平行四边形对角线的性质【教案】
八年级下册数学精品教案6.1 平行四边形的性质(第2课时 平行四边形的对角线特征)

6.1平行四边形的性质第2课时平行四边形的对角线特征教学目标【知识与能力】进一步掌握平行四边形对角线互相平分的性质,学会应用平行四边形的性质.【过程与方法】对平行四边形具有了一定的观察分析的能力和合情推理能力,具备了自行得出平行四边形对角线的性质的基础.【情感态度价值观】在应用中进一步发展学生合情推理能力,增强逻辑推理能力,掌握说理的基本方法. 教学重难点【教学重点】平行四边形性质的应用.【教学难点】发展合情推理及逻辑推理能力.教学过程一.情景导入,初步认知什么样的图形是平行四边形?平行四边形都有哪些性质?平行四边形还有其它的性质吗?【教学说明】以问题串形式回顾平行四边形的概念和平行四边形的性质.温故知新,为本节课作准备.二.思考探究,获取新知在上节课的做一做中,我们发现平行四边形除了边、角有特殊的关系以外,对角线还有怎样的特殊关系呢?请尝试证明这一结论.如图,平行四边形ABCD的对角线AC、BD相交于点O.求证:OA=OC,OB=OD.证明: ∵四边形ABCD是平行四边形∴AB=CD,AB//DC.∴∠BAO=∠DCO,∠ABO=∠CDO.∴△AOB≌△COD.∴OA=OC,OB=OD.【教学说明】通过对上节课做一做的回顾,得出平行四边形对角线互相平分的性质,再通过严格的说理证明,深化对知识的理解.【归纳结论】平行四边形的对角线互相平分.三.运用新知,深化理解1.见教材P138例2.2.如图所示,在□ABCD中,对角线AC、BD交于点O,下列式子中一定成立的是()A.AC⊥BDB.OA=OCC.AC=BDD.AO=OD答案:B.3.如图,□ABCD的周长为16 cm,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长为()A.4 cmB.6 cmC.8 cmD.10 cm答案:C.4.如图,□ABCD中,EF过对角线的交点O,如果AB=4 cm,AD=3cm,OF=1 cm,则四边形BCFE的周长为()答案:9 cm .5.平行四边形ABCD的对角线AC、BD相交于点O,∠ADB=90°,OA=6,OB=3.求AD和AC的长度.解:∵四边形ABCD是平行四边形∴OA=OC=6OB=OD=3∴AC=12又∵∠ADB=90°∴在Rt△ADO中,根据勾股定理得OA2=OD2+AD2∴6.平行四边形ABCD的两条对角线相交于O,OA、OB、AB的长度分别为3 cm、4 cm、5 cm,求其它各边以及两条对角线的长度.解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OA=OC,OB=OD.又∵OA=3 cm,OB=4cm,AB=5cm,∴AC=6cm,BD=8cm,CD=5cm.∵△AOB中,32+42=52,即AO2+BO2=AB2,∴∠AOB =90°.∴AC⊥BD.∴Rt△AOD中,OA2+OD2=AD2.∴AD=5cm,BC=5cm.答:这个平行四边形的其它各边都是5cm,两条对角线长分别为6cm和8cm.【教学说明】通过一组训练,达到了学生对平行四边形性质的掌握.四.师生互动,课堂小结本节课你有哪些收获?你能将平行四边形的性质进行归纳吗?五.教学板书六.课后作业布置作业:教材“习题6.2”中第2、3题.七.教学反思通过练习,学生对本节课的知识掌握的较好,唯一不足的地方是:书写过程不够规范,有待加强.。
平行四边形的性质(2)

课题:§19.1.1平行四边形的性质(第2课时)【学习目标】1. 探究平行四边形对角线互相平分的性质;2. 能应用平行四边形的性质解决一些简单的问题.【活动方案】活动一 探究平行四边形对角线的性质 1.如右图,猜想平行四边形的对角线之间有怎样的关系?你能用已经学过的知识证明以上猜想吗?已知:求证: 证明:2.通过以上证明可以得到平行四边形性质: 文字表述: .符号语言:∵如图,四边形ABCD 是平行四边形, ∴ .思考:平行四边形的性质有哪些?这些性质的证明都是运用了什么知识解决的?活动二 平行四边形性质的运用例1 如图,已知□ABCD 的周长为30cm ,对角线AC 、BD 相交于点O ,△AOB 的周长比△AOD 的周长大5cm ,求这个平行四边形各边的长.变式 如图,□ABCD 的对角线AC 、BD 相交于点O ,□ABCD 的周长是30cm ,△AOB 与△AOD 的周长之和是42cm ,且AC :DB = 2:1,求AC 和BD 的长.例2. 如图,□ABCD 中,AB=10,AD=8,AC ⊥BC ,求□ABCD 的面积及BD 的长.A D CB OA D CB O O D O例3.如图,□ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 且与AB 、CD 分别相交于点E 、F .(1)求证:OE=OF(2)若△COF 的面积为2,△BOE 的面积为4,求□ABCD 的面积.例4.如图,AC 是□ABCD 的对角线,点E 、F 在AC 上,且四边形EBFD 也是平行四边形.求证:AE=CF【检测反馈】1.如图,在□ABCD 中,AD=10cm ,AC=8cm ,BD=14cm ,则△BOC 的周长为 cm .2.如图,在周长为20cm 的□ABCD 中,AB ≠AD ,对角线AC 、BD 相交于点O ,OE ⊥BD 交AD 于E ,则△ABE 的周长为 .(第1题) (第2题)3.如图,在□ABCD 中,AB=8,∠D 与∠A 的平分线交BC 于F 、E ,EF=6,求BC 的长.F E OB ACD B A C DF E A D C B OF C D B AE18.1平行四边形的性质(第2课时)(每日一练)姓名________________1.平行四边形不一定具有的性质是()A.对边平行B.对角线互相垂直C.对边相等D.对角线互相平分2.已知平行四边形ABCD的周长为60cm,对角线AC,BD相交于O点,△AOB的周长比△BOC的周长长8cm,则AB的长度是()A.8cm B.15cm C.18cm D.19cm3.□ABCD的对角线AC,BD交于点O,△OBC的周长是59㎝,AD的长是28㎝,BD-AC=14㎝,那么对角线AC,BD的长分别是()A.12cm、19cm B.24cm、38cmC.8.5cm、22.5cm D.15.5cm、29.5cm4.如图,直线EF过平行四边形ABCD对角线的交点O,分别交AB、CD于E、F,那么阴影部分的面积是平行四边形ABCD面积的()A.B.C.D.第4题第5题第6题5.如图,O为平行四边形ABCD对角线AC、BD的交点,EF经过点O,且与边AD、BC分别交于点E、F,若BF=DE,则图中的全等三角形最多有()A.8对B.6对C.5对D.4对6.如图,在□ABCD中,∠ODA=90°,AC=10cm,BD=6cm,则AD的长为.7.在□ABCD中,AC,BD相交于点O,AC=6,BD=10,则AD取值范围是.8.如图,E是□ABCD内任一点,若S□ABCD=6,则图中阴影部分的面积为.9.如图,在平行四边形ABCD中,过对角线BD上一点P,作EF∥BC,HG∥AB,若四边形AEPH和四边形CFPG的面积分另为S1和S2,则S1与S2的大小关系为.第8题第9题10.如图,□ABCD的对角线AC,BD交于点O,EF过点O,并与AD,BC边交于E,F两点,若AB=4,BC=5,OE=1.5,求四边形EFCD的周长.AB C DE FO11.如图,在□ABCD中,AC交BD于点O,点E、点F分别是OA、OC的中点,请判断线段BE、DF 的关系,并证明你的结论.12.如图,在□ABCD中,DE、BF分别是∠ADC和∠ABC的角平分线,交AB、CD于点E、F,连接BD、EF.(1)求证:BD、EF互相平分;(2)若∠A=60°,AE=2EB,AD=4,求四边形DEBF的周长和面积.13.如图,在□ABCD中,AC交BD于点O,AE⊥BC垂足为E,AB=3,AC=2,BD=4,求AE的长.14. 如图,在□ABCD中,对角线AC、BD相交于点O,(1)若AB=3,BC=4,则22AC BD+的值是多少?(2)拓展:若AB=a,BC=b,求22+的值(用a、b表示)AC BDA DOB C。
【教案】 平行四边形的对角线性质

平行四边形的对角线性质教学目标1.理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.2.能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.3.培养学生的推理论证能力和逻辑思维能力.二、重点、难点1.重点:平行四边形对角线互相平分的性质,以及性质的应用.2.难点:综合运用平行四边形的性质进行有关的论证和计算.三、例题的意图分析本节课安排了两个例题,例1是一道补充题,它是性质3的直接运用,然后对例1进行了引申,可以根据学生的实际情况选讲,并归纳结论:过平行四边形对角线的交点作直线交对边或对边的延长线,所得的对应线段相等.例1与后面的三个图形是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.例2是复习巩固小学学过的平行四边形面积计算.这个例题比小学计算平行四边形面积的题加深了一步,需要应用勾股定理,先求得平行四边形一边上的高,然后才能应用公式计算.在以后的解题中,还会遇到需要应用勾股定理来求高或底的问题,在教学中要注意使学生掌握其方法.四、课堂引入1.复习提问:(1)什么样的四边形是平行四边形?四边形与平行四边形的关系是:(2)平行四边形的性质:①具有一般四边形的性质(内角和是︒360).②角:平行四边形的对角相等,邻角互补.边:平行四边形的对边相等.2.【探究】:请学生在纸上画两个全等的ABCD和EFGH,并连接对角线AC、BD和EG、HF,设它们分别交于点O.把这两个平行四边形落在一起,在点O处钉一个图钉,将ABCD绕点O旋转︒180,观察它还和EFGH重合吗?你能从子中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?结论:(1)平行四边形是中心对称图形,两条对角线的交点是对称中心;(2)平行四边形的对角线互相平分.五、例习题分析例1(补充)已知:如图4-21,ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD分别相交于点E、F.求证:OE=OF,AE=CF,BE=DF.证明:在ABCD中,AB∥CD,∴∠1=∠2.∠3=∠4.又 OA=OC(平行四边形的对角线互相平分),∴△AOE≌△COF(ASA).∴OE=OF,AE=CF(全等三角形对应边相等).∵ABCD,∴ AB=CD(平行四边形对边相等).∴ AB—AE=CD—CF.即 BE=FD.※【引申】若例1中的条件都不变,将EF转动到图b的位置,那么例1的结论是否成立?若将EF向两方延长与平行四边形的两对边的延长线分别相交(图c和图d),例1的结论是否成立,说明你的理由.解略例2已知四边形ABCD是平行四边形,AB=10cm,AD=8cm,AC⊥BC,求BC、CD、AC、OA的长以及ABCD的面积.分析:由平行四边形的对边相等,可得BC、CD的长,在Rt△ABC中,由勾股定理可得AC的长.再由平行四边形的对角线互相平分可求得OA的长,根据平行四边形的面积计算公式:平行四边形的面积=底×高(高为此底上的高),可求得ABCD的面积.(平行四边形的面积小学学过,再次强调“底”是对应着高说的,平行四边形中,任一边都可以作为“底”,“底”确定后,高也就随之确定了.)3.平行四边形的面积计算解略.六、随堂练习1.在平行四边形中,周长等于48,① 已知一边长12,求各边的长② 已知AB=2BC ,求各边的长③ 已知对角线AC 、BD 交于点O ,△AOD 与△AOB 的周长的差是10,求各边的长2.如图,ABCD 中,AE ⊥BD ,∠EAD=60°,AE=2cm ,AC+BD=14cm ,则△OBC 的周长是____ ___cm .3.ABCD 一内角的平分线与边相交并把这条边分成cm 5,cm 7的两条线段,则ABCD 的周长是__ ___cm .七、课后练习1.判断对错(1)在ABCD 中,AC 交BD 于O ,则AO=OB=OC=OD . ( )(2)平行四边形两条对角线的交点到一组对边的距离相等. ( )(3)平行四边形的两组对边分别平行且相等. ( )(4)平行四边形是轴对称图形. ( )2.在 ABCD 中,AC =6、BD =4,则AB 的范围是__ ______.3.在平行四边形ABCD 中,已知AB 、BC 、CD 三条边的长度分别为(x+3),(x-4)和16,则这个四边形的周长是 .4.公园有一片绿地,它的形状是平行四边形,绿地上要修几条笔直的小路,如图,AB =15cm ,AD =12cm ,AC ⊥BC ,求小路BC ,CD ,OC 的长,并算出绿地的面积.【教学反思】。
八年级数学下册《平行四边形对角线的性质》教案、教学设计

三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握平行四边形对角线互相平分的性质,能够运用该性质解决相关问题。
3.合作交流,解决难点
设想:组织学生进行小组讨论和交流活动,让学生在合作中共同解决问题。针对学生在讨论过程中遇到的难点,教师应适时给予点拨,帮助学生克服困难。
4.实践应用,巩固知识
设想:设计具有实际背景的问题,让学生运用所学的平行四边形对角线性质解决问题。通过实践应用,使学生加深对知识的理解和掌握。
请将讨论结果以书面形式整理出来,并在下节课上进行小组间的交流分享。
5.结合课堂所学,尝试用几何画板或其他绘图工具绘制一个平行四边形,并展示其对角线互相平分的性质。
作业布置原则:
1.针对性:作业要针对本节课的教学内容,突出重点,使学生能够通过作业巩固所学知识。
2.层次性:作业要有一定的层次性,满足不同学生的学习需求,让每个学生都能得到有效的提高。
四、教学内容与过程
(一)导入新课,500字
1.教师通过展示篮球场上的篮板、伸缩门等生活中常见的平行四边形图形,引导学生观察和思考:这些图形有什么共同特点?它们由哪些线段组成?
2.学生回答:这些图形都是由四条边组成,且对边平行。
3.教师总结:是的,这些图形都是平行四边形。今天我们将学习平行四边形的一个性质——对角线的性质。
(二)讲授新知,500字
1.教师引导学生观察黑板上的平行四边形图形,提出问题:平行四边形有哪些对角线?它们有什么特点?
2.学生通过观察和思考,得出结论:平行四边形有两条对角线,且对角线互相平分。
人教版初中数学八年级下册《平行四边形的性质》教案

人教版初中数学八年级下册《平行四边形的性质》教案一. 教材分析《平行四边形的性质》是人教版初中数学八年级下册的教学内容,本节课主要让学生掌握平行四边形的性质,包括对边平行且相等,对角相等,对边和对角线的性质等。
通过学习,让学生能够识别平行四边形,并运用性质解决实际问题。
二. 学情分析学生在七年级时已经学习了四边形的分类和性质,对四边形有了一定的认识。
但平行四边形作为一个特殊的四边形,其性质和特点需要进一步引导学生理解和掌握。
在导入环节,可以通过复习四边形的性质,为新课的学习打下基础。
三. 教学目标1.知识与技能:让学生掌握平行四边形的性质,能够识别和判断平行四边形。
2.过程与方法:通过观察、操作、推理等方法,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.重点:平行四边形的性质及其应用。
2.难点:对角线的性质和判定平行四边形的方法。
五. 教学方法采用问题驱动法、合作学习法和情境教学法,引导学生主动探索、发现和解决问题,提高学生的学习兴趣和参与度。
六. 教学准备1.教具:平行四边形的模型、剪刀、彩笔等。
2.课件:平行四边形的性质及其应用。
七. 教学过程1.导入(5分钟)复习四边形的性质,提问:四边形有哪些性质?设计意图:巩固学生对四边形的认识,为新课的学习做好铺垫。
2.呈现(10分钟)展示平行四边形的模型,引导学生观察并提问:平行四边形有什么特点?学生分组讨论,总结出平行四边形的性质。
设计意图:培养学生观察和思考的能力,引导学生发现平行四边形的性质。
3.操练(10分钟)让学生用剪刀剪出平行四边形,并用彩笔标记出对边和对角线。
学生互相检查,教师巡回指导。
设计意图:培养学生动手操作的能力,加深对平行四边形性质的理解。
4.巩固(10分钟)出示一些判断题,让学生判断题目中给出的图形是否为平行四边形。
设计意图:巩固所学知识,提高学生的判断能力。
18-1-1 平行四边形的性质(第二课时+对角线的关系)课件

D
S△ABO
S△AOD
S△ABD
S△ABC
=S△CDO ,
= S△COB,
=S△CDB ,
= S△CDA
O
B
C
想一想,在▱ABCD中,被对角线分成的四
个部分面积关系?
证明
证明:过点B做AC边垂线,交AC与点E
∵ 四边形ABCD是平行四边形
∴ AO=OC
而S△ABO =
• AO •BE
S△COB =
AD=6,AC+BD=16,则△BOC的周长为_____.
解:∵四边形ABCD是平行
四边形,
∴AD=BC=6,OA=OC,
OB=OD,
∵AC+BD=16,
∴OB+OC=8,
∴△BOC的周长为
BC+OB+OC=6+8=14,
故答案为14.
练一练
3.如图,在平行四边形ABCD中,AC⊥BC,
【答案】2 5
AD=AC=2,则BD的长为_____.
【详解】
解:设AC与BD的交点为O
∵四边形ABCD是平行四边形
∴AD=BC=2,AD∥BC
AO=CO=1,BO=DO
∵AC⊥BC
∴BO= 2 + 2 = 5
∴BD=2 5.
故答案为2 5.
4.如图,在□ABCD中,对角线AC与BD交于
点O,已知∠ADO=90°,OA=6cm,OB=3cm,
对角线:对角线互相平分
10
1,理解并记住基础知识
2,课本P49 习题18.1
第3题,第12题(做在作业本上)
3,(1)预习课本P45---P47
18.1.1平行四边形的性质(对角线的特征)-2022-2023学年人教版八年级数学下册教案(含详解

18.1.1 平行四边形的性质(对角线的特征)教案概述本教案是针对2022-2023学年人教版八年级数学下册中的18.1.1节的内容编写的。
本节课主要介绍了平行四边形对角线的性质,包括对角线的长度和角度之间的关系。
教学目标•理解平行四边形的定义,掌握平行四边形的性质;•掌握平行四边形的对角线长度相等的特征;•掌握平行四边形对角线之间角度关系的特征;•能够应用所学知识解决与平行四边形相关的问题。
教学步骤步骤一:导入新知•引导学生回顾平行四边形的定义,让学生讲解平行四边形的性质。
步骤二:对角线的特征1.第一性质:平行四边形的对角线长度相等。
–让学生观察图示,提出猜想。
对角线长度相等–学生自主探究,绘制平行四边形,测量对角线长度,验证猜想。
–教师总结,平行四边形的对角线长度相等。
2.第二性质:平行四边形的对角线互相平分。
–让学生观察图示,提出猜想。
对角线互相平分–学生自主探究,绘制平行四边形,测量对角线长度,验证猜想。
–教师总结,平行四边形的对角线互相平分。
3.第三性质:平行四边形的对角线互相垂直。
–让学生观察图示,提出猜想。
对角线互相垂直–学生自主探究,绘制平行四边形,测量对角线长度和对角线夹角,验证猜想。
–教师总结,平行四边形的对角线互相垂直。
步骤三:应用训练•给学生提供一些平行四边形的例题,让他们应用所学知识解决问题。
步骤四:拓展延伸•引入更复杂的平行四边形相关问题,让学生思考和解决。
步骤五:课堂小结•总结本节课的重点内容,强调平行四边形对角线的特征。
课堂练习1.如下图,ABCD为平行四边形,AC和BD分别为对角线,求证:AC=BD。
练习12.如下图,ABCD为平行四边形,AC和BD分别为对角线,求证:对角线AC与对角线BD互相平分。
练习2总结通过本节课的学习,我们了解了平行四边形对角线的性质。
对角线长度相等、互相平分、互相垂直是平行四边形对角线的重要特征。
掌握了这些性质后,我们能够更好地解决与平行四边形相关的问题。
《平行四边形的对角线的性质》示范教学方案

第十九章四边形19.2平行四边形第2课时平行四边形的对角线的性质一、教学目标1.掌握平行四边形对角线互相平分的性质.2.利用平行四边形对角线互相平分解决有关问题.二、教学重点及难点重点:平行四边形对角线的性质.难点:运用平行四边形性质的性质进行有关的计算与证明.三、教学用具能够活动的矩形框架、多媒体课件、图钉四、相关资料《各种平行四边形例题》图片,《平行四边形》图片,动画五、教学过程【情景引入】如图,在平行四边形ABCD中,AC,BD为对角线,BC=6,BC边上的高为4,你能算出图中阴影部分的面积吗?【探究新知】此图片是动画缩略图,本动画资源探究平行四边形对角线的性质,适用于平行四边形的性质的教学.若需使用,请插入【数学探究】探究平行四边形对角线的性质.请学生在纸上画两个全等的ABCD和EFGH,并连接对角线AC、BD和EG、HF,设它们分别交于点O.把这两个平行四边形落在一起,在点O处钉一个图钉,将ABCD绕点O旋转180°,观察它还和EFGH重合吗?你能从中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?结论:(1)平行四边形是中心对称图形,两条对角线的交点是对称中心.(2)平行四边形的对角线互相平分.设计意图:通过学生自我探究发现知识,加深记忆.【合作探究】探究点一:平行四边形的对角线互相平分【类型一】利用平行四边形对角线互相平分求线段长已知:ABCD的周长为60 cm,对角线AC、BD相交于点O,△AOB的周长比△DOA的周长长5 cm,求这个平行四边形各边的长.解析:平行四边形周长为60 cm ,即相邻两边之和为30cm ,△AOB 的周长比△DOA 的周长长5cm ,而AO 为共用,OB =OD ,所以由题意可知AB 比AD 长5cm ,进一步解答即可.解:∵四边形ABCD 是平行四边形,∴OB =OD ,AB =CD ,AD =BC .∵△AOB 的周长比△DOA 的周长长5 cm ,∴AB -AD =5cm.又∵▱ABCD 的周长为60 cm ,∴AB +AD =30 cm ,则AB =CD =352 cm ,AD =BC =252cm. 方法总结:平行四边形被对角线分成四个小三角形,相邻两个三角形的周长之差等于邻边边长之差.【类型二】 利用平行四边形对角线互相平分证明线段或角相等如图,ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 与AB 、CD 分别相交于点E 、F .求证:OE =OF .解析:根据平行四边形的性质得出OD =OB ,DC ∥AB ,推出∠FDO =∠EBO ,证出△DFO ≌△BEO 即可.证明:∵四边形ABCD 是平行四边形,∴OD =OB ,DC ∥AB ,∴∠FDO =∠EBO .在△DFO 和△BEO 中,⎩⎪⎨⎪⎧∠FDO =∠EBO ,OD =OB ,∠FOD =∠EOB ,∴△DFO ≌△BEO (ASA ),∴OE =OF .方法总结:利用平行四边形的性质解决线段的问题时,要注意运用平行四边形的对边相等,对角线互相平分的性质.探究点二:平行四边形的面积在ABCD 中,(1)如图①,O 为对角线BD 、AC 的交点.求证:S △ABO =S △CBO ;(2)如图②,设P 为对角线BD 上任一点(点P 与点B 、D 不重合),S △ABP 与S △CBP 仍然相等吗?若相等,请证明;若不相等,请说明理由.解析:根据平行四边形的对角线互相平分可得AO =CO ,再根据等底等高的三角形的面积相等解答.(1)证明:在ABCD中,AO=CO,设点B到AC的距离为h,则S△ABO=12AO·h,S△CBO =12CO·h,∴S△ABO=S△CBO;(2)解:仍然相等.证明如下:连接AC交BD于点O.在▱ABCD中,AO=OC,由(1)可得S△ABO=S△BCO,S△APO=S△CPO,∴S△ABO-S△APO=S△BCO-S△CPO,∴S△ABP=S△CBP.方法总结:平行四边形的对角线将平行四边形分成四个面积相等的三角形.另外,等底等高的三角形的面积相等.【随堂练习】1.如下图,ABCD中,AE⊥BD,∠EAD=60°,AE=2cm,AC+BD= 14cm,则△OBC的周长是__________ cm.2.ABCD一内角的平分线与边相交并把这条边分成5cm,7cm的两条线段,则ABCD的周长是 __________ cm.3.公园有一片绿地,它的形状是平行四边形,绿地上要修几条笔直的小路,如下图,AB= 15cm, AD= 12cm, AC⊥BC,求小路BC, CD, OC的长,并算出绿地的面积.设计意图:针对本节课学习的内容进行练习,让学生掌握平行四边形的对角线的性质,能够独立完成相关的题目。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18.1.1 平行四边形的性质(二)
教学目标:
1. 理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.
2. 能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.
3. 培养学生的推理论证能力和逻辑思维能力.
重点、难点
4. 重点:平行四边形对角线互相平分的性质,以及性质的应用.
5. 难点:综合运用平行四边形的性质进行有关的论证和计算.
6. 难点的突破方法:
(1)本节课的主要内容是平行四边形的性质3,它是通过
旋转平行四边形,得到平行四边形是中心对称图形和对角线互
相平分的性质.这一节综合性较强,教学中要注意引导学生.要注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华.
(2)教学时要讲明线段互相平分的意义和表示方法.如图,设四边形ABCD 的对角线AC 、BD 相交于点O ,若AC 与BD 互相平分,则有OA =OC ,OB =OD .
(3)在平行四边形中,从一条边上的任意一点,向对边画垂线,这点与垂足间的距离(或从这点到对边垂线段的长,或者说这条边和对边的距离),叫做以这条边为底的平行四边形的高.这里所说的“底”是相对高而言的.
在平行四边形中,有时高是指垂线段本身,如作平行四边形的高,就是指作垂线段.所以平行四边形的高,在作图时一般是指垂线段本身.在进行计算时,它的意义是距离,即长度.
(4)平行四边形的面积等于它的底和高的积,即ABCD S =a·h .其中a 可以是平行四边形的任何一边,h 必须是a 边与其对边的距离,即对应的高,如图(1).要避免学生发生如图(2)的错误.为了区别,有时也可以把高记成a h 、AB h ,表明它们所对应的底是a 或AB .
(5)学完本节后,归纳总结一下平行四边形比一般四边形多哪些性质,平行四边形有哪些性质.可以按边、角、对角线进行总结.通过复习总结,使学生掌握这些知识,也培养学生随时复习总结的习惯,并提高他们归纳总结的能力.
三、例题的意图分析
本节课安排了两个例题,例1是一道补充题,它是性质3的直接运用,然后对例1进行了引申,可以根据学生的实际情况选讲,并归纳结论:过平行四边形对角线的交点作直线交对边或对边的延长线,所得的对应线段相等.例1与后面的三个图形是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.
例2,这是复习巩固小学学过的平行四边形面积计算.这个例题比小学计算平行四边形面积的题加深了一步,需要应用勾股定理,先求得平行四边形一边上的高,然后才能应用公式计算.在以后的解题中,还会遇到需要应用勾股定理来求高或底的问题,在教学中要注意使学生掌握其方法.
四、课堂引入
1.复习提问:
(1)什么样的四边形是平行四边形?四边形与平行四边形的关系是:
(2)平行四边形的性质:
360).
①具有一般四边形的性质(内角和是︒
②角:平行四边形的对角相等,邻角互补.
边:平行四边形的对边相等.
2.【探究】:
请学生在纸上画两个全等的ABCD和EFGH,并连接对角线AC、BD和EG、HF,设它们分别交于点O.把这两个平行四边形落在一起,在点O处钉一个图钉,将ABCD 180,观察它还和EFGH重合吗?你能从子中
绕点O旋转︒
看出前面所得到的平行四边形的边、角关系吗?进一步,你还
能发现平行四边形的什么性质吗?
结论:(1)平行四边形是中心对称图形,两条对角线的交点是对称中心;
(2)平行四边形的对角线互相平分.
五、例习题分析
例1(补充)已知:如图4-21,ABCD的对角
线AC、BD相交于点O,EF过点O与AB、CD分别相交于
点E、F.
求证:OE=OF,AE=CF,BE=DF.
证明:在ABCD中,AB∥CD,
∴∠1=∠2.∠3=∠4.
又OA=OC(平行四边形的对角线互相平分),
∴△AOE≌△COF(ASA).
∴OE=OF,AE=CF(全等三角形对应边相等).
∵ABCD,∴ AB=CD(平行四边形对边相等).
∴AB—AE=CD—CF.即BE=FD.
※【引申】若例1中的条件都不变,将EF 转动到图b 的位置,那么例1的结论是否成立?若将EF 向两方延长与平行四边形的两对边的延长线分别相交(图c 和图d ),例1的结论是否成立,说明你的理由.
解略
例2已知四边形ABCD 是平行四边形,AB =10cm ,
AD =8cm ,AC ⊥BC ,求BC 、CD 、AC 、OA 的长以及
ABCD 的面积. 分析:由平行四边形的对边相等,可得BC 、CD 的长,在Rt △ABC 中,由勾股定理可得AC 的长.再由平行四边形的对角线互相平分可求得OA 的长,根据平行四边形的面积计算公式:平行四边形的面积=底×高(高为此底上的高),可求得ABCD 的面积.(平行四边形的面积小学学过,再次强调“底”是对应着高说的,平行四边形中,任一边都可以作为“底”,“底”确定后,高也就随之确定了.)3.平行四边形的面积计算
解略(参看教材).
六、随堂练习
1.在平行四边形中,周长等于48,
① 已知一边长12,求各边的长
② 已知AB=2BC ,求各边的长
③ 已知对角线AC 、BD 交于点O ,△AOD 与△AOB 的周长
的差是10,求各边的长
2.如图,ABCD 中,AE ⊥BD ,∠EAD=60°,AE=2cm ,AC+BD=14cm ,则△OBC 的周长是____ ___cm . 3.ABCD 一内角的平分线与边相交并把这条边分成cm 5,cm 7的两条线段,则ABCD 的周长是__ ___cm .
七、课后练习
1.判断对错
(1)在ABCD中,AC交BD于O,则AO=OB=OC=OD.()
(2)平行四边形两条对角线的交点到一组对边的距离相等.()
(3)平行四边形的两组对边分别平行且相等.()
(4)平行四边形是轴对称图形.()
2.在ABCD中,AC=6、BD=4,则AB的范围是__ ______.
3.在平行四边形ABCD中,已知AB、BC、CD三条边的长度分别为(x+3),(x-4)和16,则这个四边形的周长是.
4.公园有一片绿地,它的形状是平行四边形,绿地上要修
几条笔直的小路,如图,AB=15cm,AD=12cm,AC⊥BC,
求小路BC,CD,OC的长,并算出绿地的面积.。