苏教版初一数学试题

合集下载

苏教版七年级数学上册试卷【含答案】

苏教版七年级数学上册试卷【含答案】

苏教版七年级数学上册试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少厘米?A. 3厘米B. 23厘米C. 17厘米D. 27厘米3. 下列哪个数是偶数?A. 101B. 102C. 103D. 1044. 一个正方形的边长是5厘米,那么它的面积是多少平方厘米?A. 10B. 20C. 25D. 305. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/10二、判断题(每题1分,共5分)1. 任何一个偶数都能被2整除。

()2. 三角形的内角和是180度。

()3. 1是质数。

()4. 一个正方形的对角线长度等于它的边长的平方根。

()5. 0.3333是无限循环小数。

()三、填空题(每题1分,共5分)1. 9的平方根是______。

2. 两个质数相乘,其积一定是______。

3. 一个长方形的长是8厘米,宽是4厘米,那么它的面积是______平方厘米。

4. 下列哪个数是合数?______5. 如果一个三角形的两个内角分别是45度和45度,那么第三个内角是______度。

四、简答题(每题2分,共10分)1. 请简述质数和合数的区别。

2. 请解释三角形内角和的概念。

3. 请简述偶数和奇数的区别。

4. 请解释正方形的对角线长度是如何计算的。

5. 请简述最简分数的概念。

五、应用题(每题2分,共10分)1. 一个长方形的长是10厘米,宽是5厘米,请计算它的面积。

2. 请找出30以内的所有质数。

3. 如果一个三角形的两个内角分别是60度和70度,请计算第三个内角的度数。

4. 请将分数2/4化简为最简分数。

5. 请计算下列各式的值:√25,√36,√49。

六、分析题(每题5分,共10分)1. 请分析并解释为什么质数在数学中非常重要。

2. 请分析并解释为什么三角形的内角和总是180度。

初一数学《正、负数、有理数、数轴、相反数》测试卷(苏教版)

初一数学《正、负数、有理数、数轴、相反数》测试卷(苏教版)

初一数学《正、负数、有理数、数轴、相反数》测试卷(苏教版)初一上册正数和负数、有理数、数轴、相反数能力测试题(带答案苏教版)【能力测试一】1.填空题(1)假如+5千克表示增加5千克,那么-7千克表示__________.(2)初一年级举行乒乓球赛,初一(5)班获胜4局记作+4,则-2表示__________.(3)某仓库现有库存棉花1000千克,运出了+500千克,还剩_____ _____千克.(4)假如把中午12点以后的时刻规定为正,那么-2表示实际时刻是__________点.(5)若规定盈利为正,则亏损120元记作__________,没有盈利,也没有亏损记作__________元.(6)假如+80米表示向南走80米,那么-40表示__________米.2.甲、乙、丙三位同学在一次数学测验中分别得93分、85分和81分,以班级平均分85分为基准,用正数或负数表示这三位同学高于或低于平均分的情形.有理数【能力测试二】1.把下列各数填写在相应的集合圈里.+7,-121,+3,-,0.125,-3,0,-5,+3,+12.有理数集合负数集合正数集合整数集合正整数集合2.判定题(1)零是最小的有理数.()(2)数0是整数.()(3)正整数差不多上整数.()(4)一个数的前面添个“-”,它确实是负数.()(5)正数和负数统称为有理数.()(6)海洋最深处的深度是低于海平面-11022米.()数轴【能力测试三】1.“规定了原点、正方向和长度单位的直线叫数轴”这句话对吗?什么缘故?2.如图1-2中,a表示正数依旧负数?b呢?3.在数轴上,离开原点7个单位长度的点所表示的有理数是什么?4.数轴上原点所表示的数既不是正数,也不是负数,它表示的数是什么?图1-25.画一条数轴,并在数轴上表示下列各数:6,-6,1,-3,0.6.填空题(1)在数轴上,到原点的距离等于3个单位长度的点所表示的有理数是_______。

苏教版数学初一试题及答案

苏教版数学初一试题及答案

苏教版数学初一试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是正整数?A. -3B. 0C. 1D. -1答案:C2. 如果一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 无法确定答案:C3. 根据乘法分配律,下列哪个等式是正确的?A. a(b+c) = ab + bcB. a(b-c) = ab - acC. a(b+c) = ab + acD. a(b-c) = ab + bc答案:A4. 一个数的平方根是它本身,这个数可能是:A. 1B. 0C. -1D. 4答案:B5. 若a > 0,b < 0,且|a| > |b|,则a + b的值:A. 一定大于0B. 一定小于0C. 可能大于0也可能小于0D. 无法确定答案:A二、填空题(每题2分,共10分)6. 一个数的相反数是-8,这个数是______。

答案:87. 如果一个数的平方是36,那么这个数是______。

答案:±68. 一个数的立方是-27,这个数是______。

答案:-39. 一个数的绝对值是5,这个数可能是______或______。

答案:5或-510. 一个数的倒数是1/2,这个数是______。

答案:2三、计算题(每题5分,共20分)11. 计算下列各题:(1) (-3) × (-2) = ______;答案:6(2) (-4)² = ______;答案:16(3) √25 = ______;答案:5(4) 2³ - 3 × 2 = ______;答案:5四、解答题(每题15分,共30分)12. 某班有40名学生,其中男生比女生多5人。

求男生和女生各有多少人?答案:设女生人数为x,则男生人数为x+5。

根据题意,x + (x+5) = 40,解得x=17.5,但人数不能为小数,所以题目有误。

13. 某工厂生产一批零件,合格率为95%,已知不合格的零件有20个,求这批零件共有多少个?答案:设这批零件共有x个,不合格率为5%,即0.05x=20,解得x=400。

苏教版初中初一数学试卷

苏教版初中初一数学试卷

一、选择题(每题3分,共30分)1. 下列各数中,负数是()。

A. -3B. 3C. 0D. -5.22. 如果a=2,那么-2a等于()。

A. -4B. 4C. 0D. 23. 在数轴上,-2和2两点之间的距离是()。

A. 4B. 2C. 0D. 14. 下列各数中,无理数是()。

A. πB. √4C. 0.5D. 35. 一个长方形的长是5厘米,宽是3厘米,它的周长是()。

A. 8厘米B. 10厘米C. 15厘米D. 18厘米6. 如果一个数的相反数是它本身,那么这个数是()。

A. 0B. 1C. -1D. 27. 下列各式中,正确的是()。

A. 2×3=6B. 2×(-3)=-6C. 2×3=-6D. 2×(-3)=68. 如果a=-3,那么|-a|的值是()。

A. 3B. -3C. 6D. 09. 下列各数中,质数是()。

A. 4B. 6C. 8D. 710. 一个圆的半径是r,那么它的直径是()。

A. 2rB. rC. 4rD. r/2二、填空题(每题3分,共30分)1. 有理数a和b,如果a+b=0,那么a和b互为()。

2. 一个数的绝对值是5,那么这个数可能是()或()。

3. 如果|a|=5,那么a的相反数是()。

4. 在数轴上,-3和3两点之间的距离是()。

5. 一个数的倒数是-1/3,那么这个数是()。

6. 下列各数中,有理数是()。

7. 下列各数中,无理数是()。

8. 一个长方形的长是8厘米,宽是4厘米,它的面积是()。

9. 一个圆的半径是3厘米,那么它的周长是()。

10. 下列各式中,正确的是()。

三、解答题(每题10分,共40分)1. 计算下列各式的值:(1)-3 + 5 - 2(2)2×(-3) + 4×2 - 12. 用数轴表示下列各数:(1)-2(2)53. 求下列各数的相反数:(1)3(2)-54. 判断下列各数是否为有理数,并说明理由:(1)√2(2)0.333...四、应用题(每题10分,共20分)1. 一辆汽车从甲地出发,以每小时60公里的速度行驶,3小时后到达乙地。

苏教版初一数学试卷

苏教版初一数学试卷

苏教版初一数学试卷一、选择题(每小题3分,共30分) 1.-∣-3∣的绝对值是( )A .3B .-3C .- 13D .132.计算:(一1)+2的结果是( )A .-1B .1C .-3D .33.在下列实数中,无理数是( )A .13B .πC .16D .2274.天宫一号是中国第一个目标飞行器,于2011年9月29日21时16分3秒在酒泉卫星发射中心发射,飞行器高速运行时速到达28 000 000 000米以上,运行时速用科学记数法表示为 ( ) A .28×109米 B .2.8×109米 C .2.8×1010米 D .0.28×1011米 5.下列说法中,不正确的个数有:( ) ①所有的正数都是整数。

②a一定是正数。

③无限小数一定是无理数。

④8(2)-没有平方根。

⑤不是正数的数一定是负数。

⑥带根号的一定是无理数。

A . 3个B . 4个C .5个D .6个 6.下列运算正确的是( )A .24±=B .6)2(3-=- C .24-=- D .422=-7.若0)1(|21|2=++-b a ,则32b a +的值是( )A .21-B .43-C .45D .43±8.估算23的值( )A .在1到2之间B .在2到3之间C .在3到4之间D .在4到5之间9.实数a ,b 在数轴上的对应点如图所示,则下列不等式中正确的是( ) A .0a b +< B .0<-a b C .0<abD .0<ba10.如图,网格中的每个小正方形的边长为1,如果把阴影部分 剪拼成一个正方形,那么这个新正方形的边长是 ( ) A .6 B .7 C .8D .3二、填空题(每小题3分,共24分)11.若上升15米记作+15米,则下降4米记作 米.12.16的算术平方根是 ,9的平方根是 ,—0.008的立方根是 13.比较大小:(1)13-______0;(2)0.05______-∣-1∣;(3)23-______53- 14.大于-2.5小于3的整数有____个,它们的和为____ 它们的积为____ 15.试举一列,说明“两个无理数的和仍是无理数”是错误的:____________ 16.某商品标价为800元,现按九折出售,仍可获利20%,则这种商品的进价___________元 . 17.定义一种新运算:b a b a -=⊗41,那么=-⊗)1(4 . 18.如图,下面是按照一定规律画出的“树形图”,经观察可以发现:图2A 比图1A 多出2个“树枝”, 图3A 比图2A 多出4个“树枝”, 图4A 比图3A 多出8个“树枝”,……,照此规律,图6A 比图2A 多出 个“树枝”.三、解答题(46分)19.(8分)把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接起来.()2-- , 5.3-- ,41, ()22-, 327- ,220.计算:(每小题3分,共12分)(1)-)3(4-- (2)222()3-÷-(3)11112()643⨯-+(﹣) (4))3(24)53()2(3-⨯----- 第18题21.(6分)把下列各数填在相应的表示集合的大括号内-2,π,31-,3--,722,-0.3,1.7,5,0,1.1010010001……整 数{ ……} 负分数{ ……} 无理数{ ……}22.(6分)10月1日这一天下午,警车司机小张在东西走向的江北大道上值勤.如果规定向东为正,警车的所有行程如下(单位:千米): +5,-4,+3,-6,-2,+10,-3,-7(1) 最后, 警车司机小张在距离出发点的什么位置?(2) 若警车每行驶10千米的耗油量为0.8升,那么这一天下午警车共耗油多少升?(3)如现在油价为每升7.34元,那么花费了多少油钱?23.(4分)计算:1111123420052006+++⋯⋯+⨯2⨯3⨯⨯24.(4分)在如图所示的3×3的方格中,画出2个面积小于..9的不同..的正方形...,同时要求所画正方形的顶点..都在方格..的顶点..上,并且写出边长(要求边长为无理数)25.(6分)探索与思考观察下列等式: 2311=233321=+23336321=++23333104321=+++(1)想一想:等式左边各项幂的底数与右边幂的底数有什么关系?(2)试一试:33333 9 4 3 2 1+⋅⋅⋅++++ = ____________.(3)猜一猜:=+⋅⋅⋅++++33333n 4 3 2 1 .参考答案一、选择题(每小题3分,共30分)题号 1 2 34 5 6 7 8 9 10答案BBBCDCBDAC二、填空题(每小题3分,共24分) 11、4- 12、4,3和-3,-0.2 13、<,>,< 14、4,-2,015. 略 16、900 17、2 18、60 三、解答题(46分)19、(6分)略 (在数轴上正确表示每个1分,大小比较2分。

七年级数学第一次月考卷(苏科版2024)(解析版)【测试范围:第一章~第二章】

七年级数学第一次月考卷(苏科版2024)(解析版)【测试范围:第一章~第二章】

2024-2025学年七年级数学上学期第一次月考卷基础知识达标测(考试时间:120分钟 试卷满分:120分)考前须知:1.本卷试题共24题,单选6题,填空10题,解答8题。

2.测试范围:第一章~第二章(苏科版2024)。

第Ⅰ卷一、单选题1.―12024的相反数是( )A .―2024B .12024C .―12024D .以上都不是【答案】B【分析】本题主要考查了相反数的定义,解题的关键是熟练掌握“只有符号不同的两个数互为相反数”.根据相反数的定义解答即可.【详解】解:―12024的相反数是12024,故选:B .2.有下列说法:①一个有理数不是正数就是负数;②整数和分数统称为有理数;③零是最小的有理数;④正分数一定是有理数;⑤―a 一定是负数,其中正确的个数是( )A .1B .2C .3D .4【答案】B【分析】根据有理数的分类逐项分析判断即可求解.【详解】解:①一个有理数不是正数就是负数或0,故①不正确;②整数和分数统称为有理数,故②正确;③没有最小的有理数,故③不正确;④正分数一定是有理数,故④正确;⑤―a 不一定是负数,故④不正确,故选:B .【点睛】本题考查了有理数的分类,掌握有理数的分类是解题的关键.3.下列各组数相等的有()A.(―2)2与―22B.(―1)3与―(―1)2C.―|―0.3|与0.3D.|a|与a【答案】B【分析】根据负数的奇次幂是负数,负数的偶次幂是正数,可得答案.【详解】解∶ A.(―2)2=4,―22=―4,故(―2)2≠―22;B.(―1)3=―1,―(―1)2=―1,故(―1)3=―(―1)2;C.―|―0.3|=―0.3,0.3,故―|―0.3|≠0.3;D.当a小于0时,|a|与a不相等,;故选∶B.【点睛】本题考查了有理数的乘方,熟练求解一个数的乘方是解题的关键.4.观察下图,它的计算过程可以解释( )这一运算规律A.加法交换律B.乘法结合律C.乘法交换律D.乘法分配律【答案】D【分析】根据图形,可以写出相应的算式,然后即可发现用的运算律.【详解】解:由图可知,6×3+4×3=(6+4)×3,由上可得,上面的式子用的是乘法分配律,故选:D.【点睛】本题考查有理数的混合运算,熟练掌握运算律是解答本题的关键.5.如图,A、B两点在数轴上表示的数分别为a,b,有下列结论:①a―b<0;②a+b>0;>0.其中正确的有( )个.③(b―1)(a+1)>0;④b―1|a―1|A.4个B.3个C.2个D.1个【分析】本题主要考查了数轴,有理数的加减,乘除运算.先根据a、b在数轴上的位置判断出a、b的取值范围,再比较出各数的大小即可.【详解】解:观察数轴得:―1<a<0<1<b,∴a―b<0,故①正确;a+b>0,故②正确;b―1>0,a+1>0,∴(b―1)(a+1)>0,故③正确;b―1>0故④正确.|a―1|故选:A6.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法,图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A.160B.128C.80D.48【答案】A【分析】先计算出6×6方格纸片中共含有多少个3×2方格纸片,再乘以4即可得.【详解】由图可知,在6×6方格纸片中,3×2方格纸片的个数为5×4×2=40(个)则n=40×4=160故选:A.【点睛】本题考查了图形类规律探索,正确得出在6×6方格纸片中,3×2方格纸片的个数是解题关键.第II卷(非选择题)7.将数据52.93万用科学记数法表示为.【答案】5.293×105【分析】本题主要考查科学记数法,根据科学记数法的表示方法求解即可.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.解题关键是正确确定a的值以及n的值.【详解】解:52.93万=529300=5.293×105.故答案为:5.293×105.8.甲地海拔高度为―50米,乙地海拔高度为―65米,那么甲地比乙地.(填“高”或者“低”).【答案】高【分析】先计算甲地与乙地的高度差,再根据结果进行判断即可.【详解】解:由题意可得:(―50)―(―65)=―50+65=15>0,∴甲地比乙地高.故答案为:高【点睛】本题考查的是有理数的大小比较,有理数的减法运算的实际应用,理解题意是解本题的关键.9.绝对值大于1且不大于5的负整数有.【答案】―2,―3,―4,―5【分析】本题考查了绝对值的意义,根据绝对值的意义即可求解,掌握绝对值的意义是解题的关键.【详解】解:绝对值大于1且不大于5的负整数有―2,―3,―4,―5,故答案为:―2,―3,―4,―5.10.下表列出了国外几个城市与北京的时差(带正号的数表示同一时刻比北京早的点时数):城市纽约伦敦东京巴黎时差/时―13―8+1―7如果北京时间是9月13日17时,那么伦敦的当地时间是9月日时.【答案】13 9【分析】本题考查了正负数在实际生活中的应用.这是一个典型的正数与负数的实际运用问题,我们应联系现实生活认清正数与负数所代表的实际意义.此题中正数表示在北京时间向后推几个小时,即加上这个正数;负数表示向前推几个小时,即加上这个负数,据此解答即可.【详解】解:17―8=9,∵―8表示向前推8个小时,∴北京时间是9月13日17时,那么伦敦的当地时间是9月13日9时,故答案为:13,9.11.如图,将一刻度尺放在数轴上.若刻度尺上0cm和5cm对应数轴上的点表示的数分别为―3和2,则刻度尺上7cm对应数轴上的点表示的数是.【答案】4【分析】本题考查数轴的概念.由数轴的概念即可求解.【详解】解:∵0cm和5cm对应数轴上的点表示的数分别为―3和2,∴数轴的单位长度是1cm,∴原点对应3cm的刻度,∴数轴上与7cm刻度对齐的点表示的数是4,故答案为:4.12.如图所示是计算机程序计算,若开始输入x=―2,则最后输出的结果是.【答案】16【分析】本题主要考查了与程序流程图有关的有理数计算.先代入x=―2,计算出结果,若结果不大于10,则把计算的结果重新输入计算,如此往复直至计算的结果大于10即可.【详解】解:―2+4―(―2)=―2+4+2=4<10,4+4―(―2)=4+4+2=10,10+4―(―2)=10+4+2=16>0,故答案为:16.13.若(2a―1)2与2|b―3|互为相反数,则a b=.【答案】18【分析】本题考查相反数的概念及绝对值的知识.根据互为相反数的两个数的和为0,可得(2a―1)2与2|b―3|的和为0,再根据绝对值和偶次方的非负性即可分别求出a,b.【详解】∵ (2a ―1)2与2|b ―3|互为相反数∴ (2a ―1)2+2|b ―3|=0∵ (2a ―1)2≥0,2|b ―3|≥0∴2a ―1=0,2|b ―3|=0∴ a =12,b =3∴ a b =(12)3=18.故答案为:18.14.若a |a |+b |b |+c |c |+d |d |=2,则|abcd |abcd 的值为 .【答案】-1【分析】先根据a |a |+b |b |+c |c |+d |d |=2,a |a |,b |b |,c |c |,d |d |的值为1或-1,得出a 、b 、c 、d 中有3个正数,1个负数,进而得出abcd 为负数,即可得出答案.【详解】解:∵当a 、b 、c 、d 为正数时,a |a |,b |b |,c |c |,d |d |的值为1,当a 、b 、c 、d 为负数时,a |a |,b |b |,c |c |,d |d |的值为-1,又∵a |a |+b |b |+c |c |+d |d |=2,∴a 、b 、c 、d 中有3个正数,1个负数,∴abcd 为负数,∴|abcd |abcd =-1.故答案为:-1.【点睛】本题主要考查了绝对值的意义和有理数的乘法,根据题意得出a 、b 、c 、d 中有3个正数,1个负数,是解题的关键.15.新定义如下:f(x)=|x ―3|, g(y)=|y +2|; 例如:f(―2)=|―2―3|=5,g(3)=|3+2|=5;根据上述知识, 若f(x)+g(x)=6, 则x 的值为 .【答案】72或―52【分析】本题考查了新定义,求代数式的值,化简绝对值,绝对值方程,正确理解新定义是解题的关键.根据f(x)+g(x)=6得出含绝对值的方程,解方程可得答案.【详解】解:由题可得:|x ―3|+|x +2|=6,当x ≥3时,x ―3+x +2=6,解得x =72;当―2<x <3时,3―x +x +2=6,方程无解;当x ≤―2时,3―x ―x ―2=6,解得x =―52;故答案为:72或―52.16.定义一种关于整数n 的“F ”运算:(1)当n 是奇数时,结果为3n +5;(2)当n 是偶数时,结果是n 2k (其中k 是使n 2k 是奇数的正整数),并且运算重复进行.例如:取n =58,第一次经F运算是29,第二次经F 运算是92,第三次经F 运算是23,第四次经F 运算是74,……;若n =9,则第2023次运算结果是 .【答案】8【分析】此题考查的是探索规律题.由题意所给的定义新运算可得当n =9时,第一次经F 运算是32,第二次经F 运算是1,第三次经F 运算是8,第四次经F 运算是1,⋯,由此规律可进行求解.【详解】解:由题意n =9时,第一次经F 运算是3×9+5=32,第二次经F 运算是3225=1,第三次经F 运算是3×1+5=8,第四次经F 运算是823=1,⋯;从第二次开始出现1、8循环,奇数次是8,偶数次是1,∴第2023次运算结果8,故答案为:8.三、解答题17.计算.(1)(―59)―(―46)+(―34)―(+73)(2)(―334)―(―212)+(―416)―(―523)―1【答案】(1)―120(2)―34【分析】本题考查了有理数的混合运算.(1)去括号,再计算加减即可.(2)去括号,通分,再计算加法即可.【详解】(1)(―59)―(―46)+(―34)―(+73)=―59+46―34―73=―120(2)(―334)―(―212)+(―416)―(―523)―1=―334―2―416―5―1=―54+32―1=―3418.计算:(1)4×―12―34+2.5―|―6|;(2)―14―(1―0.5)×13―2―(―3)2.【答案】(1)―1;(2)356.【分析】(1)利用乘法分配律、绝对值的性质分别运算,再合并即可;(2)按照有理数的混合运算的顺序进行计算即可求解;本题考查了有理数的混合运算,掌握有理数的运算法则和运算律是解题的关键.【详解】(1)解:原式=4×――4×34+4×2.5―6=―2―3+10―6,=―1;(2)解:原式=―1―12×13―(2―9)=―1―16+7,=6―16,=356.19.如图,数轴上每个刻度为1个单位长度上点A 表示的数是―3.(1)在数轴上标出原点,并指出点B 所表示的数是 ;(2)在数轴上找一点C ,使它与点B 的距离为2个单位长度,那么点C 表示的数为 ;(3)在数轴上表示下列各数,并用“<”号把这些数按从小到大连接起来.2.5,―4,512,―212,|―1.5|,―(+1.6).【答案】(1)见解析,4(2)2或6(3)数轴表示见解析,―4<―212<―(+1.6)<|―1.5|<2.5<512【分析】本题主要考查了在数轴上表示有理数以及有理数的比较大小:(1)根据点A 表示―3即可得原点位置,进一步得到点B 所表示的数;(2)分两种情况讨论即可求解;(3)首先在数轴上确定表示各数的点的位置,再根据在数轴上表示的有理数,右边的数总比左边的数大用“<”号把这些数连接起来即可.【详解】(1)如图,O 为原点,点B 所表示的数是4,故答案为:4;(2)点C 表示的数为4―2=2或4+2=6.故答案为:2或6;(3)|―1.5|=1.5,―(+1.6)= 1.6,在数轴上表示,如图所示:由数轴可知:―4<―212<―(+1.6)<|―1.5|<2.5<51220.(1)已知|a |=5,|b |=3,且|a ―b |=b ―a ,求a ―b 的值.(2)已知a 和b 互为相反数,c 和d 互为倒数,x 的绝对值等于2,求式子: x ―(a +b +cd )+a+b cd 的值.【答案】(1)―8或―2;(2)1或―3【分析】本题考查有理数的混合运算,熟练掌握运算法则和运算顺序是解答本题的关键.(1)根据|a|=5,|b|=3,且|a―b|=b―a,可以得到a、b的值,然后代入所求式子计算即可;(2)根据a与b互为相反数,c与d互为倒数,x的绝对值等于2,可以得到a+b=0,cd=1,x=±2,然后代入所求式子计算即可.【详解】解:(1)∵|a|=5,|b|=3,∴a=±5,b=±3,∵|a―b|=b―a,∴b≥a,∴a=―5,b=±3,当a=―5,b=3时,a―b=―5―3=―8,当a=―5,b=―3时,a―b=―5―(―3)=―5+3=―2,由上可得,a+b的值是―8或―2;(2)∵a与b互为相反数,c与d互为倒数,x的绝对值等于2,∴a+b=0,cd=1,x=±2,∴当x=2时,x―(a+b+cd)+a+b cd=2―(0+1)+0 =2―1=1;当x=―2时,x―(a+b+cd)+a+b cd=―2―(0+1)+0=―2―1=―3.综上所述,代数式的值为1或―3.21.某风筝加工厂计划一周生产某种型号的风筝700只,平均每天生产100只,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(增产记为正、减产记为负);星期一二三四五六日增减+5―2―4+13―6+6―3(1)根据记录的数据,该厂生产风筝最多的一天是星期______;(2)产量最多的一天比产量最少的一天多生产多少只风筝?(3)该厂实行每周计件工资制,每生产一只风筝可得20元,若超额完成任务,则超过部分每只另奖5元;少生产一只扣4元,那么该厂工人这一周的工资总额是多少元?【答案】(1)四(2)19(3)14225【分析】(1)根据表格中的数据求解即可;(2)最高一天的产量减去最少一天的产量求解即可;(3)根据题意列出算式求解即可.【详解】(1)由表格可得,星期四生产的风筝数量是最多的,故答案为:四.(2)13―(―6)=19,∴产量最多的一天比产量最少的一天多生产19只风筝;(3)700+5―2―4+13―6+6―3=709(只)709×20+9×5=14225(元).∴该厂工人这一周的工资总额是14225元【点睛】本题考查了正数和负数,有理数的加减和乘法运算的实际应用.解决本题的关键是理解题意正确列式.22.阅读下面材料:点A、B在数轴上分别表示数a、b.A、B两点之间的距离表示为|AB|.则数轴上A、B两点之间的距离|AB|=|a﹣b|.回答下列问题:(1)数轴上表示1和﹣3的两点之间的距离是 ;数轴上表示﹣2和﹣5的两点之间的距离是 ;(2)数轴上表示x和﹣1的两点A和B之间的距离是 ,如果|AB|=2,那么x为 ;(3)当|x+1|+|x﹣2|取最小值时,符合条件的整数x有 ;(4)令y=|x+1|+|x﹣2|+|x﹣3|,问当x取何值时,y最小,最小值为多少?请求解.【答案】(1)4;3;(2)|x+1|,1或﹣3;(3)﹣1,0,1,2;(4)x=2时,y最小,最小值为4【分析】(1)根据两点间的距离的求解列式计算即可得解;(2)根据两点之间的距离表示列式并计算即可;(3)根据数轴上两点间的距离的意义解答;(4)根据数轴上两点间的距离的意义解答.【详解】解:(1)数轴上表示1和﹣3的两点之间的距离是:|1―(―3)|=1+3=4;数轴上表示﹣2和﹣5的两点之间的距离是:|―2―(―5)|=5―2=3;(2)∵A,B分别表示的数为x,﹣1,∴数轴上表示x和﹣1的两点A和B之间的距离是|x+1|,如果|AB|=2,则|x+1|=2,解得:x=1或﹣3;(3)当|x+1|+|x﹣2|取最小值时,﹣1≤x≤2,∴符合条件的整数x有﹣1,0,1,2;(4)当|x+1|+|x﹣2|+|x﹣3|取最小值时,x=2,∴当x=2时,y最小,即最小值为:|2+1|+|2﹣2|+|2﹣3|=4.故x=2时,y最小,最小值为4.【点睛】本题考查数轴与绝对值,熟练掌握数轴上两点之间距离的计算方法是解题的关键.23.观察下列三列数:―1、+3、―5、+7、―9、+11、……①―3、+1、―7、+5、―11、+9、……②+3、―9、+15、―21、+27、―33、……③(1)第①行第10个数是,第②行第10个数是;(2)在②行中,是否存在三个连续数,其和为83?若存在,求这三个数;若不存在,说明理由;(3)若在每行取第k个数,这三个数的和正好为―101,求k的值.【答案】(1)+19;―21(2)存在,这三个数分别为85,―91,89(3)k=―49【分析】本题主要考查了数字规律,一元一次方程的应用,做题的关键是找出数字规律.(1)第①和②行规律进行解答即可;(2)设三个连续整数为(―1)n﹣1(2n―3)―2,(―1)n(2n―1)―2,(―1)n+1(2n+1)―2,根据题意列出方程,即可出答案;(3)设k为奇数和偶数两种情况,分别列出方程进行解答.【详解】(1)解:根据规律可得,第①行第10个数是2×10―1=19;第②行第10个数是―(2×10+1)=―21;故答案为:+19;―21;(2)解:存在.理由如下:由(1)可知,第②行数的第n个数是(―1)n(2n―1)―2,设三个连续整数为(―1)n﹣1(2n―3)―2,(―1)n(2n―1)―2,(―1)n+1(2n+1)―2,当n为奇数时,则2n―3―2―2n+1―2+2n+1―2=83,化简得2n―7=83,解得n=45,这三个数分别为85,―91,89;当n为偶数时,则―(2n―3)―2+(2n―1)―2―(2n+1)―2=83,化简得―2n―5=83,解得n=―44(不符合题意舍去),这三个数分别为85,―91,89;综上,存在三个连续数,其和为83,这三个数分别为85,―91,89;(3)解:当k为奇数时,根据题意得,―(2k―1)―(2k+1)+3×(2k―1)=―101,解得:k=―49,当k为偶数时,根据题意得,(2k+1)+(2k―3)―3(2k―1)=―101,解得,k=51(舍去),综上,k=―49.24.如图,数轴上有A,B,C三个点,分别表示数―20,―8,16,有两条动线段PQ和MN(点Q与点A重合,点N与点B重合,且点P在点Q的左边,点M在点N的左边),PQ=2,MN=4,线段MN以每秒1个单位的速度从点B开始向右匀速运动,同时线段PQ以每秒3个单位的速度从点A开始向右匀速运动.当点Q运动到点C时,线段PQ立即以相同的速度返回;当点Q回到点A时,线段PQ、MN同时停止运动.设运动时间为t秒(整个运动过程中,线段PQ和MN 保持长度不变).(1)当t =20时,点M 表示的数为 ,点Q 表示的数为 .(2)在整个运动过程中,当CQ =PM 时,求出点M 表示的数.(3)在整个运动过程中,当两条线段有重合部分时,速度均变为原来的一半,当重合部分消失后,速度恢复,请直接写出当线段PQ 和MN 重合部分长度为1.5时所对应的t 的值.【答案】(1)8,―8(2)―2.8或2(3)5.5或8.5或18.25或19.75【分析】本题考查一元一次方程的应用,解题的关键是读懂题意,能用含t 的代数式表示点运动后所表示的数.(1)当t =20时,根据起点位置以及运动方向和运动速度,即可得点M 表示的数为8、点Q 表示的数为―8;(2)当t ≤12时,Q 表示的数是―20+3t ,P 表示的数是―22+3t ,M 表示的数是―12+t ,36―3t =|―10+2t|,此时―12+t =―12+465=―145,当12<t ≤24时,Q 表示的数是16―3(t ―12)=52―3t ,P 表示的数是50―3t ,M 表示的数是―12+t ,3t ―36=|62―4t |,(3)当PQ 从A 向C 运动时,―8+32(t ―4)――8+12(t ―4)=1.5或―4+12(t ―4)―[―10+32(t ―4)]=1.5,当PQ 从C 向A 运动时,132+―――=1.5或172――――=1.5,解方程即可得到答案.【详解】(1)解:依题意,∵―8―4+20×1=8,∴当t =20时,点M 表示的数为8;∵16―{20×3―[16―(―20)]}=―8,∴当t =20时,点Q 表示的数为―8;故答案为:8,―8;(2)解:当t ≤12时,Q 表示的数是―20+3t ,P 表示的数是―22+3t ,M 表示的数是―12+t ,∴CQ =16―(―20+3t )=36―3t ,PM =|―22+3t ―(―12+t )|=|―10+2t |,∴36―3t =|―10+2t |,解得t =465或t =26(舍去),此时―12+t =―12+465=―145当12<t ≤24时,Q 表示的数是16―3(t ―12)=52―3t ,P 表示的数是50―3t ,M 表示的数是―12+t ,∴CQ =16―(52―3t )=3t ―36,PM =|50―3t ―(―12+t )|=|62―4t |,∴3t ―36=|62―4t |,解得t =14或t =26(舍去),此时―12+t =―12+14=2,∴当CQ =PM 时,点M 表示的数是―145或2;(3)解:当PQ 从A 向C 运动时,t =4时,PQ 与MN 开始有重合部分,有重合部分时,Q 表示的数为―8+32(t ―4),P 表数为―10+32(t ―4),M 表示的数为―8+12(t ―4),N 表示的数是―4+12(t ―4),若线段PQ 和MN 重合部分长度为1.5则―8+32(t ―4)――8+12(t ―4)=1.5或―4+12(t ―4)―[―10+32(t ―4)]=1.5,解得t =5.5或t =8.5,由―10+32(t ―4)=―4+12(t ―4)得t =10,∴当t =10时,PQ 与MN 的重合部分消失,恢复原来的速度,此时Q 表示的数是1,再过(16―1)÷3=5(秒),Q 到达C ,此时t =15,则M 所在点表示的数是―12+4+10―42+5=0,N 所在点表示的数4,当PQ 从C 向A 运动时,t =352时,PQ 与MN 开始有重合部分,有重合部分时,Q 表示的数为172――P 表示的数为132―M 表示的数为52N 表示的数是132―若线段PQ 和MN 重合部分长度为1.5,132+―――=1.5或172―――=1.5,解得t=18.25或t=19.75,∴重合部分长度为1.5时所对应的t的值是5.5或8.5或18.25或19.75.。

2024新苏教版七年级数学上第一学期周测5

2024新苏教版七年级数学上第一学期周测5

2024苏科版初级中学七年级数学第五周测试卷一、选择题(每题5分共40分1、一个两位数,它的十位数字是x ,个位数字是y ,那么这个两位数是( )A .x +yB .10xyC .10(x +y )D .10x +y2、上等米每千克售价为x 元,次等米每千克售价为y 元,取上等米a 千克和次等米b 千克,混合后的大米每千克售价为( )A .B .C .D .3、下列代数式中,为单项式的是( )A .x 5B .aC .a b a 3+D .x 2+y 24.单项式332b a -的系数和次数是( ) A .系数是31,次数是3 B .系数是31-;,次数是5 C .系数是31-,次数是3 D .系数是5,次数是31- 5.在式子:﹣53ab ,522y x ,2y x +,﹣a 2bc ,1,x 2﹣2x +3,a 3,x1+1中,单项式个数为( )A .2B .3C .4D .56、下列各式中,与x 2y 3能合并的单项式是( )A .21x 3y 2B .﹣x 2y 3C .3x 3D .x 2y 27、若x =3,则代数式2x +3的值是( )A .6B .8C .9D .268、若a =﹣3,b =2,则代数式(a ﹣b )2的值是( )A .1B .﹣1C .25D .﹣25二、填空题(本题每空4分,共52分。

)1.甲同学身高a 厘米,乙同学比甲同学高6厘米,则乙同学身高为_____ _厘米.2.全校学生总数是x ,其中女生占40%,则女生人数是________.3.苹果每千克售价为2元,则n 千克苹果售价为_____元.4、多项式﹣2x +4xy 2﹣5x 4﹣1中,次数是 ,最高的次项是 ,三次项的系数是,常数项是5、多项式3xy2﹣2y+1的次数及一次项的系数分别是.6.若单项式21xy2m﹣1与单项式﹣52x2y2的次数相同,则m=.7、若多项式(k﹣1)x2+3x|k+2|+2为三次三项式,则k的值为.8、当k=时,代数式x2﹣3kxy﹣3y2+xy﹣8中不含xy项.9、小明用如图所示的L形框,任意框住日历中的三个数a,b,c.则代数式c﹣a的值等于.10、如果x2﹣3x=1,那么2x2﹣6x﹣5的值为.三、解答题(8分)若有理数a,b互为倒数,c,d互为相反数,则(c+d)2015+(ab1)2(20分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x的式子表示m=____________ ;(2)当y=-2时,n的值为____________ . 第5题图第5题图(1)第5题图(2)。

苏科版数学初一上学期期末试题与参考答案(2024-2025学年)

苏科版数学初一上学期期末试题与参考答案(2024-2025学年)

2024-2025学年苏科版数学初一上学期期末复习试题(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、题目:若一个等腰三角形的底边长为8cm,腰长为10cm,则这个三角形的周长为多少cm?选项:A、24cmB、26cmC、28cmD、30cm2、题目:已知一个长方形的长为6cm,宽为4cm,那么它的面积是多少平方厘米?选项:A、20cm²B、24cm²C、30cm²D、36cm²3、下列各数中,比-2大的数是()。

A、-3B、-1C、0D、-44、如果一个数的相反数是它本身,那么这个数是()。

A、0B、1C、-1D、不存在5、(选择题)小明家养了若干只兔子,如果5周增长率为20%,则 growth_rate 表示兔子的增长率为:A. 20%B. 25%C. 33.3%D. 50%6、(选择题)一个长方形的周长是24cm,且长是宽的两倍,那么这个长方形的面积是:A. 12平方厘米B. 16平方厘米C. 18平方厘米D. 24平方厘米7、若一个正方形边长增加了原来的50%,则面积增加了多少百分比?A. 50%B. 100%C. 125%D. 225%8、下列哪组数能构成直角三角形的三边长?A. 5, 12, 13B. 7, 10, 12C. 8, 15, 17D. 9, 12, 159、在直角坐标系中,点A的坐标是(-3,4),点B的坐标是(2,-1),则线段AB 的中点坐标是()。

A.(-0.5,1.5)B.(-1,2)C.(-0.5,-2)D.(1,2) 10、已知函数f(x) = 2x - 3,若f(a) = 1,则a的值为()。

A. 1B. 2C. 3D. 4二、填空题(本大题有5小题,每小题3分,共15分)1、一个长方形的长是8cm,宽是3cm,那么它的周长是_______cm。

2、一个正方形的边长增加了20%,那么它的面积增加了 _______%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏教版初一数学试题
数学的学习是必要的,为了帮助大家更好的学习数学,以下是小编为您整理的苏教版初一数学试题相关资料,欢迎阅读!
苏教版初一数学试题
数轴
⒈数轴的概念
规定了原点,正方向,单位长度的直线叫做数轴。

注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

2.数轴上的点与有理数的关系
⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。

(如,数轴上的点π不是有理数)
3.利用数轴表示两数大小
⑴在数轴上数的大小比较,右边的数总比左边的数大;
⑵正数都大于0,负数都小于0,正数大于负数;
⑶两个负数比较,距离原点远的数比距离原点近的数小。

4.数轴上特殊的最大(小)数
⑴最小的自然数是0,无最大的自然数;
⑵最小的正整数是1,无最大的正整数;
⑶最大的负整数是-1,无最小的负整数
5.a可以表示什么数
⑴a>0表示a是正数;反之,a是正数,则a>0;
⑵a<0表示a是负数;反之,a是负数,则a<0
⑶a=0表示a是0;反之,a是0,,则a=0
6.数轴上点的移动规律
根据点的移动,向左移动几个单位长度则减去几,向右移动几个单位长度则加上几,从而得到所需的点的位置。

相反数
⒈相反数
只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。

注意:⑴相反数是成对出现的;⑵相反数只有符号不同,若一个为正,则另一个为负;
⑶0的相反数是它本身;相反数为本身的数是0。

2.相反数的性质与判定
⑴任何数都有相反数,且只有一个;
⑵0的相反数是0;
⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b 互为相反数,则a+b=0
3.相反数的几何意义
在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。

0的相反数对应原点;原点表示0的相反数。

说明:在数轴上,表示互为相反数的两个点关于原点对称。

4.相反数的求法
⑴求一个数的相反数,只要在它的前面添上负号“-”即可求得(如:5的相反数是-5);
⑵求多个数的和或差的相反数是,要用括号括起来再添“-”,然后化简(如;5a+b的相反数是-(5a+b)。

化简得-5a-b);
⑶求前面带“-”的单个数,也应先用括号括起来再添“-”,然后化简(如:-5的相反数是-(-5),化简得5)
5.相反数的表示方法
⑴一般地,数a 的相反数是-a ,其中a是任意有理数,可以是正数、负数或0。

当a>0时,-a<0(正数的相反数是负数)
当a<0时,-a>0(负数的相反数是正数)
当a=0时,-a=0,(0的相反数是0)
6.多重符号的化简
多重符号的化简规律:“+”号的个数不影响化简的结果,可以直接省略;“-”号的个数决定最后化简结果;即:“-”的个数是奇数时,结果为负,“-”的个数是偶数时,结果为正。

绝对值
⒈绝对值的几何定义
一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。

2.绝对值的代数定义
⑴一个正数的绝对值是它本身;⑵一个负数的绝对值是它的相反数;⑶0的绝对值是0.
可用字母表示为:
①如果a>0,那么|a|=a;②如果a<0,那么|a|=-a;③如果a=0,那么|a|=0。

可归纳为①:a≥0,<═> |a|=a (非负数的绝对值等于本身;绝对值等于本身的数是非负数。


②a≤0,<═> |a|=-a (非正数的绝对值等于其相反数;绝对值等于其相反数的数是非正数。


3.绝对值的性质
任何一个有理数的绝对值都是非负数,也就是说绝对值具有非负性。

所以,a取任何有理数,都有|a|≥0。

即⑴0的绝对值是0;绝对值是0的数是0.即:a=0 <═> |a|=0;
⑵一个数的绝对值是非负数,绝对值最小的数是0.即:|a|≥0;
⑶任何数的绝对值都不小于原数。

即:|a|≥a;
⑷绝对值是相同正数的数有两个,它们互为相反数。

即:若|x|=a (a>0),则x=±a;
⑸互为相反数的两数的绝对值相等。

即:|-a|=|a|或若a+b=0,则|a|=|b|;
⑹绝对值相等的`两数相等或互为相反数。

即:|a|=|b|,则a=b或a=-b;
⑺若几个数的绝对值的和等于0,则这几个数就同时为0。

即|a|+|b|=0,则a=0且b=0。

(非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)
4.有理数大小的比较
⑴利用数轴比较两个数的大小:数轴上的两个数相比较,左边的总比右边的小;
⑵利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小;异号两数比较大小,正数大于负数。

5.绝对值的化简
①当a≥0时, |a|=a ;②当a≤0时, |a|=-a
6.已知一个数的绝对值,求这个数
一个数a的绝对值就是数轴上表示数a的点到原点的距离,一般地,绝对值为同一个正数的有理数有两个,它们互为相反数,绝对值为0的数是0,没有绝对值为负数的数。

有理数的加减法
1.有理数的加法法则
⑴同号两数相加,取相同的符号,并把绝对值相加;
⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;
⑶互为相反数的两数相加,和为零;
⑷一个数与零相加,仍得这个数。

2.有理数加法的运算律
⑴加法交换律:a+b=b+a
⑵加法结合律:(a+b)+c=a+(b+c)
在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律:
①互为相反数的两个数先相加——“相反数结合法”;
②符号相同的两个数先相加——“同号结合法”;
③分母相同的数先相加——“同分母结合法”;
④几个数相加得到整数,先相加——“凑整法”;
⑤整数与整数、小数与小数相加——“同形结合法”。

3.加法性质
一个数加正数后的和比原数大;加负数后的和比原数小;加0后的和等于原数。

即:
⑴当b>0时,a+b>a ⑵当b<0时,a+b<a ⑶当b=0时,a+b=a
4.有理数减法法则
减去一个数,等于加上这个数的相反数。

用字母表示为:a-b=a+(-b)。

5.有理数加减法统一成加法的意义
在有理数加减法混合运算中,根据有理数减法法则,可以将减法转化成加法后,再按照加法法则进行计算。

在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式。

如:
(-8)+(-7)+(-6)+(+5)=-8-7-6+5.
和式的读法:①按这个式子表示的意义读作“负8、负7、负6、正5的和”
②按运算意义读作“负8减7减6加5”。

相关文档
最新文档