福州市鼓楼区2019-2020学年九年级(上)期末数学试卷解析

合集下载

2019-2020学年福建省福州市九年级(上)期末数学试卷

2019-2020学年福建省福州市九年级(上)期末数学试卷

2019-2020学年福建省福州市九年级(上)期末数学试卷一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)下列图标中,是中心对称图形的是()A.B.C.D.2.(4分)下列说法正确的是()A.可能性很大的事情是必然发生的B.可能性很小的事情是不可能发生的C.“掷一次骰子,向上一面的点数是6”是不可能事件D.“任意画一个三角形,其内角和是180°”3.(4分)若关于x的方程x2﹣m=0有实数根,则m的取值范围是()A.m<0B.m≤0C.m>0D.m≥04.(4分)在平面直角坐标系中,点(a,b)关于原点对称的点的坐标是()A.(﹣a,﹣b)B.(﹣b,﹣a)C.(﹣a,b)D.(b,a)5.(4分)从1,2,3,5这四个数字中任取两个,其乘积为偶数的概率是()A.B.C.D.6.(4分)若二次函数y=x2+bx的图象的对称轴是直线x=2,则关于x的方程x2+bx=5的解为()A.x1=0,x2=4B.x1=1,x2=5C.x1=1,x2=﹣5D.x1=﹣1,x2=57.(4分)如图,点D为线段AB与线段BC的垂直平分线的交点,∠A=35°,则∠D等于()A.50°B.65°C.55°D.70°8.(4分)为了测量某沙漠地区的温度变化情况,从某时刻开始记录了12个小时的温度,记时间为t(单位:h),温度为y(单位:℃).当4≤t≤8时,y与t的函数关系是y=﹣t2+10t+11,则4≤t≤8时该地区的最高温度是()A.11℃B.27℃C.35℃D.36℃9.(4分)如图,五边形ABCDE内接于⊙O,若∠CAD=35°,则∠B+∠E的度数是()A.210°B.215°C.235°D.250°10.(4分)对于反比例函数,如果当﹣2≤x≤﹣1时有最大值y=4,则当x≥8时,有()A.最小值y=B.最小值y=﹣1C.最大值y=D.最大值y=﹣1二、填空题(本题共6小题,每小题4分,共24分)11.(4分)如图,AB∥CD,AD与BC相交于点E,若AE=2,ED=3,则的值是.12.(4分)圆心角为120°,半径为2的扇形的弧长是.13.(4分)如图,E,F,G,H分别是正方形ABCD各边的中点,顺次连接E,F,G,H.向正方形ABCD 区域随机投掷一点,则该点落在阴影部分的概率是.14.(4分)如图,将△ABC绕点A顺时针旋转55°得到△ADE,点B的对应点是点D,直线BC与直线DE 所夹的锐角是.15.(4分)若a是方程x2+x﹣1=0的一个根,则的值是.16.(4分)如图,在直角三角形ABC中,∠C=90°,D是AC边上一点,以BD为边,在BD上方作等腰直角三角形BDE,使得∠BDE=90°,连接AE.若BC=4,AC=5,则AE的最小值是.三、解答题(本题共9小题,共86分,解答应写出文字说明、证明过程或演算步骤)17.(8分)解方程:x2﹣6x﹣1=0.18.(8分)在一个不透明的袋子中装有红、黄、蓝三个小球,除颜色外无其它差别.从袋子中随机摸球三次,每次摸出一个球,记下颜色后不放回.请用列举法列出三次摸球的结果,并求出第三次摸出的球是红球的概率.19.(8分)福建省会福州拥有“三山两塔一条江”,其中报恩定光多宝塔(别名白塔),位于于山风景区,利用标杆可以估算白塔的高度.如图,标杆BE高1.5m,测得AB=0.9m,BC=39.1m,求白塔的高CD.20.(8分)如图,已知⊙O,A是的中点,过点A作AD∥BC.求证:AD与⊙O相切.21.(8分)如图,△ABC中,AB=AC>BC,将△ABC绕点C顺时针旋转得到△DEC,使得点B的对应点E 落在边AB上(点E不与点B重合),连接AD.(1)依题意补全图形;(2)求证:四边形ABCD是平行四边形.22.(10分)某学校为了美化校园环境,向园林公司购买一批树苗.公司规定:若购买树苗不超过60棵,则每棵树售价120元;若购买树苗超过60棵,则每增加1棵,每棵树售价均降低0.5元,且每棵树苗的售价降到100元后,不管购买多少棵树苗,每棵售价均为100元.(1)若该学校购买50棵树苗,求这所学校需向园林公司支付的树苗款;(2)若该学校向园林公司支付树苗款8800元,求这所学校购买了多少棵树苗.23.(10分)如图,双曲线y=上的一点A(m,n),其中n>m>0,过点A作AB⊥x轴于点B,连接OA.(1)已知△AOB的面积是3,求k的值;(2)将△AOB绕点A逆时针旋转90°得到△ACD,且点O的对应点C恰好落在该双曲线上,求的值.24.(12分)如图,△ABC内接于⊙O,BC是⊙O的直径,E是上一点,弦BE交AC于点F,弦AD⊥BE 于点G,连接CD,CG,且∠CBE=∠ACG.(1)求证:CG=CD;(2)若AB=4,BC=2,求CD的长.25.(14分)已知抛物线C:y=ax2﹣4(m﹣1)x+3m2﹣6m+2.(1)当a=1,m=0时,求抛物线C与x轴的交点个数;(2)当m=0时,判断抛物线C的顶点能否落在第四象限,并说明理由;(3)当m≠0时,过点(m,m2﹣2m+2)的抛物线C中,将其中两条抛物线的顶点分别记为A,B,若点A,B的横坐标分别是t,t+2,且点A在第三象限.以线段AB为直径作圆,设该圆的面积为S,求S的取值范围.2019-2020学年福建省福州市九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:A、不是中心对称图形,故本选项不合题意;B、不是中心对称图形,故本选项不合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不合题意.故选:C.2.【解答】解:A、可能性很大的事情也可能不会发生,故错误,不符合题意;B、可能性很小的事情是也可能发生的,故错误,不符合题意;C、掷一次骰子,向上一面的点数是6”是随机事件,故错误,不符合题意;D、“任意画一个三角形,其内角和是180°”,正确,符合题意,故选:D.3.【解答】解:∵x2﹣m=0,∴x2=m,由x2﹣m=0知m≥0,故选:D.4.【解答】解:点(a,b)关于原点对称的点的坐标是:(﹣a,﹣b).故选:A.5.【解答】解:画树状图得:∵共有12种等可能的结果,任取两个不同的数,其中积为偶数的有6种结果,∴积为偶数的概率是=,故选:C.6.【解答】解:令y=0得:x2+bx=0.解得:x1=0,x2=﹣b.∵抛物线的对称轴为x=2,∴﹣b=4.解得:b=﹣4.将b=﹣4代入x2+bx=5得:x2﹣4x=5.整理得:x2﹣4x﹣5=0,即(x﹣5)(x+1)=0.解得:x1=5,x2=﹣1.故选:D.7.【解答】解:连DA,如图,∵点D为线段AB与线段BC的垂直平分线的交点,∴DA=DB,DB=DC,即DA=DB=DC,∴点A、B、C三点在以D点圆心,DB为半径的圆上,∴∠BDC=2∠BAC=2×35°=70°.故选:D.8.【解答】解:∵y=﹣t2+10t+11=﹣(t﹣5)2+36,∴当t=5时有最大值36℃,∴4≤t≤8时该地区的最高温度是36℃,故选:D.9.【解答】解:如图,连接CE,∵五边形ABCDE是圆内接五边形,∴四边形ABCE是圆内接四边形,∴∠B+∠AEC=180°,∵∠CED=∠CAD=35°,∴∠B+∠E=180°+35°=215°.故选:B.10.【解答】解:由当﹣2≤x≤﹣1时有最大值y=4,得x=﹣1时,y=4.k=﹣1×4=﹣4,反比例函数解析式为y=﹣,当x≥8时,图象位于第四象限,y随x的增大而增大,当x=8时,y最小值=﹣,故选:A.二、填空题(本题共6小题,每小题4分,共24分)11.【解答】解:如图所示:∵AB∥CD,∴∠EAB=∠EDC,∠EBA=∠ECD,∴△EAB∽△EDC,∴,又∵AE=2,ED=3,∴,故答案为.12.【解答】解:l===π.故答案为:π.13.【解答】解:设AD=AB=BC=DC=2,则AH=GD=AE=BE=CF=BF=GC=DG=1,可得四边形HEFG是正方形,边长为:,故阴影部分面积为:2,∵正方形ABCD的面积为:4,∴该点落在阴影部分的概率是:.故答案为:.14.【解答】解:∵将△ABC绕点A顺时针旋转55°得到△ADE,点B的对应点是点D,∴直线BC与直线DE所夹的锐角=旋转角=55°,故答案为:55°.15.【解答】解:==,∵a是方程x2+x﹣1=0的一个根,∴a2+a﹣1=0,∴==1,故答案为1.16.【解答】解:如图,过点E作EH⊥AC于H,∵∠BDE=90°=∠C,∴∠EDA+∠BDC=90°,∠BDC+∠DBC=90°,∴∠DBC=∠EDA,且DE=BD,∠H=∠C=90°,∴△BDC≌△DEH(AAS)∴EH=CD,DH=BC=4,∴AH=DH﹣AD=CD﹣1,∵AE2=AH2+EH2=CD2+(CD﹣1)2=2(CD﹣)2+≥∴当CD=时,AE的最小值为,故答案为.三、解答题(本题共9小题,共86分,解答应写出文字说明、证明过程或演算步骤)17.【解答】解:x2﹣6x﹣1=0,移项得:x2﹣6x=1,配方得:x2﹣6x+9=10,即(x﹣3)2=10,开方得:x﹣3=±,则x1=3+,x2=3﹣.18.【解答】解:依题意得,共有6种结果,分别是(红,黄,蓝)(红,蓝,黄)(黄,红,蓝)(黄,蓝,红)(蓝,红,黄)(蓝,黄,红),所有结果发生的可能性都相等,其中第三次摸出的球是红球的结果又2种,则第三次摸出的球是红球的概率是=.19.【解答】解:∵EB⊥AC,DC⊥AC,∴EB∥DC,∴△ABE∽△ACD,∴=,∵BE=1.5,AB=0.9,BC=39.1,∴AC=16,∴=,∴CD=.∴白塔的高CD为米.20.【解答】证明:过点O作OF⊥BC于F,延长OF交⊙O于点E,如图所示:∴=,∠OFB=90°,∴E是的中点,∵A是的中点,∴点E与点A重合,∵AD∥BC,∴∠OAD=∠OFB=90°,∴OA⊥AD,∵点A为半径OA的外端点,∴AD与⊙O相切.21.【解答】解:(1)如图所示:(2)∵△ABC绕点C顺时针旋转得到△DEC,∴△ABC≌△DEC,DC=AC,EC=BC,∵AB=AC,∴DC=AB,∵△ABC≌△DEC,∴∠DCE=∠ACB,∵EC=BC,∴∠CEB=∠B,∵AB=AC,∴∠B=∠ACB,∴∠CEB=∠DCE,∴DC∥AB,又∵DC=AC,AB=AC,∴四边形ABCD是平行四边形.22.【解答】解:(1)∵50<60,∴120×50=6000元,答:这所学校需向园林公司支付的树苗款为6000元.(2)∵购买60棵树苗所需要支付的树苗款为120×60=7200元<8800元,∴该中学购买的树苗超过60棵,∴购买100棵树苗时每棵树苗的售价恰好将至100元,∵购买树苗超过100棵后,每棵树苗的售价为100元,此时所需支付的树苗款超过100000元,而100000>8800,∴该中学购买的树苗不过100棵,设购买了x(60<x≤100)棵,根据题意可知:x[20﹣0.5(x﹣60)]=8800,解得:x=220(舍去)或x=80,答:这所学校购买了80棵树苗23.【解答】解:(1)∵双曲线y=上的一点A(m,n),过点A作AB⊥x轴于点B,∴AB=n,OB=m,又∵△AOB的面积是3,∴mn=3,∴mn=6,∵点A在双曲线y=上,∴k=mn=6;(2)如图,延长DC交x轴于E,由旋转可得△AOB≌△ACD,∠BAD=90°,∴AD=AB=n,CD=OB=m,∠ADC=90°,∵AB⊥x轴,∴∠ABE=90°,∴四边形ABED是矩形,∴∠DEB=90°,∴DE=AB=n,CE=n﹣m,OE=m+n,∴C(m+n,n﹣m),∵点A,C都在双曲线上,∴mn=(m+n)(n﹣m),即m2+mn﹣n2=0,方程两边同时除以n2,得+﹣1=0,解得=,∵n>m>0,∴=.24.【解答】解:(1)如图,∵BC是⊙O的直径,∴∠1+∠2=90°∵AD⊥BE于点G,∴∠1+∠5=90°∴∠2=∠5∵∠CBE=∠ACG.即∠4=∠3∠DGC=∠2+∠3=∠5+∠4=∠ABC∵∠ABC=∠D∴∠DGC=∠D∴CG=CD;(2)如图.连接AE、CE,在Rt△ABC中,∠BAC=90°,AB=4,BC=2,根据勾股定理,得AC==6,∵BC是直径,∴∠BEC=90°,∴∠AGE=∠BEC,∴AD∥CE,∵∠CAE=∠4,∠3=∠4,∴∠CAE=∠3,∴AE∥CG,∴四边形AGCE是平行四边形,∴AF=FC=3,在Rt△ABF中,BF==5,∵S△ABF=BF•AG=AB•AF∴AG=.过点C作CI⊥AD于点I,得矩形GICE,∴EC=GI,∵CG=CD,∴GI=DI∵四边形AGCE是平行四边形,∴EC=AG=,∵∠D=∠ABC,∠CID=∠BAC=90°,∴△CID∽△CAB,∴=,即=,∴CD=.答:CD的长为.25.【解答】解:(1)当a=1,m=0时,抛物线的表达式为:y=x2﹣4x+2,△=8>0,故C与x轴的交点个数为2;(2)当m=0时,判断抛物线C的顶点为:(﹣,﹣+2),假设点C在第四象限,则﹣>0,且﹣+2<0,解得:0>且>0,故a无解,故顶点不能落在第四象限;(3)将点(m,m2﹣2m+2)代入抛物线表达式并整理得:(a﹣2)m2=0,∵m≠0,故a=2;则抛物线的表达式为:y=2x2﹣4(m﹣1)x+(3m2﹣6m+2),则顶点坐标为:(m﹣1,m2﹣2m),当m﹣1=t时,m=t+1,则点A(t,t2﹣1);当m﹣1=t+1时,m=t+3,点B(t+2,t2+4t+3);点A在第三象限,即t<0且t2﹣1<0,解得:﹣1<t<0;y B﹣y A=4t+4>0,故点B在点A的右上方,AB2=22+(4t+4)2=16(t+1)2+4,﹣1<t<0时,4<AB2<20;S=π()2=,故π<S<5π.。

人教版2019-2020学年九年级数学上册第二次月考试卷(含答案)

人教版2019-2020学年九年级数学上册第二次月考试卷(含答案)

2019-2020学年九年级(上)第二次月考数学试卷一、选择题:(本大题共10个小题,每小题4分,共40分)本题每小题均有A、B、C、D四个备选答案,其中只有一个是正确的,请你将正确答案的序号涂在相应的答题卡上.1.﹣的倒数是()A.B.C.﹣D.﹣2.下列方程中,是一元二次方程的为()A.3x2﹣6xy+2=0B.x2﹣5=﹣2xC.x2+3x﹣1=x2D.x2+=03.近似数3.0×102精确到()A.十分位B.个位C.十位D.百位4.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数为()A.50°B.40°C.30°D.20°5.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.6.一元二次方程x2﹣3x﹣2=0的实数根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定7.小张的爷爷每天坚持锻炼身体,星期天爷爷从家里跑步到公园,打了一会儿太极拳,然后沿原路漫步走到家,下面能反映当天爷爷离家的距离y(米)与时间x(分钟)之间关系的大致图象的是()A.B.C.D.8.如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数y=的图象上,若菱形边长为4,则反比例函数解析式为()A.y=B.y=﹣C.y=﹣D.y=9.如图,已知D是△ABC中的边BC上的一点,∠BAD=∠C,∠ABC的平分线交边AC 于E,交AD于F,那么下列结论中错误的是()A.△BDF∽△BEC B.△BFA∽△BEC C.△BAC∽△BDA D.△BDF∽△BAE 10.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A.(0,)B.(0,)C.(0,2)D.(0,)二、填空题:(本大题共8个小题,每小题4分,共32分)11.9的算术平方根是.12.若方程x2﹣5x+3=0两根为x1,x2,则x1x2=.13.设点P(x,y)在第二象限,且|x|=2,|y|=1,则点P的坐标为.14.函数的自变量x的取值范围是.15.如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB=.16.如图是一段楼梯,∠A=30°,斜边AC是4米,若在楼梯上铺地毯,则至少需要地毯米.17.在△ABC中,∠A=30°,∠B=45°,AC=,则BC=.18.古希腊数学家把1,3,6,10,15,21,…叫做三角形数,根据它的规律,则第100个三角形数与第98个三角形数的差为.三、解答题:(本题共4个小题,第19,20,21、22题每题10分,共40分)19.(1)计算:()﹣1+(π﹣3.14)0﹣|﹣2|﹣2cos30°.(2)用公式法解方程:3x2+2x﹣1=0.20.先化简,(﹣)×,再从1,2,3中选取一个适当的数代入求值.21.已知:如图,在平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F.求证:△ADE≌△CBF.22.某商店商品每件成本20元,按30元销售时,每天可销售100件,根据市场调查:若销售单价每上涨1元,该商品每天销售量就减少5件.若该商店计划该商品每天获利1125元,求该商品的售价?四、(本题满分12分)23.如图,正比例函数y1=﹣3x的图象与反比例函数y2=的图象交于A、B两点.点C 在x轴负半轴上,AC=AO,△ACO的面积为12.(1)求k的值;(2)根据图象,当y1>y2时,写出x的取值范围.五、(本题满分12分)24.小明为了测量楼房AB的高度,他从楼底的B处沿着斜坡向上行走20m,到达坡顶D处.已知斜坡的坡角为15°.(以下计算结果精确到0.1m)(1)求小明此时与地面的垂直距离CD的值;(2)小明的身高ED是1.6m,他站在坡顶看楼顶A处的仰角为45°,求楼房AB的高度.(sin15°≈0.2588 cos15°≈0.9659 tan≈.0.2677 )六.(本题满分14分)25.一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件如图1,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.(1)求证:△AEF∽△ABC;(2)求这个正方形零件的边长;(3)如果把它加工成矩形零件如图2,当EG宽为多少mm时,矩形有最大面积,最大面积是多少?参考答案与试题解析一、选择题:(本大题共10个小题,每小题4分,共40分)本题每小题均有A 、B 、C 、D 四个备选答案,其中只有一个是正确的,请你将正确答案的序号涂在相应的答题卡上.1.﹣的倒数是( )A .B .C .﹣D .﹣【分析】乘积是1的两数互为倒数,结合选项进行判断即可.【解答】解:﹣的倒数为﹣.故选:D .【点评】本题考查了倒数的定义,属于基础题,注意掌握乘积是1的两数互为倒数. 2.下列方程中,是一元二次方程的为( )A .3x 2﹣6xy +2=0B .x 2﹣5=﹣2xC .x 2+3x ﹣1=x 2D .x 2+=0 【分析】根据判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”进行分析即可.【解答】解:A 、不是一元二次方程,故此选项错误;B 、是一元二次方程,故此选项正确;C 、不是一元二次方程,故此选项错误;D 、不是一元二次方程,故此选项错误;故选:B .【点评】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.3.近似数3.0×102精确到( )A .十分位B .个位C .十位D .百位【分析】要判断科学记数法表示的数精确到哪一位,应当看最后一个数字在什么位,即精确到了什么位.【解答】解:近似数3.0×102精确到十位,故选:C.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.4.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数为()A.50°B.40°C.30°D.20°【分析】根据两直线平行,同位角相等求出∠2的同位角,再根据三角形的外角性质求解即可.【解答】解:如图,∵∠2=50°,并且是直尺,∴∠4=∠2=50°(两直线平行,同位角相等),∵∠1=30°,∴∠3=∠4﹣∠1=50°﹣30°=20°.故选:D.【点评】本题主要考查了两直线平行,同位角相等的性质以及三角形的外角性质,熟练掌握性质定理是解题的关键.5.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.【点评】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.一元二次方程x2﹣3x﹣2=0的实数根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定【分析】先计算出判别式的值,然后利用判别式的意义判断方程根的情况.【解答】解:∵△=(﹣3)2﹣4×(﹣2)=17>0,∴方程有两个不相等的两个实数根.故选:A.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.7.小张的爷爷每天坚持锻炼身体,星期天爷爷从家里跑步到公园,打了一会儿太极拳,然后沿原路漫步走到家,下面能反映当天爷爷离家的距离y(米)与时间x(分钟)之间关系的大致图象的是()A.B.C.D.【分析】由爷爷锻炼身体的行程,可得出距离的变化是先增加、中间有段不变后减少,再根据跑步的速度快于漫步的速度,对照选项即可得出结论.【解答】解:∵爷爷跑步去公园,漫步回家,且在公园停留打了一会儿太极拳,∴距离的变化是先增加、中间有段不变后减少,且增加的快,减少的慢.故选:D.【点评】本题考查了函数的图象,根据爷爷锻炼身体的行程找出爷爷离家的距离y(米)与时间x(分钟)之间关系的大致图象是解题的关键.8.如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数y=的图象上,若菱形边长为4,则反比例函数解析式为()A.y=B.y=﹣C.y=﹣D.y=【分析】根据菱形的性质和平面直角坐标系的特点可以求得点C的坐标,从而可以求得k的值,进而求得反比例函数的解析式.【解答】解:∵在菱形ABOC中,∠A=60°,菱形边长为4,∴OC=4,∠COB=60°,∴点C的坐标为(﹣2,2),∵顶点C在反比例函数y=的图象上,∴2=,得k=﹣4,即y=﹣,故选:C.【点评】本题考查待定系数法求反比例函数解析式、菱形的性质,解答本题的关键是明确题意,求出点C的坐标,利用反比例函数的性质解答.9.如图,已知D是△ABC中的边BC上的一点,∠BAD=∠C,∠ABC的平分线交边AC 于E,交AD于F,那么下列结论中错误的是()A.△BDF∽△BEC B.△BFA∽△BEC C.△BAC∽△BDA D.△BDF∽△BAE【分析】根据相似三角形的判定,采用排除法,逐项分析判断.【解答】解:∵∠BAD=∠C,∠B=∠B,∴△BAC∽△BDA.故C正确.∵BE平分∠ABC,∴∠ABE=∠CBE,∴△BFA∽△BEC.故B正确.∴∠BFA=∠BEC,∴∠BFD=∠BEA,∴△BDF∽△BAE.故D正确.而不能证明△BDF∽△BEC,故A错误.故选:A.【点评】本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边和对应角.10.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A.(0,)B.(0,)C.(0,2)D.(0,)【分析】作A关于y轴的对称点A′,连接A′D交y轴于E,则此时,△ADE的周长最小,根据A的坐标为(﹣4,5),得到A′(4,5),B(﹣4,0),D(﹣2,0),求出直线DA′的解析式为y=x+,即可得到结论.【解答】解:作A关于y轴的对称点A′,连接A′D交y轴于E,则此时,△ADE的周长最小,∵四边形ABOC是矩形,∴AC∥OB,AC=OB,∵A的坐标为(﹣4,5),∴A′(4,5),B(﹣4,0),∵D是OB的中点,∴D(﹣2,0),设直线DA′的解析式为y=kx+b,∴,∴,∴直线DA′的解析式为y=x+,当x=0时,y=,∴E(0,),故选:B.【点评】此题主要考查轴对称﹣﹣最短路线问题,解决此类问题,一般都是运用轴对称的性质,将求折线问题转化为求线段问题,其说明最短的依据是三角形两边之和大于第三边.二、填空题:(本大题共8个小题,每小题4分,共32分)11.9的算术平方根是3.【分析】9的平方根为±3,算术平方根为非负,从而得出结论.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.【点评】本题考查了数的算式平方根,解题的关键是牢记算术平方根为非负.12.若方程x2﹣5x+3=0两根为x1,x2,则x1x2=3.【分析】直接由方程根与系数的关系可求得答案.【解答】解:∵方程x2﹣5x+3=0两根为x1,x2,∴x1x2=3,故答案为:3.【点评】本题主要考查根与系数的关系,掌握一元二次方程两根之和等于﹣、两根之积等于是解题的关键.13.设点P(x,y)在第二象限,且|x|=2,|y|=1,则点P的坐标为(﹣2,1).【分析】根据第二象限内点的横坐标是负数,纵坐标是正数结合绝对值的性质求出x、y 的值,然后写出即可.【解答】解:∵点P(x,y)在第二象限,且|x|=2,|y|=1,∴x=﹣2,y=1,∴点P的坐标为(﹣2,1).故答案为:(﹣2,1).【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).14.函数的自变量x的取值范围是x≥2.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:根据题意得,x﹣2≥0,解得x≥2.故答案为:x≥2.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.15.如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB=15°.【分析】由四边形ABCD为正方形,三角形ADE为等比三角形,可得出正方形的四条边相等,三角形的三边相等,进而得到AB=AE,且得到∠BAD为直角,∠DAE为60°,由∠BAD+∠DAE求出∠BAE的度数,进而利用等腰三角形的性质及三角形的内角和定理即可求出∠AEB的度数.【解答】解:∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=90°,∠DAE=60°,∴∠BAE=∠BAD+∠DAE=150°,又∵AB=AE,∴∠AEB==15°.故答案为:15°.【点评】此题考查了正方形的性质,以及等边三角形的性质,利用了等量代换的思想,熟练掌握性质是解本题的关键.16.如图是一段楼梯,∠A=30°,斜边AC是4米,若在楼梯上铺地毯,则至少需要地毯2+2米.【分析】利用直角三角形中30°角对的直角边等于斜边的一半求出BC的长,再根据勾股定理求出AB的长,进而可得出结论.【解答】解:∵△ABC是直角三角形,∠A=30°,斜边AC是4米,∴BC=AC=2米,∴AB===2(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=(2)米.故答案为:2+2【点评】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.17.在△ABC中,∠A=30°,∠B=45°,AC=,则BC=1.【分析】作CD⊥AB,由AC=、∠A=30°知CD=,由∠B=45°知CD=BD=,最后由勾股定理可得答案.【解答】解:如图,过点C作CD⊥AB于点D,在Rt△ACD中,∵AC=,∠A=30°,∴CD=AC=,∵在Rt△BCD中,∠B=45°,∴CD=BD=,则BC==1,故答案为1;【点评】本题主要考查勾股定理、直角三角形的性质,熟练掌握直角三角形的性质和勾股定理是解题的关键.18.古希腊数学家把1,3,6,10,15,21,…叫做三角形数,根据它的规律,则第100个三角形数与第98个三角形数的差为199.【分析】根据条件第二个比第一个大2,第三个比第二个大3,第四个比第三个大4,依此类推,可以得到:第n个比第n﹣1个大n.则第100个三角形数与第99个三角形数的差100,第99个三角形数与第98个三角形数的差99,∴第100个三角形数与第98个三角形数的差为100+99=199.【解答】解:第100个三角形数与第98个三角形数的差为199.【点评】这是一个探索性问题,是一个经常出现的问题.三、解答题:(本题共4个小题,第19,20,21、22题每题10分,共40分)19.(1)计算:()﹣1+(π﹣3.14)0﹣|﹣2|﹣2cos30°. (2)用公式法解方程:3x 2+2x ﹣1=0.【分析】(1)先求出每一部分的值,再代入求出即可;(2)先求出b 24ac 的值,再代入公式求出即可.【解答】解:(1)()﹣1+(π﹣3.14)0﹣|﹣2|﹣2cos30°=2+1﹣(2﹣)﹣2× =1;(2)3x 2+2x ﹣1=0,a=3,b=2,c=﹣1,∵b 2﹣4ac=22﹣4×3×(﹣1)=16>0,∴x=,∴x 1=,x 2=﹣1.【点评】本题考查了解一元二次方程,零指数幂,负整数指数幂,特殊角的三角函数值等知识点,能求出每一部分的值是解(1)的关键,能选择适当的方法解一元二次方程是解(2)的关键.20.先化简,(﹣)×,再从1,2,3中选取一个适当的数代入求值.【分析】根据分式的减法和乘法可以化简题目中的式子,在从1,2,3中选取一个使得原分式有意义的值代入化简后的式子即可解答本题.【解答】解:(﹣)×===,当x=1时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21.已知:如图,在平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F.求证:△ADE≌△CBF.【分析】证出∠ADE=∠CBF,AD=CB,由AAS证△ADE≌△CBF即可.【解答】证明:∵四边形ABCD是平行四边形,∴AD=CB,AD∥BC,∴∠ADE=∠CBF,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在△ADE和△CBF中,,∴△ADE≌△CBF(AAS).【点评】此题考查了平行四边形的性质、全等三角形的判定.熟练掌握平行四边形的性质是解决问题的关键.22.某商店商品每件成本20元,按30元销售时,每天可销售100件,根据市场调查:若销售单价每上涨1元,该商品每天销售量就减少5件.若该商店计划该商品每天获利1125元,求该商品的售价?【分析】设商品售价为每件(30+x)元,则每天销售(100﹣5x)件,根据总利润=单件利润×销售数量,即可得出关于x的一元二次方程,解之即可得出x的值,将其代入30+x中即可求出该商品的售价.【解答】解:设商品售价为每件(30+x)元,则每天销售(100﹣5x)件,根据题意得:(30+x﹣20)×(100﹣5x)=1125,整理得:x2﹣10x+25=0,解得:x1=x2=5,∴x+30=35.答:该商品的售价为35元.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.四、(本题满分12分)23.如图,正比例函数y1=﹣3x的图象与反比例函数y2=的图象交于A、B两点.点C 在x轴负半轴上,AC=AO,△ACO的面积为12.(1)求k的值;(2)根据图象,当y1>y2时,写出x的取值范围.【分析】(1)过点A作AD垂直于OC,由AC=AO,得到CD=DO,确定出三角形ADO与三角形ACD面积,即可求出k的值;(2)根据函数图象,找出满足题意x的范围即可.【解答】解:(1)如图,过点A作AD⊥OC,∵AC=AO,∴CD=DO,=S△ACD=6,∴S△ADO∴k=﹣12;(2)联立得:,解得:或,即A(﹣2,6),B(2,﹣6),根据图象得:当y1>y2时,x的范围为x<﹣2或0<x<2.【点评】此题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,熟练掌握各函数的性质是解本题的关键.五、(本题满分12分)24.小明为了测量楼房AB的高度,他从楼底的B处沿着斜坡向上行走20m,到达坡顶D处.已知斜坡的坡角为15°.(以下计算结果精确到0.1m)(1)求小明此时与地面的垂直距离CD的值;(2)小明的身高ED是1.6m,他站在坡顶看楼顶A处的仰角为45°,求楼房AB的高度.(sin15°≈0.2588 cos15°≈0.9659 tan≈.0.2677 )【分析】(1)利用在Rt△BCD中,∠CBD=15°,BD=20,得出CD=BD•sin15°求得答案即可;(2)由图可知:AB=AF+DE+CD,利用直角三角形的性质和锐角三角函数的意义,求得AF即可.【解答】解:(1)在Rt△BCD中,∵∠CBD=15°,BD=20,∴CD=BD•sin15°,∴CD≈5.2m;答:小明与地面的垂直距离CD的值是5.2m;(2)在Rt△AFE中,∵∠AEF=45°,∴AF=EF=BC,由(1)知,BC=BD•cos15°≈19.3(m),∴AB=AF+DE+CD=19.3+1.6+5.2=26.1(m).答:楼房AB的高度是26.1m.【点评】本题考查了解直角三角形的应用,题目中涉及到了仰角和坡角的问题,解题的关键是构造直角三角形.六.(本题满分14分)25.一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件如图1,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.(1)求证:△AEF∽△ABC;(2)求这个正方形零件的边长;(3)如果把它加工成矩形零件如图2,当EG宽为多少mm时,矩形有最大面积,最大面积是多少?【分析】(1)根据矩形的对边平行得到BC∥EF,利用“平行于三角形的一边的直线截其他两边或其他两边的延长线,得到的三角形与原三角形相似”判定即可.(2)设正方形零件的边长为x mm,则KD=EF=x,AK=80﹣x,根据EF∥BC,得到△AEF ∽△ABC,根据相似三角形的性质得到比例式,解方程即可得到结果;(3)根据矩形面积公式得到关于a的二次函数,根据二次函数求出矩形的最大值.【解答】解:(1)∵正方形EGHF∴EF∥BC∴△AEF∽△ABC(2)设EG=EF=x∵△AEF∽△ABC∴∴∴x=48∴正方形零件的边长为48mm,(3)设EG=a∵矩形EGHF∴EF∥BC∴△AEF∽△ABC∴∴∴EF=120﹣a∴矩形面积S=a(120﹣a)=﹣a2+120a=﹣(a﹣40)2+2400当a=40时,此时矩形面积最大,最大面积是2400mm2,即:当EG=40时,此时矩形面积最大,最大面积是2400mm2.【点评】此题是相似形综合题,主要考查了正方形的性质,矩形的性质,相似三角形的判定和性质,解本题的关键是判断出△AEF∽△ABC.。

2019-2020学年度九年级数学上学期第二次质检试题(含解析) 新人教版

2019-2020学年度九年级数学上学期第二次质检试题(含解析) 新人教版

——教学资料参考参考范本——2019-2020学年度九年级数学上学期第二次质检试题(含解析)新人教版______年______月______日____________________部门一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,注意可用多种不同的方法来选取正确答案.1.已知原点是抛物线y=(m+1)x2的最高点,则m的范围是( )A.m<﹣1 B.m<1 C.m>﹣1 D.m>﹣22.抛物线y=﹣2(x+3)2﹣21的顶点位于( )A.第一象限B.第二象限C.第三象限D.第四象限3.下列事件中:①在足球赛中,中国队战胜日本队;②长为2,3,4的三条线段能围成一个直角三角形;③任意两个正数的乘积为正;④抛一枚硬币,硬币落地时正面朝上.其中属于不确定事件的有( )A.1个B.2个C.3个D.4个4.已知二次函数y=(m﹣2)x2﹣4x+m2+2m﹣8的图象经过原点,则m的值为( )A.2 B.﹣4 C.2或﹣4 D.无法确定5.抛物线y=x2+mx+n可以由抛物线y=x2向上平移2个单位,再向左平移3个单位得到,则mn值为( )A.6 B.12 C.54 D.666.已知二次函数y=x2+x+m,当x取任意实数时,都有y>0,则m的取值范围是( )A.m≥B.m>C.m≤D.m<7.上数学课时,老师给出了一个一元二次方程x2+ax+b=0,并告诉学生,从数字1、3、5、中随机抽取一个作为a,从数字2、6中随机抽取一个作为b,组成不同的方程共m个,其中有实数解的方程共n 个,则=( )A.B.C.D.8.若实数a,b满足a+b2=2,则a2+6b2的最小值为( )A.﹣3 B.3 C.﹣4 D.49.已知二次函数y=x2+bx﹣4图象上A、B两点关于原点对称,若经过A点的反比例函数的解析式是y=,则该二次函数的对称轴是直线( )A.x=1 B.x=2 C.x=﹣1 D.x=﹣210.如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2,则y关于x的函数的图象大致为( )A.B.C.D.二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.三张完全相同的卡片上分别写有函数y=﹣2x﹣3,y=,y=x2+1,从中随机抽取一张,则所得函数的图象在第一象限内y随x 的增大而增大的概率是__________.12.将抛物线y=x2+1的图象绕原点O旋转180°,则旋转后的抛物线解析式是__________.13.已知:如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a为10米),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S米2.则S与x的函数关系式__________;自变量的取值范围__________.14.如图,已知函数y=与y=ax2+bx(a>0,b>0)的图象交于点P.点P的纵坐标为1.则关于x的方程ax2+bx+=0的解为__________.15.已知二次函数y=﹣x2﹣2x+3的图象与x轴分别交于A、B两点(如图所示),与y轴交于点C,点P是其对称轴上一动点,当PB+PC取得最小值时,点P的坐标为__________.16.如图是抛物线y=ax2+bx+c的一部分,且其过点(3,0),对称轴为直线x=1,则下列结论正确的有__________:①abc>0②方程ax2+bx+c=0有两个不相等的实数根③a﹣b+c=0④当x>0时,y随x的增大而增大⑤不等式ax2+bx+c>0的解为x>3⑥3a+2c<0.三、全面答一答(本题有7个小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,你们把自己能写出的解答写出一部分也可以.17.判断下列二次函数的图象与x轴有无交点,若有请求出交点坐标;若无请说明理由.(1)y=﹣6x(2)y=2x2﹣12x+18.18.在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小米先从盒子中随机取出一个小球,记下数字为x,且不放回盒子,再由小华随机取出一个小球,记下数字为y.(1)用列表法或画树状图表示出(x,y)的所有可能出现的结果;(2)求小米、小华各取一次小球所确定的点(x,y)落在反比例函数y=的图象上的概率.19.已知抛物线y1=ax2+bx+c的顶点坐标为()且经过点A(1,0),直线y2=x+m恰好也经过点A(1)分别求抛物线和直线的解析式;(2)当x取何值时,函数值y2>y1;(3)当0≤x≤2时,直接写出y2和y1的最小值分别为多少?20.已知二次函数y=ax2+bx+c的图象经过点(﹣2,4),(﹣1,0),(0,﹣2)(1)求这个二次函数的表达式;(2)求此二次函数的顶点坐标及与坐标轴的交点坐标,并根据这些点画出函数大致图象;(3)若0<y<3,求x的取值范围.21.某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)若降价的最小单位为1元,则当降价多少元时,每星期的利润最大?最大利润是多少?22.已知A=a+2,B=2a2﹣3a+10,C=a2+5a﹣3,(1)求证:无论a为何值,A﹣B<0成立,并指出A,B的大小关系;(2)请分析A与C的大小关系.23.如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中A点的坐标为(﹣3,0),C为抛物线与y 轴的交点且S△ABC=6(1)求点B的坐标和抛物线的解析式;(2)若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;(3)①设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值;②若点M是抛物线上在A、C之间的一个动点,则三角形ACM的最大面积是多少?20xx-20xx学年浙江省××市××区高桥中学九年级(上)第二次质检数学试卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,注意可用多种不同的方法来选取正确答案.1.已知原点是抛物线y=(m+1)x2的最高点,则m的范围是( )A.m<﹣1 B.m<1 C.m>﹣1 D.m>﹣2【考点】二次函数的性质.【分析】由于原点是抛物线y=(m+1)x2的最高点,这要求抛物线必须开口向下,由此可以确定m的范围.【解答】解:∵原点是抛物线y=(m+1)x2的最高点,∴m+1<0,即m<﹣1.故选A.【点评】此题主要考查了二次函数的性质.2.抛物线y=﹣2(x+3)2﹣21的顶点位于( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】二次函数的性质.【分析】根据抛物线的顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),可直接写出顶点坐标.【解答】解:∵抛物线y=﹣2(x+3)2﹣21的顶点是(﹣3,﹣21),∴顶点(﹣3,﹣21)在第三象限,故选C.【点评】此题主要考查了二次函数的性质,二次函数顶点式y=a (x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.3.下列事件中:①在足球赛中,中国队战胜日本队;②长为2,3,4的三条线段能围成一个直角三角形;③任意两个正数的乘积为正;④抛一枚硬币,硬币落地时正面朝上.其中属于不确定事件的有( )A.1个B.2个C.3个D.4个【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:①在足球赛中,中国队战胜日本队是随机事件,故①正确;②长为2,3,4的三条线段能围成一个直角三角形,是不可能事件,故②错误;③任意两个正数的乘积为正,是必然事件,故③错误;④抛一枚硬币,硬币落地时正面朝上,是随机事件,故④正确;故选:B.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.已知二次函数y=(m﹣2)x2﹣4x+m2+2m﹣8的图象经过原点,则m的值为( )A.2 B.﹣4 C.2或﹣4 D.无法确定【考点】二次函数图象上点的坐标特征.【分析】由题意二次函数的解析式为:y=(m﹣2)x2+m2﹣m﹣2知m﹣2≠0,∴m≠2,再根据二次函数y=(m﹣2)x2﹣4x+m2+2m﹣8的图象经过原点,把(0,0)代入二次函数,解出m的值.【解答】解:∵二次函数的解析式为:y=(m﹣2)x2﹣4x+m2+2m ﹣8,∴(m﹣2)≠0,∴m≠2,∵二次函数y=(m﹣2)x2﹣4x+m2+2m﹣8的图象经过原点,∴m2+2m﹣8=0,∴m=﹣4或2,∵m≠2,∴m=﹣4.故选B.【点评】此题考查二次函数的基本性质,注意二次函数的二次项系数不能为0,这是容易出错的地方.5.抛物线y=x2+mx+n可以由抛物线y=x2向上平移2个单位,再向左平移3个单位得到,则mn值为( )A.6 B.12 C.54 D.66【考点】二次函数图象与几何变换.【分析】首先在抛物线y=x2确定顶点,进而就可确定顶点平移以后点的坐标,根据待定系数法求函数解析式.【解答】解:抛物线y=x2顶点坐标(0,0)向上平移2个单位,再向左平移3个单位得到(﹣3,2)代入y=(x﹣h)2+k得:y=(x+3)2+2=x2+6x+11,所以m=6,n=11.故mn=66;故选D.【点评】本题考查了二次函数的图象与几何变换,解决本题的关键是得到所求抛物线上的顶点,利用平移的规律即可解答.6.已知二次函数y=x2+x+m,当x取任意实数时,都有y>0,则m的取值范围是( )A.m≥B.m>C.m≤D.m<【考点】抛物线与x轴的交点.【分析】由题意二次函数y=x2+x+m知,函数图象开口向上,当x 取任意实数时,都有y>0,可以推出△<0,从而解出m的范围.【解答】解:已知二次函数的解析式为:y=x2+x+m,∴函数的图象开口向上,又∵当x取任意实数时,都有y>0,∴有△<0,∴△=1﹣4m<0,∴m>,故选B.【点评】此题主要考查二次函数与一元二次方程的关系,当函数图象与x轴无交点时,说明方程无根则△<0,若有交点,说明有根则△≥0,这一类题目比较常见且难度适中.7.上数学课时,老师给出了一个一元二次方程x2+ax+b=0,并告诉学生,从数字1、3、5、中随机抽取一个作为a,从数字2、6中随机抽取一个作为b,组成不同的方程共m个,其中有实数解的方程共n 个,则=( )A.B.C.D.【考点】列表法与树状图法.【专题】计算题.【分析】画树状图展示所有12种等可能的结果数,则m=12,根据判别式的意义可判断a=3,b=2;a=5,b=2;a=5,b=6时,方程有实数解,则n=3,然后计算的值.【解答】解:画树状图:共有12种等可能的结果数,则m=12,其中a=3,b=2;a=5,b=2;a=5,b=6时,方程有实数解,则n=3,所以==.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了根的判别式.8.若实数a,b满足a+b2=2,则a2+6b2的最小值为( )A.﹣3 B.3 C.﹣4 D.4【考点】二次函数的最值.【分析】由a+b2=2得出b2=2﹣a,代入a2+6b2得出a2+6b2=a2+6(2﹣a)=a2﹣6a+12,再利用配方法化成a2+6b2=(a﹣3)2+3,即可求出其最小值.【解答】解:∵a+b2=2,∴b2=2﹣a,∴a2+6b2=a2+6(2﹣a)=a2﹣6a+12=(a﹣3)2+3,当a=3时,a2+6b2可取得最小值为3.故选B.【点评】本题考查了二次函数的最值,根据题意得出a2+6b2=(a ﹣3)2+3是关键.9.已知二次函数y=x2+bx﹣4图象上A、B两点关于原点对称,若经过A点的反比例函数的解析式是y=,则该二次函数的对称轴是直线( )A.x=1 B.x=2 C.x=﹣1 D.x=﹣2【考点】二次函数的性质;反比例函数图象上点的坐标特征.【分析】设A点坐标为(a,),则可求得B点坐标,把两点坐标代入抛物线的解析式可得到关于a和b的方程组,可求得b的值,则可求得二次函数的对称轴.【解答】解:∵A在反比例函数图象上,∴可设A点坐标为(a,),∵A、B两点关于原点对称,∴B点坐标为(﹣a,﹣),又∵A、B两点在二次函数图象上,∴代入二次函数解析式可得.故选C.【点评】本题主要考查待定系数法求二次函数解析式,根据条件先求得b的值是解题的关键,注意关于原点对称的两点的坐标的关系的广泛应用.10.如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2,则y关于x的函数的图象大致为( )A.B.C.D.【考点】动点问题的函数图象.【专题】压轴题.【分析】需要分类讨论:①当0≤x≤3,即点P在线段AB上时,根据余弦定理知cosA=,所以将相关线段的长度代入该等式,即可求得y与x的函数关系式,然后根据函数关系式确定该函数的图象.②当3<x≤6,即点P在线段BC上时,y与x的函数关系式是y=(6﹣x)2=(x﹣6)2(3<x≤6),根据该函数关系式可以确定该函数的图象.【解答】解:∵正△ABC的边长为3cm,∴∠A=∠B=∠C=60°,AC=3cm.①当0≤x≤3时,即点P在线段AB上时,AP=xcm(0≤x≤3);根据余弦定理知cosA=,即=,解得,y=x2﹣3x+9(0≤x≤3);该函数图象是开口向上的抛物线;解法二:过C作CD⊥AB,则AD=1.5cm,CD=cm,点P在AB上时,AP=x cm,PD=|1.5﹣x|cm,∴y=PC2=()2+(1.5﹣x)2=x2﹣3x+9(0≤x≤3)该函数图象是开口向上的抛物线;②当3<x≤6时,即点P在线段BC上时,PC=(6﹣x)cm(3<x≤6);则y=(6﹣x)2=(x﹣6)2(3<x≤6),∴该函数的图象是在3<x≤6上的抛物线;故选:C.【点评】本题考查了动点问题的函数图象.解答该题时,需要对点P的位置进行分类讨论,以防错选.二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.三张完全相同的卡片上分别写有函数y=﹣2x﹣3,y=,y=x2+1,从中随机抽取一张,则所得函数的图象在第一象限内y随x 的增大而增大的概率是.【考点】概率公式;一次函数的性质;反比例函数的性质;二次函数的性质.【分析】先求出函数的图象在第一象限内y随x的增大而增大的函数的个数,再根据概率公式即可得出答案.【解答】解:∵函数y=﹣2x﹣3,y=,y=x2+1中,在第一象限内y随x的增大而增大的只有y=x2+1一个函数,∴所得函数的图象在第一象限内y随x的增大而增大的概率是;故答案为:.【点评】此题考查了概率公式,掌握一次函数、反比例函数和二次函数的性质是本题的关键,用到的知识点是概率=所求情况数与总情况数之比.12.将抛物线y=x2+1的图象绕原点O旋转180°,则旋转后的抛物线解析式是y=﹣x2﹣1.【考点】二次函数图象与几何变换.【分析】根据关于原点对称的两点的横坐标纵坐标都互为相反数求则可.【解答】解:根据题意,﹣y=(﹣x)2+1,得到y=﹣x2﹣1.故旋转后的抛物线解析式是y=﹣x2﹣1.【点评】考查根据二次函数的图象的变换求抛物线的解析式.13.已知:如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a为10米),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S米2.则S与x的函数关系式s=﹣3x2+24x;自变量的取值范围≤x<8.【考点】根据实际问题列二次函数关系式.【分析】可先用篱笆的长表示出BC的长,然后根据矩形的面积=长×宽,得出S与x的函数关系式.【解答】解:由题可知,花圃的宽AB为x米,则BC为(24﹣3x)米.这时面积S=x(24﹣3x)=﹣3x2+24x.∵0<24﹣3x≤10得≤x<8,故答案为:S=﹣3x2+24x,≤x<8.【点评】本题考查了二次函数的综合应用,根据已知条件列出二次函数式是解题的关键.要注意题中自变量的取值范围不要丢掉.14.如图,已知函数y=与y=ax2+bx(a>0,b>0)的图象交于点P.点P的纵坐标为1.则关于x的方程ax2+bx+=0的解为x=﹣3.【考点】二次函数的图象;反比例函数的图象;反比例函数图象上点的坐标特征.【专题】探究型.【分析】先根据点P的纵坐标为1求出x的值,再把于x的方程ax2+bx+=0化为于x的方程ax2+bx=﹣的形式,此方程就化为求函数y=与y=ax2+bx(a>0,b>0)的图象交点的横坐标,由求出的P点坐标即可得出结论.【解答】解:∵P的纵坐标为1,∴1=﹣,∴x=﹣3,∵ax2+bx+=0化为于x的方程ax2+bx=﹣的形式,∴此方程的解即为两函数图象交点的横坐标的值,∴x=﹣3.故答案为:x=﹣3.【点评】本题考查的是二次函数的图象与反比例函数图象的交点问题,能把方程的解化为两函数图象的交点问题是解答此题的关键.15.已知二次函数y=﹣x2﹣2x+3的图象与x轴分别交于A、B两点(如图所示),与y轴交于点C,点P是其对称轴上一动点,当PB+PC取得最小值时,点P的坐标为(﹣1,2).【考点】抛物线与x轴的交点;轴对称-最短路线问题.【分析】首先求得A、B以及C的坐标,和函数对称轴的解析式,然后利用待定系数法求得AC的解析式,AC与二次函数的对称轴的交点就是P.【解答】解:连接AC.在y=﹣x2﹣2x+3中,令y=0,则﹣x2﹣2x+3=0,解得:x=﹣3或1.则A的坐标是(﹣3,0),B的坐标是(1,0),则对称轴是x=﹣1.令x=0,解得y=3,则C的坐标是(0,3).设经过A和C的直线的解析式是y=kx+b.根据题意得:,解得:,则AC的解析式是y=x+3,令x=﹣1,则y=2.则P的坐标是(﹣1,2 ).故答案是(﹣1,2).【点评】本题考查了二次函数的坐标轴的交点,以及对称的性质,确定P的位置是本题的关键.16.如图是抛物线y=ax2+bx+c的一部分,且其过点(3,0),对称轴为直线x=1,则下列结论正确的有①②③⑥:①abc>0②方程ax2+bx+c=0有两个不相等的实数根③a﹣b+c=0④当x>0时,y随x的增大而增大⑤不等式ax2+bx+c>0的解为x>3⑥3a+2c<0.【考点】二次函数图象与系数的关系;二次函数与不等式(组).【分析】根据抛物线的图象,数形结合,逐一解析判断,即可解决问题.【解答】解:∵抛物线的对称轴为x=1,抛物线与x轴有两个交点,∴﹣=1,b=﹣2a,另一个交点为(﹣1,0);∵抛物线开口向上,∴a>0,b<0;由图象知c<0,∴abc>0,故①正确;由图象知抛物线与x轴有两个交点,故②正确;把x=﹣1代入y=ax2+bx+c=a﹣b+c=0,故③正确;由抛物线的对称性及单调性知:x>1时,y随x的增大而增大故④错误;不等式ax2+bx+c>0的解为x>3或x<﹣1,故⑤错误;⑥∵a>0,c<0,∴3a+2c<0,故⑥正确.故答案为:①②③⑥.【点评】该题主要考查了二次函数的图象与系数的关系、抛物线的单调性、对称性及其应用问题;灵活运用有关知识来分析、解答是关键.三、全面答一答(本题有7个小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,你们把自己能写出的解答写出一部分也可以.17.判断下列二次函数的图象与x轴有无交点,若有请求出交点坐标;若无请说明理由.(1)y=﹣6x(2)y=2x2﹣12x+18.【考点】抛物线与x轴的交点.【分析】(1)首先求得判别式△的值,据此即可判断与x轴的交点的个数,若△≥0,然后令y=0,解方程求得与x轴的交点的横坐标即可;(2)首先求得判别式△的值,据此即可判断与x轴的交点的个数,若△≥0,然后令y=0,解方程求得与x轴的交点的横坐标即可.【解答】解:(1)∵a=,b=﹣6,c=0,∴b2﹣4ac=36>0,∴二次函数的图象与x轴有两个交点.令y=0,则x2﹣6x=0,解得:x=0或9.则与x轴的交点是(0,0)和(9,0);(2)∵a=2,b=﹣12,c=18,∴b2﹣4ac=(﹣12)2﹣4×2×18=0,∴二次函数与x轴只有一个交点.令y=0,则2x2﹣12x+18=0,解得:x=3,则与x轴的交点是(3,0).【点评】本题考查了二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标;二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.△=b2﹣4ac决定抛物线与x轴的交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.18.在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小米先从盒子中随机取出一个小球,记下数字为x,且不放回盒子,再由小华随机取出一个小球,记下数字为y.(1)用列表法或画树状图表示出(x,y)的所有可能出现的结果;(2)求小米、小华各取一次小球所确定的点(x,y)落在反比例函数y=的图象上的概率.【考点】列表法与树状图法;反比例函数图象上点的坐标特征.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)中的树状图求得点(x,y)落在反比例函数y=的图象上的情况,再利用概率公式即可求得答案.【解答】解:(1)画树状图得:则共有12种等可能的结果;(2)∵小米、小华各取一次小球所确定的点(x,y)落在反比例函数y=的图象上的有(1,4),(4,1),∴P(点(x,y)落在反比例函数y=的图象上)=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.19.已知抛物线y1=ax2+bx+c的顶点坐标为()且经过点A(1,0),直线y2=x+m恰好也经过点A(1)分别求抛物线和直线的解析式;(2)当x取何值时,函数值y2>y1;(3)当0≤x≤2时,直接写出y2和y1的最小值分别为多少?【考点】二次函数与不等式(组).【分析】(1)根据抛物线的顶点坐标可设出其顶点式,再由抛物线过A(1,0),可得出抛物线的解析式,再把A点坐标代入直线y2=x+m求出m的值即可;(2)在同一坐标系内画出一次函数与二次函数的图象,利用函数图象即可得出结论;(3)根据(2)中函数图象可直接得出结论.【解答】解:(1)∵抛物线y1=ax2+bx+c的顶点坐标为(),∴y1=a(x﹣)2﹣,∵抛物线经过点A(1,0),∴a(1﹣)2﹣=1,解得a=1,∴y1=(x﹣)2﹣.∵直线y2=x+m恰好也经过点A,∴1+m=0,解得m=﹣1,∴y2=x﹣1;(2)如图所示,当1<x<3时,y2>y1;(3)由图可知,当0≤x≤2时y1的最小值为﹣,y2的最小值为﹣1.【点评】本题考查的是二次函数与不等式组,根据题意画出函数图象,利用数形结合求解是解答此题的关键.20.已知二次函数y=ax2+bx+c的图象经过点(﹣2,4),(﹣1,0),(0,﹣2)(1)求这个二次函数的表达式;(2)求此二次函数的顶点坐标及与坐标轴的交点坐标,并根据这些点画出函数大致图象;(3)若0<y<3,求x的取值范围.【考点】待定系数法求二次函数解析式;二次函数的图象;二次函数的性质.【分析】(1)由题意抛物线y=ax2+bx+c(a≠0)经过(﹣2,4),(﹣1,0),(0,﹣2)三点,把三点代入函数的解析式,根据待定系数法求出函数的解析式;(2)把求得的解析式化为顶点式,从而求出其对称轴和顶点坐标;分别令x=0,y=0,得到方程,解方程从而求出抛物线与坐标轴的交点坐标;(3)把y=3代入解析式求得横坐标,从而求出x的取值范围.【解答】解:(1)∵抛物线经过(﹣2,4),(﹣1,0),(0,﹣2)三点,则,解得∴y=x2﹣x﹣2;(2)∵y=x2﹣x﹣2=(x﹣)2﹣∴对称轴为直线x=,顶点坐标为(,﹣);∵x=0,y=﹣2,∴抛物线与y轴的交点坐标为(0,﹣2)∵y=0,∴x2﹣x﹣2=0,∴x1=2,x2=﹣1,∴抛物线与x轴的交点坐标为(2,0)、(﹣1,0).画出函数图象如图:(3)把y=3代入得,x2﹣x﹣2=3,解得x=∴<x<﹣1 或 2<x<.【点评】本题考查了待定系数法求二次函数解析式,二次函数的性质,待定系数法求函数解析式是常用的方法,需熟练掌握并灵活运用,(2)整理成顶点式形式求解更简便.21.某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)若降价的最小单位为1元,则当降价多少元时,每星期的利润最大?最大利润是多少?【考点】二次函数的应用.【分析】(1)根据题意,卖出了(60﹣x)(300+20x)元,原进价共40(300+20x)元,则y=(60﹣x)(300+20x)﹣40(300+20x).(2)根据x=﹣时,y有最大值即可求得最大利润.【解答】解:(1)y=(60﹣x)(300+20x)﹣40(300+20x),即y=﹣20x2+100x+6000.因为降价要确保盈利,所以40<60﹣x≤60(或40<60﹣x<60也可).解得0≤x<20(或0<x<20);(2)当x=﹣=2.5时,y有最大值=6125,即当降价2.5元时,利润最大且为6125元.当x=2或3时,y的最大值为6120元.【点评】本题主要考查了二次函数的应用,根据题意正确列出代数式和函数表达式是解决问题的关键.22.已知A=a+2,B=2a2﹣3a+10,C=a2+5a﹣3,(1)求证:无论a为何值,A﹣B<0成立,并指出A,B的大小关系;(2)请分析A与C的大小关系.【考点】配方法的应用;非负数的性质:偶次方.【分析】(1)计算A﹣B后结论,从而判断A与B的大小;(2)同理计算C﹣A,根据结果来比较A与C的大小.【解答】解:(1)A﹣B=﹣2a2+4a﹣8=﹣2(a﹣1)2﹣6<0,∴A<B;(2)C﹣A=a2+4a﹣5,当a<﹣5或a>1时,C>A,当a=﹣5或a=1时,C=A,当﹣5<a<1时,C<A.【点评】本题考查了整式的减法、十字相乘法分解因式,渗透了求差比较大小的思路及分类讨论的思想.23.如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中A点的坐标为(﹣3,0),C为抛物线与y 轴的交点且S△ABC=6(1)求点B的坐标和抛物线的解析式;(2)若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;(3)①设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值;②若点M是抛物线上在A、C之间的一个动点,则三角形ACM的最大面积是多少?【考点】二次函数综合题.【分析】(1)根据函数值相等两点关于对称轴对称,可得B点坐标,根据待定系数法,可得函数解析式;(2)根据根据三角形的面积公式,可得P点的横坐标,根据自变量与函数值的对应关系,可得P点坐标;(3)①根据垂直于x的直线上两点间的距离是大的纵坐标减小的纵坐标,可得函数解析式,根据顶点坐标是函数的最值,可得答案,②根据面积的和差,可得三角形的面积,根据QM最大时,三角形的面积最大,可得答案.【解答】解:(1)由A、B关于x=﹣1对称,得B(1,0),将A、B点坐标代入函数解析式,得,解得抛物线的解析式为y=x2+2x﹣3;(2)S△BOC=•OB•OC=S△poc=•OC•|Px|=4S△BOC=6,|px|=4,解得x=4或x=﹣4,当x=4时,y=42+2×4﹣3=21,即P1(4,21)当x=﹣4时,y=(﹣4)2+2×(﹣4)﹣3=5,即P2(﹣4,5)综上所述:P1(4,21)P2(﹣4,5).(3)①yAC=﹣x﹣3,设点Q(a,﹣a﹣3),则点D(a,a2+2a﹣3),∴QD=﹣a2﹣3a且﹣3≤a≤0,当a=时,QD的最大值为;②如图,S△ACM的最大值=S△AQM+SCQM=QM•AF+QM•OF=QM•OA=××3=.【点评】本题考查了二次函数综合题,(1)利用了待定系数法求函数解析式,函数值相等的两点关于对称轴对称;(2)利用三角形的面积得出P点的横坐标是解题关键;(3)利用垂直于x的直线上两点间的距离是大的纵坐标减小的纵坐标得出函数解析式是解题关键,②利用面积的和差是解题关键.。

初中数学 人教版练习题 2024-2025学年福建省福州市鼓楼区九年级(上)月考数学试卷(9月份)

初中数学 人教版练习题 2024-2025学年福建省福州市鼓楼区九年级(上)月考数学试卷(9月份)

2024-2025学年福建省福州市鼓楼区屏东中学九年级(上)月考数学试卷(9月份)一.选择题(共10小题,每小题4分,共40分)A.B.C.D.1.(4分)观察下列每组图形,是相似图形的是( )A.B.C.D.2.(4分)下列选项中,y不是x函数的是( )A.2:3B.4:9C.8:18D.16:813.(4分)已知两个相似三角形的周长比为4:9,则它们的对应角平分线比为( )A.x(x+1)=28B.x(x-1)=28C.x(x+1)=28D.x(x-1)=284.(4分)我国的乒乓球“梦之队”在巴黎奥运赛场上大放异彩,奥运会乒乓球比赛的第一阶段是团体赛,赛制为单循环赛(每两队之间都赛一场).计划分为4组,每组安排28场比赛,设每组邀请x个球队参加比赛,可列方程得( )1212A.4B.2C.2D.45.(4分)如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOD=60°,AC=4,则AD的长为( )M3M3 A.2022B.2023C.2024D.20256.(4分)若m,n是方程x2+2x-2026=0的两个实数根,则m2+3m+n的值为( )7.(4分)学校要求学生每天坚持体育锻炼.小亮记录了自己一周内每天校外锻炼的时间,并制作了如图所示的统计图,下列关于小亮该周每天校外锻炼时间的描述,正确的是( )二.填空题(共6小题,每小题4分,共24分)A.中位数为67分钟B.众数为88分钟C.平均数为73分钟D.方差为0A.B.C.D.8.(4分)函数y=ax2-1与y=ax(a≠0)在同一平面直角坐标系中的图象可能是( )A.抛物线与x轴的一个交点为(3,0)B.在对称轴左侧,y随x增大而增大C.抛物线的对称轴是直线x=D.函数y=ax2+bx+c的最大值为69.(4分)抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x…-2-1012…y…04664…从上表可知,下列说法中错误的是( )12A.2.5B.3C.D.10.(4分)沐沐用七巧板拼了一个对角线长为2的正方形,再用这副七巧板拼成一个长方形(如图所示),则长方形的对角线长为( )M5M6 11.(4分)如果点A(-2,a)在函数y=-x+3的图象上,那么a的值等于.12三.解答题(共9小题,共86分)12.(4分)把抛物线y =2x 2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数表达式为 .13.(4分)如图,AD ∥BE ∥CF ,若AB =2,AC =5,DE =4,则EF 的长是 .14.(4分)如图,菱形ABCD 的对角线AC ,BD 交于点O ,过点D 作DE ⊥AB 于点E ,连接OE ,若AB =10,OE =6,则对角线AC 的长为 .15.(4分)小明在计算一组数据的方差时,列出的算式如下:=[2+3+],根据算式信息,这组数据的平均数是 .S 216(7-x )2(8-x )2(9-x )216.(4分)已知抛物线y =x 2-2x +c 经过A (n +3,y 1),B (2n -1,y 2)两点,若A 、B 分别位于抛物线对称轴的两侧,且y 1<y 2,则n 的取值范围是 .17.解方程:(1)(x +1)2=16;(2)x 2-6x +1=0.18.如图,已知点D 是△ABC 的边上一点,CN ∥AB ,DN 交AC 于点M ,MA =MC .求证:四边形ADCN 是平行四边形.19.某商场以每件20元的价格购进一种商品,经市场调查发现:该商品每天的销售量y (件)与每件售价x (元)之间满足一次函数关系,其图象如图所示,设该商场销售这种商品每天获利w(元).(1)求y 与x 之间的函数关系式;(2)求w 与x 之间的函数关系式.20.如图,在△ABC 中,AD 平分∠BAC ,点E 在AC 上,且∠EAD =∠ADE .(1)求证:△DCE ∽△BCA ;(2)若AB =6,DE =4,求的值.BD CD21.已知:二次函数y =x 2-(m +2)x +m -1.(1)求证:该抛物线与x 轴一定有两个交点;(2)设抛物线与x 轴的两个交点是A 、B (A 在原点左边,B 在原点右边),且AB =3,求此时抛物线的解析式.22.某学校开展劳动教育,并在活动前、后实施两次调查.活动前随机抽取50名同学,调查他们一周的课外劳动时间t (单位:h ),并分组整理,绘制成如下的条形统计图(其中A 组0≤t <2,B 组2≤t <4,C 组4≤t <6,D 组6≤t <8,E 组t ≥8).活动开展一个月后,数学社团再次随机抽取50名同学,调查他们一周的课外劳动时间t (单位:h ),按照同样的分组方法绘制成如下扇形统计图,发现活动后调查的数据C 组人数与活动前B 组人数相同.请根据图中信息解答下列问题:(1)请将条形统计图补充完整;(2)活动后调查数据的中位数落在 组;(3)若该校共有2400名学生,请根据活动后调查结果,估计该校学生一周课外劳动时间不小于4小时的人数.23.如图,在平行四边形ABCD 中,AC 为对角线,AC =BC ,AE 是△ABC 的中线.(1)按要求作图:①在AD 取一点F 使得EF ∥CD ;(要求:尺规作图,不写作法,保留作图痕迹).②画出△ABC 的高CH .(要求:仅使用无刻度的直尺画图).(2)在(1)的条件下,若AB =2,∠B =60°,求CH 的长.24.在平面直角坐标系中,已知抛物线y =ax 2+bx 经过A (4,0),B (1,3)两点.P 是抛物线上一点,且在直线AB 的上方.(1)求抛物线的表达式;(2)若△OAB 面积是△PAB 面积的2倍,求点P 的坐标;(3)如图,OP 交AB 于点C ,PD 交AB 于点D ,PD ∥OB .记△CPB ,△BCO 的面积分别为S 1,S 2,判断是否存在最大值.若存在,求出最大值;若不存在,请说明理由.S 1S 225.在一次课上,王老师请同学们思考如何通过折纸的方法来确定正方形一边上的一个三等分点.【操作探究】“乘风”小组的同学经过一番思考和讨论交流后,进行了如下操作:第1步:如图1,将边长为6的正方形纸片ABCD 对折,使点A 与点B 重合,展开铺平,折痕为EF ;第2步:再将BC 边沿CE 翻折得到GC ;第3步:延长EG 交AD 于点H ,则点H 为AD 边的三等分点.证明如下:连接CH ,∵正方形ABCD 沿CE 折叠,∴∠D =∠B =∠CGH =90°,CG =CB =CD ,又∵CH =CH ,∴△CGH ≌△CDH (①_____)∴GH =DH .设DH =x ,∵E 是AB 的中点,则AE =BE =EG =AB =3,在Rt △AEH 中,可列方程:②_____,解得:DH =2,即H 是AD 边的三等分点.“破浪”小组进行如下操作:第1步:如图2所示,先将正方形纸片对折,使点A 与点B 重合,展开铺平,折痕为EF ;第2步:再将正方形纸片对折,使点B 与点D 重合,展开铺平,折痕AC 与折痕DE 交于点G ;第3步:过点G 折叠正方形纸片ABCD ,使折痕MN ∥AD .【过程思考】(1)“乘风”小组的证明过程中,①处的推理依据是;②处所列方程是;(2)结合“破浪”小组操作过程,判断点M 是否为AB 边的三等分点,并证明你的结论;【拓展提升】(3)①如图3,将矩形纸片ABCD 对折,使点A 和点D 重合,展开铺平,折痕为EF ,将△EDC 沿CE 翻折得到△EGC ,过点G 折叠矩形纸片,使折痕MN ∥AB ,若点M 为边AD 的三等分点,请求出的值;②在边长为6的正方形ABCD 中,点E 是射线BA 上一动点,连接CE ,将△EBC 沿CE 翻折得到△EGC ,直线EG 与直线AD 交于点H .若DH =AD ,请直接写出BE 的长.12AD DC13。

2023-2024学年福建省福州市鼓楼区三牧中学九年级(上)期中数学试卷(含解析)

2023-2024学年福建省福州市鼓楼区三牧中学九年级(上)期中数学试卷(含解析)

2023-2024学年福建省福州市鼓楼区三牧中学九年级(上)期中数学试卷一.选择题。

(共10小题,每小题4分,共40分)1.(4分)下面用数学家名字命名的图形中,既是轴对称图形,又是中心对称图形的是( )A.赵爽弦图B.笛卡尔心形线C.科克曲线D.斐波那契螺旋线2.(4分)若一个圆内接正多边形的中心角是60°,则这个多边形是( )A.正九边形B.正八边形C.正七边形D.正六边形3.(4分)抛物线y=x2﹣4x+3与y轴的交点坐标为( )A.(3,0)B.(0,3)C.(1,0)D.(0,1)4.(4分)如图,△ABC内接于⊙O,∠A=40°,则∠BOC的度数为( )A.20°B.40°C.60°D.80°5.(4分)若1是关于x的一元二次方程ax2﹣a2x=0的一个根,则a的值为( )A.﹣1B.0C.1D.0或16.(4分)如图,在△ABC中,∠ACB=90°,∠A=60°,AB=6.将△ABC绕点C沿逆时针方向旋转至△A′B′C的位置,此时,点A′恰好在AB上,则点B与点B′的距离是( )A .6B .C .D .7.(4分)将二次函数y =(x +3)2﹣10的图象先向右平移2个单位长度,再向上平移8个单位长度,得到的抛物线的解析式是( )A .y =(x +5)2﹣2B .y =(x ﹣1)2+2C .y =(x +1)2﹣2D .y =(x ﹣5)2+28.(4分)如图,PA 、PB 是⊙O 切线,A 、B 为切点,点C 在⊙O 上,且∠ACB =55°,则∠APB 等于( )A .55°B .70°C .110°D .125°9.(4分)如图,点I 为△ABC 的内心,AB =5,AC =4,BC =3,将∠ACB 平移使其顶点与I 重合,则图中阴影部分的面积为( )A .1B .C .D .10.(4分)如图,在△ABO 中,∠AOB =90°,∠BAO =30°,BO =6,⊙O 的面积为12π,点M ,N 分别在⊙O 、线段AB 上运动,则MN 长度的最小值等于( )A.B.C.D.二.填空题。

2023-2024学年福建省福州市鼓楼区五年级(上)期末数学试卷

2023-2024学年福建省福州市鼓楼区五年级(上)期末数学试卷

2023-2024学年福建省福州市鼓楼区五年级(上)期末数学试卷一、认真审题,灵活计算。

1.直接写出得数。

3.4×0.6=0.1÷0.01=0.72×50= 3.5+0.65=9.9÷33=40÷0.8=10﹣0.01=0.32=2.解方程。

12÷x=155(x﹣1.3)=9.5x﹣0.72x=12.63.计算下面各题,怎样算简便就怎样算。

6.7×999.4÷1.25÷818.36÷(6﹣0.5×8.4)1.25×3.2×0.5 3.6÷2.5×40.47×32+47×0.68二、反复比较,谨慎选择。

(选择正确答案序号填在括号里)4.如果4x﹣3的值是15,那么5x+6的值是()A.21B.22.5C.28.5D.无法确定5.把28m长的彩带平均分给16名同学,除法算式中框起来的数表示()A.120m B.120dm C.120cm D.120mm6.计算1.25×(8×0.8),下面做法正确的是()A.1.25×8×1.25×0.8B.1.25×8×0.8C.1.25×8+1.25×0.8D.1.25×8+0.87.把一个长方形活动框架拉成一个平行四边形,拉成的平行四边形与原来长方形比,()A.周长不变,面积变小B.面积不变,周长变大C.周长不变,面积变大D.面积不变,周长变小8.今年女儿m岁,妈妈(m+26)岁,再过n年后,她们相差()岁。

A.m B.n C.26D.n+269.李涵和王萱玩骰子游戏。

游戏规则如下:同时投两个骰子,如果两个骰子的和是5、6、7,那么李涵赢;如果和是9、10、11,那么王萱赢。

两人的胜算相比,()A.李涵胜算大B.王萱胜算大C.同样多D.无法确定10.我国古代数学名著《九章算术》中记载了三角形面积的计算方法是“半广以乘正从”。

福建省福州市鼓楼区屏东中学2018-2019学年九年级(上)期中数学试卷(含答案)

福建省福州市鼓楼区屏东中学2018-2019学年九年级(上)期中数学试卷(含答案)

2018-2019学年福建省福州市鼓楼区屏东中学九年级(上)期中数学试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.(4分)若两个相似三角形的面积比为2:3,那么这两个三角形的周长的比为()A.4:9B.2:3C.:D.3:23.(4分)已知﹣1是关于x的方程x2+4x﹣m=0的一个根,则这个方程的另一个根是()A.﹣3B.﹣2C.﹣1D.34.(4分)事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则()A.事件①是必然事件,事件②是随机事件B.事件①是随机事件,事件②是必然事件C.事件①和②都是随机事件D.事件①和②都是必然事件5.(4分)如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是()A.∠ADC B.∠ABD C.∠BAC D.∠BAD6.(4分)如图,一次函数y=ax+b的图象与反比例函数y=的图象相交于A(﹣2,y1).B (1,y2)两点,则不等式ax+b﹣<0的解集为()A.x<﹣2B.x<﹣2或0<x<1C.0<x<1D.﹣2<x<0或x>17.(4分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:则当y≥5时,x的取值范围是()A.x≤0B.0≤x≤4C.x≥4D.x≤0或x≥4 8.(4分)如图,⊙O是△ABP的外接圆,半径r=2,∠APB=45°,则弦AB的长为()A.B.2C.2D.49.(4分)如图,以BC为直径的⊙O与△ABC的另两边分别相交于D、E.若∠A=60°,BC=6,则图中阴影部分的面积为()A.πB.πC.πD.3π10.(4分)如图,正方形ABCO的边长为4,点E在线段AB上运动,AE=BF,且AF与OE相交于点P,直线y=x﹣3与x轴,y轴交于M、N两点,连接PN,PM,则△PMN 面积的最大值()A.10.5B.12C.12.5D.15二、填空题:本题共6小题,每小题4分,共40分.11.(4分)抛物线y=﹣(x﹣2)2+3的顶点坐标是.12.(4分)若关于x的一元二次方程x2﹣2x+m=0有实数根,则m的取值范围是.13.(4分)已知点A(1,y1),B(﹣,y2),C(﹣2,y3)在y=2(x+1)2﹣0.5的函数图象上,请用“<“号比较y1,y2,y3的大小关系.14.(4分)如图,已知△ABC和△ADE均为等边三角形,点D在BC边上,DE与AC相交于点F,如果AB=9,BD=3,那么CF的长度为.15.(4分)如图,网络格上正方形小格的边长为1,图中线段AB和点P绕着同一个点做相同的旋转,分别得到线段A′B′和点P′,则在1区~4区中,点P′所在的单位正方形区域是(选填区域名称)16.(4分)如图,菱形ABCD的两个顶点B,D在反比例函数y=的图象上,对角线AC 与BD的交点恰好是坐标原点O,已知点A(2,2),∠BAC=60°,则k的值是.三、解答题(共9小题,共86分)17.(10分)解方程:(1)x2+2x﹣1=0(2)x(x﹣3)=x﹣3.18.(8分)在边长为1的正方形网格中,△AOB的位置如图所示.(1)将△OAB绕着点O逆时针旋转90°,画出旋转后得到的△OCD;(2)直接写出旋转过程中,点A所经过路径的长为.19.(8分)小芳从家骑自行车去学校,所需时间y(min)与骑车速度x(m/min)之间的反比例函数关系如图.(1)写出y与x的函数表达式;(2)学校要求学生每天7点20分前到校,而小芳的骑车速度最快不超过300m/min,为了安全起见,她每天至少要几点出发?20.(8分)已知:△ABC中,∠A=36°,AB=AC,用尺规求作一条过点B的直线,使得截出的一个三角形与△ABC相似.(保留作图痕迹,不写作法)21.(10分)在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小明从布袋里随机取出一个小球,记下数字为x,小红从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)以坐标原点为圆心,4为半径作圆,求出点(x,y)在圆内的概率.22.(8分)如图,Rt△ABC中,∠ACB=90°,AB=8,CE为△ABC外接圆的切线,AE⊥CE于点E.(1)求证:∠ACE=∠B.(2)若AE=2,求CE的长.23.(10分)一种进价为每件40元的T恤,若销售单价为60元,则每周可卖出300件.为提高利润,欲对该T恤进行涨价销售.经过调查发现:每涨价1元,每周要少卖出5件.(1)请确定该T恤涨价后每周的销售利润y(元)与销售单价x(元)之间的函数关系式,并求销售单价定为多少元时,每周的销售利润最大?(2)若要使每周的销售利润不低于7680元,请确定销售单价x的取值范围.24.(12分)已知锐角△ABC内接于O,AD⊥BC.垂足为D.(1)如图1,若=,BD=DC,求∠B的度数.(2)如图2,BE⊥AC,垂足为E,BE交AD于点F,过点B作BG∥AD交⊙O于点G,在AB边上取一点H,使得AH=BG;①连接CG,试探究∠ABC,∠ACG的数量关系,并给予证明.②求证:△AFH是等腰三角形.25.(14分)已知:二次函数y=﹣x2+bx+c(a≠0)的图象与x轴交于点A(﹣3,0)、B (1,0),顶点为C.(1)求该二次函数的解析式和顶点C的坐标;(2)如图,过B、C两点作直线,并将线段BC沿该直线向下平移,点B、C分别平移到点D、E处.若点F在这个二次函数的图象上,且△DEF是以EF为斜边的等腰直角三角形,求点F的坐标;(3)试确定实数p,q的值,使得当p≤x≤q时,P≤y≤.2018-2019学年福建省福州市鼓楼区屏东中学九年级(上)期中数学试卷参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,是中心对称图形;C、是轴对称图形,不是中心对称图形;D、是轴对称图形,不是中心对称图形;故选:B.2.【解答】解:∵两个相似三角形的面积比为2:3,∴这两个三角形的相似比为:,∴这两个三角形的周长的比为:,故选:C.3.【解答】解:设方程x2+4x﹣m=0的另一个根为:x1,由根与系数的关系得:﹣1+x1=﹣4,解得:x1=﹣3,故选:A.4.【解答】解:射击运动员射击一次,命中靶心是随机事件;购买一张彩票,没中奖是随机事件,故选:C.5.【解答】解:连接BC,如图所示:∵AB是⊙O的直径,∴∠ACB=∠ACD+∠BCD=90°,∵∠BCD=∠BAD,∴∠ACD+∠BAD=90°,故选:D.6.【解答】解:观察函数图象,发现:当﹣2<x<0或x>1时,一次函数图象在反比例函数图象的下方,∴不等式ax+b﹣<0的解集是﹣2<x<0或x>1.故选:D.7.【解答】解:由表可知,二次函数的对称轴为直线x=2,并且x=2时函数有最小值1,因为x=0时,y=5,所以,x=4时,y=5,所以,y≥5时,x的取值范围为x≤0或x≥4.故选:D.8.【解答】解:连接OA、OB,如图所示:则∠AOB=2∠APB=90°,∵OA=OB=r=2,∴AB===2;故选:C.9.【解答】解:∵△ABC中,∠A=60°,∴∠ABC+∠ACB=180°﹣60°=120°,∵△OBD、△OCE是等腰三角形,∴∠BDO+∠CEO=∠ABC+∠ACB=120°,∴∠BOD+∠COE=360°﹣(∠BDO+∠CEO)﹣(∠ABC+∠ACB)=360°﹣120°﹣120°=120°,∵BC=6,∴OB=OC=3,∴S阴影==3π,故选:D.10.【解答】解:由题意易得△AEO≌△AFB(SAS)∴∠BAF=∠EOA∵四边形ABCO是正方形∴∠BAF+∠P AO=90∴∠EOA+∠P A0=90∴∠APO=90点P在以AO为直径的圆上要使得△PMN的面积最大,点P到直线y=x﹣3的距离最大,即平移直线MN使其与圆相切于点P,使距离最大,则过点P做直线MN的垂线与MN交于点H,此时PH一定过圆心G,如图所示当y=0时,0=x﹣3得x=4,M(4,0)当x=0时,y=x﹣3得y=﹣3,∴N(0,﹣3)∴MN=5,GN=5,sin∠OMN==在R△GNH中,有sin∠GNH==,∴GH=4,∴PH=6,△PMN的最大面积=×PH×MN=×6×5=15故选:D.二、填空题:本题共6小题,每小题4分,共40分.11.【解答】解:抛物线y=﹣(x﹣2)2+3的顶点坐标是(2,3).故答案为:(2,3).12.【解答】解:由题意知,△=4﹣4m≥0,∴m≤1答:m的取值范围是m≤1.13.【解答】解:∵抛物线y=2(x+1)2﹣0.5的开口向上,对称轴为直线x=﹣1,而A(1,y1)点离直线x=﹣1的距离最远,B(﹣,y2)点离直线x=﹣1最近,∴y2<y3<y1.故答案为y2<y3<y1.14.【解答】解:如图,∵△ABC和△ADE均为等边三角形,∴∠B=∠BAC=60°,∠E=∠EAD=60°,∴∠B=∠E,∠BAD=∠EAF,∴△ABD∽△AEF,∴AB:BD=AE:EF.同理:△CDF∽△EAF,∴CD:CF=AE:EF,∴AB:BD=CD:CF,即9:3=(9﹣3):CF,∴CF=2.故答案为:2.15.【解答】解:如图,连接AA′、BB′,分别作AA′、BB′的中垂线,两直线的交点即为旋转中心,由图可知,线段AB和点P绕着同一个该点逆时针旋转90°,∴点P逆时针旋转90°后所得对应点P′落在4区,故答案为:4区.16.【解答】解:∵四边形ABCD是菱形,∴BA=BC,AC⊥BD,∵∠ABC=60°,∴△ABC是等边三角形,∵点A(2,2),∴OA=2,∴BO===2,∵直线AC的解析式为y=x,∴直线BD的解析式为y=﹣x,∵OB=2,∴点B的坐标为(﹣2,2),∵点B在反比例函数y=的图象上,∴k=﹣2×2=﹣12,故答案为:﹣12.三、解答题(共9小题,共86分)17.【解答】解:(1)x2+2x﹣1=0,x2+2x=1,x2+2x+1=1+1,(x+1)2=2,x+1=,x1=﹣1+,x2=﹣1﹣;(2)x(x﹣3)=x﹣3,x(x﹣3)﹣(x﹣3)=0,(x﹣3)(x﹣1)=0,x﹣3=0或x﹣1=0,x1=3,x2=1.18.【解答】解:(1)△OCD如图所示.(2)旋转过程中,点A所经过路径的长==π故答案为π.19.【解答】解:(1)设y=,当x=240时,y=10,解得:k=2400,故y与x的函数表达式为:y=;(2)当x=300时y=8,∵k>0,∴在第一象限内y随x的增大而减小,20﹣8=12∴她每天至少要7:12出发.20.【解答】解:如图,直线BD即为所求.21.【解答】解:(1)画树状图得:∴共有12种等可能的结果数,即点P所有可能的坐标为(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3);(2)其中事件点(x,y)在圆内的点有:(1,2),(1,3)(2,1)(2,3)(3,1)(3,2)∴在圆内的概率.P==.22.【解答】(1)证明:取AB的中点O,连接OC,∵CE为△ABC外接圆的切线,∴∠OCE=90°,∵∠ACB=90°,∴∠OCE﹣∠ACO=∠ACB﹣∠ACO,即∠ACE=∠OCB,∵∠ACB=90°,∴AB为直径,∴OC=OB,∴∠OCB=∠B,∴∠ACE=∠B;(2)解:∵AE⊥CE,∴∠AEC=90°,∴∠AEC=∠ACB,∵∠ACE=∠B,∴△ACE∽△ABC,∴=,∵AE=2,AB=8,∴AC2=2×8=16,∴AC=4,Rt△ACE中,CE==2.23.【解答】解:(1)根据题意得y=(x﹣40)[300﹣5(x﹣60)]=﹣5(x2﹣160x+4800)=﹣5(x﹣80)2+8000,∵a<0,∴当x=80时,y的值最大=8000,即销售单价定为80元时,每周的销售利润最大;(2)当y=7680时,﹣5(x﹣80)2+8000=7680,整理得:(x﹣80)2=64,∴x﹣80=±8,∴x1=88,x2=72,∴72≤x≤88.24.【解答】解:(1)∵=,∴AB=BC.∵AD⊥BC,BD=DC,∴AD是线段BC的垂直平分线,∴AB=AC,∴△ABC是等边三角形,∴∠B=60°;(2)①连接GC,GA,∵BG⊥BC,∴GC是⊙O的直径,∴∠GAC=90°,∵∠ABC=∠AGC,∴∠ABC+∠ACG=90°;②∵BE⊥AC,∴∠BEC=∠GAC=90°,∴AG∥BE.∵AD⊥BC,∴∠ADC=∠GBC=90°,∴BG∥AD,∴四边形GBF A是平行四边形,∴BG=AF.∵BG=AH,∴AH=AF,∴△AFH是等腰三角形.25.【解答】解:(1)∵二次函数y=﹣x2+bx+c(a≠0)的图象与x轴交于点A(﹣3,0)、B(1,0),∴,解得:,∴二次函数的解析式为y=﹣x2﹣x+,∴顶点C的坐标为(﹣1,2);(2)如图,过C作CH⊥x轴于H,∵C(﹣1,2),∴CH=2,OH=1,∵BO=1,∴BH=CH=2,∴△BCH是等腰直角三角形,∴∠1=45°,∴BC==2,在Rt△DEF中,DE=DF=BC=2,∠FDE=90°,∴∠2=45°,EF==4,∴∠1=∠2=45°,∴EF∥CH∥y轴,∵B(1,0),C(﹣1,2),∴直线BC的解析式为y=﹣x+1,设F(m,﹣m2﹣m+)(m>1),则点E(m,﹣m+1),∴EF=(﹣m+1)﹣(﹣m2﹣m+)=m2﹣=4,解得:m1=3,m2=﹣3(不合题意,舍去),∴点F的坐标(3,﹣6);(3)当y=时,﹣x2﹣x+=,解得:x1=﹣2,x2=0,∵y=﹣x2﹣x+=﹣(x+1)2+2,当x<﹣1时,y随x的增大二增大,当x>﹣1时,y随x的增大二减小,当x=1时,y由最大值2;∵当p≤x≤q时,P≤y≤,∴可分三种情况:①当P≤Q≤﹣1时,由增减性得,当x=q=﹣2时,y最小=,当x=p时,y=p代入y=﹣(x+1)2+2,解得:p1=﹣2+,p2=﹣2﹣<﹣1(不合题意,舍去),∴p=﹣2+,q=﹣2;②当p<﹣1≤q时,当x=﹣1时,y最大=2>(舍去),③当﹣1≤p<q时,由增减性得,(Ⅰ)当x=p=0时,y最大=,把x=p=0,y=代入y=﹣(x+1)2+2得,p=﹣(p+1)2+2,解得:p1=0,p2=﹣1(不合题意,舍去),∴p=0,(Ⅱ)当x=q时,y最小=p=0,把x=q,y=p=0代入y=﹣(x+1)2+2,得﹣(p+1)2+2=0,解得:q1=1,q2=﹣3<﹣1(不合题意,舍去),∴p=0,q=1,综上所述,满足条件的实数p,q的值为:p=﹣2+,q=﹣2或p=0,q=1.。

2021-2022学年福建省福州市鼓楼区九年级(上)期末数学试卷(解析版)

2021-2022学年福建省福州市鼓楼区九年级(上)期末数学试卷(解析版)

2021-2022学年福建省福州市鼓楼区九年级第一学期期末数学试卷一.选择题(共10小题,每题4分)1.下列汽车标志中,可以看作是中心对称图形的是()A.B.C.D.2.在一个布袋中装有红、白两种颜色的小球,它们除颜色外没有任何其他区别.其中红球若干,白球5个,袋中的球已搅匀.若从袋中随机取出1个球,取出红球的可能性大,则红球的个数是()A.4个B.5个C.不足4个D.6个或6个以上3.抛物线y=﹣(x+1)2+2的顶点坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,2)D.(1,﹣2)4.已知x=1是方程x2﹣2x+c=0的一个根,则实数c的值是()A.﹣1B.0C.1D.25.在平面直角坐标系中,抛物线y=x2经变换后得到抛物线y=x2+2,则这个变换可以()A.向左平移2个单位B.向上平移2个单位C.向下平移2个单位D.向右平移2个单位6.下列说法正确的是()A.概率很小的事件不可能发生B.抛一枚硬币,第一次正面朝上,则正面朝上的概率为1C.必然事件发生的概率是1D.某种彩票中奖的概率是,买1000张这种彩票一定会中奖7.受新冠肺炎疫情影响,某企业生产总值从元月份的300万元,连续两个月降至260万元,设平均降低率为x,则可列方程()A.300(1+x)2=260B.300(1﹣x2)=260C.300(1﹣2x)=260D.300(1﹣x)2=2608.如图,AD、BC相交于点O,由下列条件不能判定△AOB与△DOC相似的是()A.AB∥CD B.∠A=∠D C.D.9.往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm10.关于x的一元二次方程ax2+bx+=0有一个根是﹣1,若二次函数y=ax2+bx+的图象的顶点在第一象限,设t=2a+b,则t的取值范围是()A.<t<B.﹣1<t≤C.﹣≤t<D.﹣1<t<二.填空题(共6小题,每题4分)11.小强同学从﹣1,0,1,2,3,4这六个数中任选一个数,满足不等式x+1<2的概率是.12.若点P(m,5)与点Q(3,﹣5)关于原点成中心对称,则m的值是.13.已知一个扇形的圆心角为100°,半径为4,则此扇形的弧长是.14.如图,▱ABCD的对角线AC在y轴上,原点O为AC的中点,点D在第一象限内,AD ∥x轴,当双曲线y=经过点D时,则▱ABCD面积为.15.已知⊙O的内接正六边形的边心距为2.则该圆的的半径为.16.如图,平面直角坐标系中,已知O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为.三.解答题(共9小题)17.解方程:x2﹣2x﹣5=0.18.如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A点旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.(1)求证:EF=BC;(2)若∠ABC=65°,∠ACB=28°,求∠FGC的度数.19.如图,直线l1∥l2∥l3,点A,C分别在直线l1,l3上,连接AC交直线l2于E点,AE=EC.(1)尺规作图:在直线l2上从左到右依次确定B,D两点,使得四边形ABCD是矩形(保留作图痕迹,不必写作法及证明);(2)在(1)的情况下,若AE=4,∠AEB=60°,求矩形ABCD的周长.20.已知关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根x1,x2.(1)若a为正整数,求a的值;(2)若x1,x2满足x12+x22﹣x1x2=16,求a的值.21.如图,在Rt△ABC中,∠ABC=90°,直角顶点B位于x轴的负半轴,点A(0,﹣2),斜边AC交x轴于点D,且D(1,0),BC与y轴交于点E,y轴平分∠BAC,反比例函数y=(x>0)的图象经过点C.(1)直接写出点B的坐标;(2)求y=(x>0)的函数表达式.22.生活在数字时代的我们,很多场合用二维码(如图①)来表示不同的信息,类似地,可通过在矩形网格中,对每一个小方格涂色或不涂色所得的图形来表示不同的信息,例如:网格中只有一个小方格,如图②,通过涂色或不涂色可表示两个不同的信息.(1)用树状图或列表格的方法,求图③可表示不同信息的总个数;(图中标号1、2表示两个不同位置的小方格,下同)(2)图④为2×2的网格图,它可表示不同信息的总个数为;(3)某校需要给每位师生制作一张“校园出入证”,准备在证件的右下角采用n×n的网格图来表示个人身份信息,若该校师生共492人,则n的最小值为.23.“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:每条裤子每降价1元,则每月可多销售5条.设每条裤子的售价为x元(x为正整数),每月的销售量为y条.(1)求出y与x之间的函数关系式(不用写自变量的取值范围);(2)设该网店每月获得的利润为w元,当每条裤子的售价降价多少元时,每月获得的利润最大,最大利润是多少?24.如图,⊙O与等边△ABC的边AC,AB分别交于点D,E,AE是直径,过点D作DF ⊥BC于点F.(1)求证:DF是⊙O的切线;(2)连接EF,当EF是⊙O的切线时,求⊙O的半径r与等边△ABC的边长a之间的数量关系.25.如图1,在平面直角坐标系中,抛物线与x轴分别交于A、B两点,与y轴交于点C(0,6),抛物线的顶点坐标为E(2,8),连结BC、BE、CE.(1)求抛物线的表达式;(2)判断△BCE的形状,并说明理由;(3)如图2,以C为圆心,为半径作⊙C,在⊙C上是否存在点P,使得BP+EP 的值最小,若存在,请求出最小值;若不存在,请说明理由.参考答案一.选择题(共10小题,每题4分)1.下列汽车标志中,可以看作是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的性质得出图形旋转180°,与原图形能够完全重合的图形是中心对称图形,分别判断得出即可.解:A.旋转180°,与原图形能够完全重合是中心对称图形;故此选项正确;B.旋转180°,不能与原图形能够完全重合不是中心对称图形;故此选项错误;C.旋转180°,不能与原图形能够完全重合不是中心对称图形;故此选项错误;D.旋转180°,不能与原图形能够完全重合不是中心对称图形;故此选项错误;故选:A.2.在一个布袋中装有红、白两种颜色的小球,它们除颜色外没有任何其他区别.其中红球若干,白球5个,袋中的球已搅匀.若从袋中随机取出1个球,取出红球的可能性大,则红球的个数是()A.4个B.5个C.不足4个D.6个或6个以上【分析】由取出红球的可能性大知红球的个数比白球个数多,据此可得答案.解:∵袋子中白球有5个,且从袋中随机取出1个球,取出红球的可能性大,∴红球的个数比白球个数多,∴红球个数满足6个或6个以上,故选:D.3.抛物线y=﹣(x+1)2+2的顶点坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,2)D.(1,﹣2)【分析】直接由抛物线的顶点式即可求得答案.解:∵y=﹣(x+1)2+2,∴抛物线的顶点坐标为(﹣1,2),故选:A.4.已知x=1是方程x2﹣2x+c=0的一个根,则实数c的值是()A.﹣1B.0C.1D.2【分析】将x=1代入x2﹣2x+c=0得到关于c的方程,解之可得.解:根据题意,将x=1代入x2﹣2x+c=0,得:1﹣2+c=0,解得:c=1,故选:C.5.在平面直角坐标系中,抛物线y=x2经变换后得到抛物线y=x2+2,则这个变换可以()A.向左平移2个单位B.向上平移2个单位C.向下平移2个单位D.向右平移2个单位【分析】根据变换前后的两抛物线的顶点坐标找变换规律.解:y=x2的顶点坐标是(0,0).y=x2+2的顶点坐标是(0,2).所以将抛物线y=x2向上平移2个单位长度得到抛物线y=x2+2,故选:B.6.下列说法正确的是()A.概率很小的事件不可能发生B.抛一枚硬币,第一次正面朝上,则正面朝上的概率为1C.必然事件发生的概率是1D.某种彩票中奖的概率是,买1000张这种彩票一定会中奖【分析】根据概率的意义,概率公式,随机事件,必然事件,不可能事件的特点逐一判断即可解:A.概率很小的事件也可能发生,故A不符合题意;B.抛一枚硬币,第一次正面朝上,则正面朝上的概率为,故B不符合题意;C.必然事件发生的概率是1,故C符合题意;D.某种彩票中奖的概率是,买1000张这种彩票不一定会中奖,故D不符合题意;故选:C.7.受新冠肺炎疫情影响,某企业生产总值从元月份的300万元,连续两个月降至260万元,设平均降低率为x,则可列方程()A.300(1+x)2=260B.300(1﹣x2)=260C.300(1﹣2x)=260D.300(1﹣x)2=260【分析】根据该企业元月份及经过两个月降低后的生产总值,即可得出关于x的一元二次方程,此题得解.解:依题意,得:300(1﹣x)2=260.故选:D.8.如图,AD、BC相交于点O,由下列条件不能判定△AOB与△DOC相似的是()A.AB∥CD B.∠A=∠D C.D.【分析】本题中已知∠AOB=∠DOC是对顶角,应用两三角形相似的判定定理,即可作出判断.解:A、由AB∥CD能判定△AOB∽△DOC,故本选项不符合题意.B、由∠AOB=∠DOC、∠A=∠D能判定△AOB∽△DOC,故本选项不符合题意.C、由、∠AOB=∠DOC能判定△AOB∽△DOC,故本选项不符合题意.D、已知两组对应边的比相等:,但其夹角不一定对应相等,不能判定△AOB与△DOC相似,故本选项符合题意.故选:D.9.往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm【分析】连接OB,过点O作OC⊥AB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而可得出CD的长.解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:∵AB=48cm,∴BD=AB=×48=24(cm),∵⊙O的直径为52cm,∴OB=OC=26cm,在Rt△OBD中,OD===10(cm),∴CD=OC﹣OD=26﹣10=16(cm),故选:C.10.关于x的一元二次方程ax2+bx+=0有一个根是﹣1,若二次函数y=ax2+bx+的图象的顶点在第一象限,设t=2a+b,则t的取值范围是()A.<t<B.﹣1<t≤C.﹣≤t<D.﹣1<t<【分析】二次函数的图象过点(﹣1,0),则a﹣b+=0,而t=2a+b,则a=,b =,二次函数的图象的顶点在第一象限,则﹣>0,﹣>0,即可求解.解:∵关于x的一元二次方程ax2+bx+=0有一个根是﹣1,∴二次函数y=ax2+bx+的图象过点(﹣1,0),∴a﹣b+=0,∴b=a+,而t=2a+b,则a=,b=,∵二次函数y=ax2+bx+的图象的顶点在第一象限,∴﹣>0,﹣>0,将a=,b=代入上式得:﹣>0,解得:﹣1<t<,﹣>0,解得:t≠,故:﹣1<t<,故选:D.二.填空题(共6小题,每题4分)11.小强同学从﹣1,0,1,2,3,4这六个数中任选一个数,满足不等式x+1<2的概率是.【分析】找到满足不等式x+1<2的结果数,再根据概率公式计算可得.解:在﹣1,0,1,2,3,4这六个数中,满足不等式x+1<2的有﹣1、0这两个,所以满足不等式x+1<2的概率是=,故答案为:.12.若点P(m,5)与点Q(3,﹣5)关于原点成中心对称,则m的值是﹣3.【分析】直接利用关于原点对称点的性质得出m的值.解:若点P(m,5)与点Q(3,﹣5)关于原点成中心对称,则m的值是﹣3.故答案为:﹣3.13.已知一个扇形的圆心角为100°,半径为4,则此扇形的弧长是.【分析】根据弧长公式计算即可.解:此扇形的弧长==,故答案为.14.如图,▱ABCD的对角线AC在y轴上,原点O为AC的中点,点D在第一象限内,AD ∥x轴,当双曲线y=经过点D时,则▱ABCD面积为8.【分析】设点D的坐标为(a,b),即可得到ab=4,再根据AD=a,AO=b,即可得到▱ABCD面积.解:设点D的坐标为(a,b),∵双曲线y=经过点D,∴ab=4,∵AD∥x轴,∴AD=a,AO=b,又∵点O为AC的中点,∴AC=2AO=2b,∴▱ABCD面积=2×AD×AC=a×2b=2ab=8,故答案为:8.15.已知⊙O的内接正六边形的边心距为2.则该圆的的半径为4.【分析】连接OA、OB,证出△AOB是等边三角形,根据锐角三角函数的定义即可求得半径.解:如图所示,连接OA、OB,∵多边形ABCDEF是正六边形,∵OA=OB,∴△AOB是等边三角形,∴∠OAM=60°,∴OM=OA•sin∠OAM,∴OA===4,∴该圆的半径为4.故答案为:4.16.如图,平面直角坐标系中,已知O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为(3,﹣10).【分析】先求出AB=6,再利用正方形的性质确定D(﹣3,10),由于70=4×17+2,所以第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转90°,此时旋转前后的点D关于原点对称,于是利用关于原点对称的点的坐标特征可出旋转后的点D的坐标.解:∵A(﹣3,4),B(3,4),∴AB=3+3=6,∵四边形ABCD为正方形,∴D(﹣3,10),∵70=4×17+2,∴每4次一个循环,第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转90°,∴点D的坐标为(3,﹣10).故答案为:(3,﹣10).三.解答题(共9小题)17.解方程:x2﹣2x﹣5=0.【分析】先利用配方法得到(x﹣1)2=6,然后利用直接开平方法解方程.解:x2﹣2x=5,x2﹣2x+1=6,(x﹣1)2=6,x﹣1=±,所以x1=1+,x2=1﹣.18.如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A点旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.(1)求证:EF=BC;(2)若∠ABC=65°,∠ACB=28°,求∠FGC的度数.【分析】(1)由旋转的性质可得AC=AF,利用SAS证明△ABC≌△AEF,根据全等三角形的对应边相等即可得出EF=BC;(2)根据等腰三角形的性质以及三角形内角和定理求出∠BAE=180°﹣65°×2=50°,那么∠FAG=50°.由△ABC≌△AEF,得出∠F=∠C=28°,再根据三角形外角的性质即可求出∠FGC=∠FAG+∠F=78°.【解答】(1)证明:∵∠CAF=∠BAE,∴∠BAC=∠EAF.∵将线段AC绕A点旋转到AF的位置,∴AC=AF.在△ABC与△AEF中,,∴△ABC≌△AEF(SAS),∴EF=BC;(2)解:∵AB=AE,∠ABC=65°,∴∠BAE=180°﹣65°×2=50°,∴∠FAG=∠BAE=50°.∵△ABC≌△AEF,∴∠F=∠C=28°,∴∠FGC=∠FAG+∠F=50°+28°=78°.19.如图,直线l1∥l2∥l3,点A,C分别在直线l1,l3上,连接AC交直线l2于E点,AE=EC.(1)尺规作图:在直线l2上从左到右依次确定B,D两点,使得四边形ABCD是矩形(保留作图痕迹,不必写作法及证明);(2)在(1)的情况下,若AE=4,∠AEB=60°,求矩形ABCD的周长.【分析】(1)以AC为直径作圆交直线l2于B,D,四边形ABCD即为所求.(2)证明△ABE是等边三角形,利用勾股定理求出AD即可解决问题.解:(1)如图,所作的四边形ABCD是矩形.(2)∵AE=BE,∠AEB=60°,∴△ABE是等边三角形,∴AB=AE=4,又∵∠BAD=90°,∴AD===4,所以,矩形ABCD的周长为:2(AB+AD)=8+8.20.已知关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根x1,x2.(1)若a为正整数,求a的值;(2)若x1,x2满足x12+x22﹣x1x2=16,求a的值.【分析】(1)根据关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根,得到Δ=[﹣2(a﹣1)]2﹣4(a2﹣a﹣2)>0,于是得到结论;(2)根据x1+x2=2(a﹣1),x1x2=a2﹣a﹣2,代入x12+x22﹣x1x2=16,解方程即可得到结论.解:(1)∵关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根,∴Δ=[﹣2(a﹣1)]2﹣4(a2﹣a﹣2)>0,解得:a<3,∵a为正整数,∴a=1,2;(2)∵x1+x2=2(a﹣1),x1x2=a2﹣a﹣2,∵x12+x22﹣x1x2=16,∴(x1+x2)2﹣3x1x2=16,∴[2(a﹣1)]2﹣3(a2﹣a﹣2)=16,解得:a1=﹣1,a2=6,∵a<3,∴a=﹣1.21.如图,在Rt△ABC中,∠ABC=90°,直角顶点B位于x轴的负半轴,点A(0,﹣2),斜边AC交x轴于点D,且D(1,0),BC与y轴交于点E,y轴平分∠BAC,反比例函数y=(x>0)的图象经过点C.(1)直接写出点B的坐标;(2)求y=(x>0)的函数表达式.【分析】(1)根据已知条件得到OD=1,根据角平分线的定义得到∠BAO=∠DAO,根据全等三角形的性质即可得到结论;(2)过C作CH⊥x轴于H,得到∠CHD=90°,根据余角的性质得到∠DCH=∠CBH,根据三角函数的定义得到==,设DH=x,则CH=2x,BH=4x,列方程即可得到结论.解:(1)∵点A(0,﹣2),∴OA=2,∵D(1,0),∴OD=1,∵y轴平分∠BAC,∴∠BAO=∠DAO,∵∠AOD=∠AOB=90°,AO=AO,∴△AOB≌△AOD(ASA),∴OB=OD=1,∴点B坐标为(﹣1,0);(2)过C作CH⊥x轴于H,∴∠CHD=90°,∵∠ABC=90°,∴∠ABO+∠CBO=∠ABO+∠BAO=90°,∴∠BAO=∠DAO=∠CBD,∵∠ADO=∠CDH,∴∠DCH=∠DAO,∴∠DCH=∠CBH,∴tan∠CBH=tan∠DCH=,∴==,设DH=x,则CH=2x,BH=4x,∴2+x=4x,∴x=,∴OH=,CH=,∴C(,),∴k=×=,∴y=(x>0)的函数表达式为y=.22.生活在数字时代的我们,很多场合用二维码(如图①)来表示不同的信息,类似地,可通过在矩形网格中,对每一个小方格涂色或不涂色所得的图形来表示不同的信息,例如:网格中只有一个小方格,如图②,通过涂色或不涂色可表示两个不同的信息.(1)用树状图或列表格的方法,求图③可表示不同信息的总个数;(图中标号1、2表示两个不同位置的小方格,下同)(2)图④为2×2的网格图,它可表示不同信息的总个数为16;(3)某校需要给每位师生制作一张“校园出入证”,准备在证件的右下角采用n×n的网格图来表示个人身份信息,若该校师生共492人,则n的最小值为3.【分析】(1)画出树状图,即可得出答案;(2)画出树状图,即可得出答案;(3)由题意得出规律,即可得出答案.解:(1)画树状图如下:共有4种等可能结果,∴图③可表示不同信息的总个数为4;(2)画树状图如下:共有16种等可能结果,故答案为:16;(3)由图②得:当n=1时,21=2,由图④得:当n=2时,22×22=16,∴n=3时,23×23×23=512,∵16<492<512,∴n的最小值为3,故答案为:3.23.“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:每条裤子每降价1元,则每月可多销售5条.设每条裤子的售价为x元(x为正整数),每月的销售量为y条.(1)求出y与x之间的函数关系式(不用写自变量的取值范围);(2)设该网店每月获得的利润为w元,当每条裤子的售价降价多少元时,每月获得的利润最大,最大利润是多少?【分析】(1)根据销售单价每降1元,则每月可多销售5条,写出y与x的函数关系式;(2)该网店每月获得的利润w元等于每件的利润乘以销售量,由此列出函数关系式,根据二次函数的性质求解即可;解:(1)由题意可得:y=100+5(80﹣x)=﹣5x+500,∴y与x的函数关系式为y=﹣5x+500;(2)由题意得:w=(x﹣40)(﹣5x+500)=﹣5x2+700x﹣20000=﹣5(x﹣70)2+4500,∵a=﹣5<0,抛物线开口向下,∴w有最大值,即当x=70时,w最大值=4500,∴降价为80﹣70=10(元),每条裤子的售价降价10元时,每月获得的利润最大,最大利润是4500元.24.如图,⊙O与等边△ABC的边AC,AB分别交于点D,E,AE是直径,过点D作DF ⊥BC于点F.(1)求证:DF是⊙O的切线;(2)连接EF,当EF是⊙O的切线时,求⊙O的半径r与等边△ABC的边长a之间的数量关系.【分析】(1)连结OD,根据已知条件可推出△DOA是等边三角形,利用∠ODA=∠C 即可证明OD∥BC,进而即可知∠DFC=∠ODF=90°,即可求证;(2)用含有a和r的式子分别表示出BE和BF的长,根据BF=2BE列出等式即可找到r与a的数量关系.【解答】(1)证明:连结OD,如图所示:∵∠DAO=60°,OD=OA,∴△DOA是等边三角形,∴∠ODA=∠C=60°,∴OD∥BC,又∵∠DFC=90°,∴∠ODF=90°,∴OD⊥DF,即DF是⊙O的切线;(2)设半径为r,等边△ABC的边长为a,由(1)可知:AD=r,则CD=a﹣r,BE=a﹣2r在Rt△CFD中,∠C=60°,CD=a﹣r,∴CF=,∴BF=a﹣,又∵EF是⊙O的切线,∴△FEB是直角三角形,且∠B=60°,∠EFB=30°,∴BF=2BE,∴a﹣(a﹣r)=2(a﹣2r),解得:a=3r,即r=,∴⊙O的半径r与等边△ABC的边长a之间的数量关系为:r=.25.如图1,在平面直角坐标系中,抛物线与x轴分别交于A、B两点,与y轴交于点C(0,6),抛物线的顶点坐标为E(2,8),连结BC、BE、CE.(1)求抛物线的表达式;(2)判断△BCE的形状,并说明理由;(3)如图2,以C为圆心,为半径作⊙C,在⊙C上是否存在点P,使得BP+EP 的值最小,若存在,请求出最小值;若不存在,请说明理由.【分析】(1)运用待定系数法即可求得答案;(2)△BCE是直角三角形.运用勾股定理逆定理即可证明;(3)如图,在CE上截取CF=(即CF等于半径的一半),连结BF交⊙C于点P,连结EP,则BF的长即为所求.解:(1)∵抛物线的顶点坐标为E(2,8),∴设该抛物线的表达式为y=a(x﹣2)2+8,∵与y轴交于点C(0,6),∴把点C(0,6)代入得:a=﹣,∴该抛物线的表达式为y=x2+2x+6;(2)△BCE是直角三角形.理由如下:∵抛物线与x轴分别交于A、B两点,∴令y=0,则﹣(x﹣2)2+8=0,解得:x1=﹣2,x2=6,∴A(﹣2,0),B(6,0),∴BC2=62+62=72,CE2=(8﹣6)2+22=8,BE2=(6﹣2)2+82=80,∴BE2=BC2+CE2,∴∠BCE=90°,∴△BCE是直角三角形;(3)⊙C上存在点P,使得BP+EP的值最小且这个最小值为.理由如下:如图,在CE上截取CF=(即CF等于半径的一半),连结BF交⊙C于点P,连结EP,则BF的长即为所求.理由如下:连结CP,∵CP为半径,∴==,又∵∠FCP=∠PCE,∴△FCP∽△PCE,∴==,即FP=EP,∴BF=BP+EP,由“两点之间,线段最短”可得:BF的长即BP+EP为最小值.∵CF=CE,E(2,8),∴由比例性质,易得F(,),∴BF==.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年福建省福州市鼓楼区九年级(上)期末数学试卷一、选择题(共10小题,每题4分,共40分)1.下列电动车品牌标志中,既是轴对称图形,又是中心对称图形的是A .B .C .D .2. “2020年的6月21日是晴天”这个事件是 A .确定事件B .不可能事件C .必然事件D .不确定事件3.点P (﹣2019,2020)关于原点的对称点P ' 在 A .第一象限B .第二象限C .第三象限D .第四象限4.在一张复印出来的纸上,一个三角形的一条边由原图中的2cm 变成了6cm ,则复印出的三角形的面积是原图中三角形面积的 A .3倍B .6倍C .9倍D .12倍5.《孙子算经》是我国古代重要的数学著作,其下卷有题如下:“今有竿不知长短,度其影得一丈五尺.别立一表,长一尺五寸,影得五寸.问竿长几何?”译文:“有一根竹竿不知道它的长短,量出它在太阳下的影子长一丈五尺.同时立一根一尺五寸的小标杆,它的影长是五寸,则这根竹竿的长度为多少尺?”可得这根竹竿的长度为(提示:1丈=10尺,1尺=10寸) A .五丈B .四丈五尺C .五尺D .四尺五寸6.如图,BC 是半圆O 的直径,D ,E 是BC⌒ 上两点,连接BD ,CE 并延长交于点A ,连接OD 、OE ,如果∠DOE =40°,那么∠A 的度数为 A .35° B .40°C .60°D .70°7.二次函数y =﹣3(x +1)2﹣7有 A .最大值﹣7B .最小值﹣7C .最大值7D .最小值78.若关于x 的一元二次方程ax 2+bx +5=0的一个根是x =﹣1,则2015﹣a +b 的值是 A .2012B .2016C .2020D .2021(第6题)(第5题)9.如图,点A 是反比例图数y=x m (x <0)图象上一点,AC ⊥x 轴于点C ,与反比例函数y =xn(x <0)图象交于点B ,AB =2BC ,连接OA 、OB ,若△OAB 的面积为3,则m +n = A .﹣4 B .﹣6 C .﹣8 D .﹣12 10.已知非负数a ,b ,c 满足a +b =2,c ﹣3a =4,设S =a 2+b +c 的最大值为m ,最小值为n ,则m ﹣n 的值为 A .9 B .8C .1D .二、填空题(共6小题,每题4分,共24分) 11.抛物线y =x 2﹣4x 的对称轴为直线 .12.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖 落在游戏板上),则飞镖落在阴影部分的概率是 .13.一个扇形的面积为6π,半径为4,则此扇形的圆心角为 °. 14.已知m 、n 是方程x 2+x ﹣1=0的根,则式子m 2+2m +n ﹣mn = .15.准备在一块长为30米,宽为24米的长方形花圃内修建四条宽度相等,且与各边垂直的小路,(如图所示)四条小路围成的中间部分恰好是一个正方形,且边长是小路宽度的4倍,若四条小路所占面积为80平方米,则小路的宽度为 米.16.如图,半圆的圆心与坐标原点重合,半圆的半径1,直线l 的解析式为y =x +t .若直线l 与半圆只有一个交点,则t 的取值范围是 .三、解答题(共9小题,86分)17.(用配方法解一元二次方程):2x 2+x ﹣1=0.18.已知二次函数y =x 2+2x +a ﹣2的图象和x 轴有两个交点.(第12题)(第15题)(第16题)(第9题)(1)求实数a 的取值范围;(2)在(1)的前提下,a 取最大整数值时,求这个二次函数图象的顶点坐标.19.“特色福州,美好生活”,福州举行金色秋天旅游活动.明明和华华同学分析网上关于旅游活动的信息,发现最具特色的景点有:①鼓岭、②森林公园、③青云山.他们准备周日下午去参观游览,各自在这三中个景点任选一个,每个景点被选中的可能性相同. (1)明明同学在三个备选景点中选中鼓岭的概率是 .(2)用树状图或列表法求出明明和华华他们选中不同景点参观的概率是多少?20.如图,AB 是⊙O 的直径,射线BC 交⊙O 于点D ,E 是劣弧AD 上一点,且AE⌒ =DE ⌒ ,过点E 作EF ⊥BC 于点F ,延长FE 和BA 的延长线交于点G . (1)证明:GF 是⊙O 的切线;(2)若AG =6,GE =62,求△GOE 的面积.21.如图,P 是等边三角形ABC 内的一点,且P A =6,PB =8,PC =10. (1)尺规作图:作出将△P AC 绕点A 逆时针旋转60°后所得到的△P'AB(不要求写作法,但需保留作图痕迹). (2)求点P 与点P' 之间的距离及∠APB 的度数.22.已知∠ABD =∠BCD =90°,AB •CD =BC •BD ,BM ∥CD 交AD 于点M .连接CM 交DB 于点N . (1)求证:△ABD ∽△BCD ;(2)若CD =6,AD =8,求MC 的长.23.如图,已知点A 在反比例函数y =x9(x >0)的图象上,过点A 作AC ⊥x 轴,垂足是C ,AC =OC . 一次函数y =kx +b 的图象经过点A ,与y 轴的正半轴交于点B .(1)求点A 的坐标; (2)若四边形ABOC 的面积是215,求一次函数y =kx +b 的表达式.24.如图,在△ABC 中,∠BAC =90°,点F 在BC 边上,过A 、B 、F 三点的⊙O 交AC 于另一点D ,作直径AE ,连结EF 并延长交AC 于点G ,连结BE 、BD ,四边形BDGE 是平行四边形. (1)求证:AB =BF .(2)当F 为BC 的中点,且AC =3时,求⊙O 的直径长.25.如图①抛物线y =ax 2+bx +3(a ≠0)与x 轴、y 轴分别交于点A (﹣1,0)、B (3,0),点C 三点. (1)试求抛物线的解析式;(2)点D (2,m )在第一象限的抛物线上,连接BC 、BD .试问,在对称轴左侧的抛物线上是否存在一点P ,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)点N在抛物线的对称轴上,点M在抛物线上,当以M、N、B、C为顶点的四边形是平行四边形时,请直接写出点M的坐标.2019-2020学年福建省福州市鼓楼区九年级(上)期末数学试卷参考答案与试题解析一、选择题CDDCB DACDB9.解:∵AC⊥x轴于点C,与反比例函数y=(x<0)图象交于点B,而m<0,n<0,∴S△AOC=|m|=﹣m,S△BOC=|n|=﹣n,∵AB=2BC,∴S△ABO=2S△OBC=3,即﹣n=,解得n=﹣3∵﹣m=3+,解得m=﹣9,∴m+n=﹣9﹣3=﹣12.故选:D.10.解:∵a+b=2,c﹣3a=4,∴b=2﹣a,c=3a+4,∵b,c都是非负数,∴,解不等式①得,a≤2,解不等式②得,a≥﹣,∴﹣≤a≤2,又∵a是非负数,∴0≤a≤2,S=a2+b+c=a2+(2﹣a)+3a+4,=a2+2a+6,∴对称轴为直线a=﹣=﹣1,∴a=0时,最小值n=6,a=2时,最大值m=22+2×2+6=14,∴m﹣n=14﹣6=8.故选:B.二、填空题11.x=2;12.;13.135;14.1;15.;16.t=或﹣1≤t<116.解:若直线与半圆只有一个交点,则有两种情况:直线和半圆相切于点C或从直线过点A开始到直线过点B结束(不包括直线过点A).直线y=x+t与x轴所形成的锐角是45°.当直线和半圆相切于点C时,则OC垂直于直线,∠COD=45°.又OC=1,则CD=OD=,即点C(﹣,),把点C的坐标代入直线解析式,得t=y﹣x=,当直线过点A时,把点A(﹣1,0)代入直线解析式,得t=y﹣x=1.当直线过点B时,把点B(1,0)代入直线解析式,得t=y﹣x=﹣1.即当t=或﹣1≤t<1时,直线和圆只有一个公共点;故答案为t=或﹣1≤t<1.三、解答题17.解:∵2x2+x﹣1=0,∴x2+x+=,∴(x+)2=,∴x=﹣1或;18.解:(1)∵根二次函数y=x2+2x+a﹣2的图象和x轴有两个交点,∴△=22﹣4×1×(a﹣2)>0,解得:a<3;(2)由题意,当a=2时,函数为y=x2+2x=(x+1)2﹣1,∴图象的顶点坐标为(﹣1,﹣1).19.解:(1)明明同学在三个备选景点中选中鼓岭的概率是,故答案为:.(2)根据题意画图如下:共有9种等可能的结果数,其中明明和华华他们选中不同景点参观的有6种,则明明和华华他们选中不同景点参观的概率是=.20.解:(1)如图,连接OE,∵,∴∠1=∠2,∵∠2=∠3,∴∠1=∠3,∴OE∥BF,∵BF⊥GF,∴OE⊥GF,∴GF是⊙O的切线;(2)设OA=OE=r,在Rt△GOE中,∵AG=6,GE=6,∴由OG2=GE2+OE2可得(6+r)2=(6)2+r2,解得:r=3,即OE=3,则S△GOE=•OE•GE=×3×=9.21.解:(1)将△P AC绕点A逆时针旋转60°后所得到的△P'AB如图:(2)如图,∵△P AC绕点A逆时针旋转60°后,得到△P'AB,∴∠P AP'=60°,P A=P'A=6,P'B=PC=10,∴△P AP′为等边三角形,∴PP'=P A=6,∠P'P A=60°,在△BPP'中,P'B=10,PB=8,PP'=6,∵62+82=102,∴PP'2+PB2=P'B2,∴△BPP'为直角三角形,且∠BPP'=90°,∴∠APB=∠P'PB+∠BPP'=60°+90°=150°.22.解:(1)证明:∵AB•CD=BC•BD∴=在△ABD和△BCD中,∠ABD=∠BCD=90°∴△ABD∽△BCD;(2)∵△ABD∽△BCD∴=,∠ADB=∠BDC又∵CD=6,AD=8∴BD2=AD•CD=48∴BC===2∵BM∥CD∴∠MBD=∠BDC,∠MBC=∠BCD=90°∴∠ADB=∠MBD,且∠ABD=90°∴BM=MD,∠MAB=∠MBA∴BM=MD=AM=4∴MC===2.23.解:(1)∵点A在反比例函数y=(x>0)的图象上,AC⊥x轴,AC=OC,∴AC•OC=9,∴AC=OC=3,∴点A的坐标为(3,3);(2)∵四边形ABOC的面积是,∴(OB+3)×3÷2=,解得OB=2,∴点B的坐标为(0,2),依题意有,解得.故一次函数y=kx+b的表达式为y=x+2.24.解:(1)连接AF,∵AE是⊙O的直径,∴AF⊥EG,∵四边形BDGE是平行四边形,∴BD∥EG,∴BD⊥AF,∵∠BAC=90°,∴BD是⊙O的直径,∴BD垂直平分AF,∴AB=BF;(2)∵当F为BC的中点,∴BF=BC,∵AB=BF,∴AB=BC,∵∠BAC=90°,∴∠C=30°,∴∠ABC=60°,AB=AC=,∵AB=BF,∴∠ABD=30°,∴BD=2,∴⊙O的直径长为2.25.解:如图:(1)∵抛物线y=ax2+bx+3(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(3,0),点C三点.∴解得∴抛物线的解析式为y=﹣x2+2x+3.(2)存在.理由如下:y=﹣x2+2x+3=﹣(x﹣1)2+4.∵点D(2,m)在第一象限的抛物线上,∴m=3,∴D(2,3),∵C(0,3)∵OC=OB,∴∠OBC=∠OCB=45°.连接CD,∴CD∥x轴,∴∠DCB=∠OBC=45°,∴∠DCB=∠OCB,在y轴上取点G,使CG=CD=2,再延长BG交抛物线于点P,在△DCB和△GCB中,CB=CB,∠DCB=∠OCB,CG=CD,∴△DCB≌△GCB(SAS)∴∠DBC=∠GBC.设直线BP解析式为y BP=kx+b(k≠0),把G(0,1),B(3,0)代入,得k=﹣,b=1,∴BP解析式为y BP=﹣x+1.y BP=﹣x+1,y=﹣x2+2x+3当y=y BP时,﹣x+1=﹣x2+2x+3,解得x1=﹣,x2=3(舍去),∴y=,∴P(﹣,).(3)M1(﹣2,﹣5),M2(4,﹣5),M3(2,3).。

相关文档
最新文档