示的数是()
A.7 B.-3 C.7或-3 D.不能确定
24、把下列数表示在数轴上:+2,-1.5,0.5,0,-3.5,4,31 3
25、点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长到B点时,点B所表示的数是()
A.1
B.-6C.2或-6D.不同于以上答案。

相关文档
最新文档