细菌耐药性检测解析

合集下载

第四章 细菌耐药性检测

第四章 细菌耐药性检测

临床常用抗菌药物
1、β-内酰胺类:青霉素类,头孢菌素类,单环类、头霉 素类等。
机制:与青霉素结合蛋白结合,抑制细菌细胞壁合成。 头孢抗菌效果: 对于革兰阳性球菌:一代>二代>三代 对于革兰阴性杆菌:三代>二代>一代 四代对革兰阳性球菌和革兰阴性杆菌几乎相同,并具有抗
假单胞菌作用。
临床常用抗菌药物
第四章
细菌耐药性检测
细菌耐药性产生的原因
1、细菌自身因素:基因突变或获得耐药基因质粒 2、经验性使用抗菌素:致使细菌形成耐药或中介 3、对于未确诊为细菌感染者使用抗生素 4、滥用广谱抗生素
抗菌药物作用机制
1、干扰细菌细胞壁的合成,使细胞不能生长繁殖 2、损伤细菌的细胞膜,破坏其屏障作用 3、影响细菌细胞蛋白质的合成,是细菌丧失生长 4、破坏核酸的代谢,阻碍遗传信息的复制 5、抑制细菌叶酸代谢等
效果更好。
抗菌药物敏感试验
抗菌药物联合用药可出现四种结果: ①无关作用:两种药物联合作用的活性等于其单独活性 ②拮抗作用:两种药物联合作用显著低于单独抗菌活性 ③累加作用:两种药物联合作用时的活性等于两种单独抗
菌活性之和 ④协同作用:两种药物联合作用显著大于其单独作用的总

细菌耐药机制
目的:达到控制感染性疾病。
抗菌药物敏感试验
A组(首选):包括对特定菌群的常规试验并常规报告的 药物
B组:包括一些临床上重要的,特别是针对医院内感染的 药物,也可用于常规试验,但只是选择性地报告
C组:包括一些替代性或补充性的抗菌药物,在A、B组过 敏或耐药时选用
U组:仅用于治疗泌尿道感染的抗菌药物 O组,对该组细菌有临床适应症但一般不允许常规试验并
细菌耐药监测
2、肠球菌耐药性检测: 万古霉素耐药性检测、 氨基汤苷类高水平耐药检测

临床微生物检验和细菌耐药性检测分析

临床微生物检验和细菌耐药性检测分析

临床微生物检验和细菌耐药性检测分析临床微生物检验是进行疾病诊断和治疗的必要手段之一,它主要依靠实验室检测技术来分离、鉴定和检测病原微生物。

临床微生物检验是对病人的体液、分泌物、组织和血液等样本进行检验,以确定病原体的种类和数量,从而对其进行针对性的治疗。

在临床微生物检验中,细菌是最常见的病原体之一,因此细菌耐药性的检测也是非常重要的。

随着抗生素的广泛应用,细菌的耐药性已经成为一个全球性的难题。

通过对细菌的耐药性进行检测分析,可以帮助医生合理选择抗生素,减少抗生素的滥用,避免耐药性的进一步发展。

在临床微生物检验中,常用的分离方法有常规细菌培养法、快速培养法、分子生物学方法等。

常规细菌培养法是通过对样本进行预处理、分离和鉴定来确定病原微生物的种类和数量。

快速培养法则是通过采用自动化、高通量系统和新型菌落计数仪等方法,加快细菌生长速度,促进菌落的形成和定量。

分子生物学方法主要是利用PCR、DNA芯片等技术来直接检测细菌的DNA或RNA,快速确定病原微生物的种类和数量。

除了分离鉴定外,临床微生物检验中还需要对细菌的耐药性进行检测。

目前常用的细菌耐药性检测方法主要包括药敏试验、分子生物学技术和质谱技术等。

药敏试验是最常规的细菌耐药性检测方法之一,它通过对不同抗生素在不同浓度下对细菌的影响进行观察,以确定细菌的药敏性和抗药性。

分子生物学技术则可以直接检测细菌中的耐药基因和突变基因,以确定细菌的耐药性机制。

质谱技术则是利用分子质量谱技术分析细菌培养物中分子的质量,快速检测细菌的药敏性和抗药性。

总之,临床微生物检验和细菌耐药性检测分析是对疾病诊断和治疗的有效手段,在临床医学中具有非常重要的实际应用价值。

随着分子生物学技术、质谱技术等新技术的不断发展,细菌检测和耐药性检测的精度和速度也将不断提升,为临床医学的发展提供更好的支持。

细菌耐药性检测方法

细菌耐药性检测方法

细菌耐药性检测方法1、细菌耐药表型检测:判断细菌对抗菌药物的耐药性可根据NCCLS标准,通过测量纸片扩散法、肉汤稀释法和E试验的抑菌圈直径、MIC值和IC值获得。

也可通过以下方法进行检测:(1)耐药筛选试验:以单一药物的单一浓度检测细菌的耐药性被称为耐药筛选试验,临床上常用于筛选耐甲氧西林葡萄球菌、万古霉素中介的葡萄球菌、耐万古霉素肠球菌及氨基糖苷类高水平耐药的肠球菌等。

(2)折点敏感试验:仅用特定的抗菌药物浓度(敏感、中介或耐药折点MIC),而不使用测定MIC时所用的系列对倍稀释抗生素浓度测试细菌对抗菌药物的敏感性,称为折点敏感试验. (3)双纸片协同试验:双纸片协同试验是主要用于筛选产超广谱β-内酰胺酶(ESBLs)革兰阴性杆菌的纸片琼脂扩散试验。

若指示药敏纸片在朝向阿莫西林/克拉维酸方向有抑菌圈扩大现象(协同),说明测试菌产生超广谱β—内酰胺酶(4)药敏试验的仪器化和自动化:全自动细菌鉴定及药敏分析仪如:Vitek—2、BD-Pheonix、Microscan等运用折点敏感试验的原理可半定量测定抗菌药物的MIC值。

2.β—内酰胺酶检测:主要有碘淀粉测定法(iodometric test)和头孢硝噻吩纸片法(nitrocefin test).临床常用头孢硝噻吩纸片法,β—内酰胺酶试验可快速检测流感嗜血杆菌、淋病奈瑟菌、卡他莫拉菌和肠球菌对青霉素的耐药性。

如β—内酰胺酶阳性,表示上述细菌对青霉素、氨苄西林、阿莫西林耐药;表示葡萄球菌和肠球菌对青霉素(包括氨基、羧基和脲基青霉素)耐药。

3.耐药基因检测:临床可检测的耐药基因主要有:葡萄球菌与甲氧西林耐药有关的MecA 基因,大肠埃希菌与β-内酰胺类耐药有关的blaTEM、blaSHV、blaOXA基因,肠球菌与万古霉素耐药有关的vanA、vanB、vanC、vanD基因.检测抗菌药物耐药基因的方法主要有:PCR扩增、PCR-RFLP分析、PCR—SSCP 分析、PCR-线性探针分析、生物芯片技术、自动DNA测序4.特殊耐药菌检测(1)耐甲氧西林葡萄球菌检测:对1цg苯唑西林纸片的抑菌圈直径≤10㎜,或其MIC≥4цg/ml的金黄色葡萄球菌和对1цg苯唑西林纸片的抑菌圈直径≤17㎜,或MIC≥0。

细菌耐药性检测方法

细菌耐药性检测方法

细菌耐药性检测方法传统检测方法主要包括药敏试验和漏斗法。

药敏试验通过将不同的抗生素与待检细菌进行共培养,观察细菌的生长情况,可以确定细菌对不同抗生素的敏感性。

漏斗法又称为浓度梯度法,将一系列不同浓度的抗生素加入含有细菌的琼脂平板培养基中,观察细菌生长的情况,通过最小抑菌浓度(MIC)来确定细菌的耐药性。

然而,传统的检测方法有一些不足之处,包括需要较长的检测时间、操作复杂、耗时耗力、存在人为误差等。

因此,近年来,分子检测方法逐渐应用于细菌耐药性的检测。

分子检测方法主要包括PCR技术、基因芯片技术和下一代测序技术。

PCR技术(聚合酶链式反应)是一种快速、高效、敏感的检测技术,通过扩增特定基因片段来判定细菌的耐药性。

该技术可以快速检测出是否存在耐药基因,并可通过测序等方法进一步确定具体基因型。

基因芯片技术则可以同时检测多个耐药相关基因,具有高通量、快速、精确度高的优点。

而下一代测序技术则可以对细菌的基因组进行全面分析,包括基因序列、变异信息等,对于耐药性的研究提供了更多的信息。

传统检测方法和分子检测方法在细菌耐药性检测中都具有一定的适用性,可以根据具体的实验要求和资源情况选择合适的方法。

对于临床应用而言,传统检测方法的优势在于成熟、经济、稳定,但无法提供细菌的详细基因型信息;而分子检测方法则具有高通量、高灵敏度、高特异性的优势,但需要较复杂的实验设备和操作技术。

细菌耐药性的检测方法在临床、食品安全、环境监测等领域具有重要的应用价值。

通过检测细菌的耐药性,可以指导临床合理使用抗生素,减少抗生素滥用,避免耐药细菌的产生和传播;在食品安全领域,可以掌握食品中耐药细菌的情况,保障食品的质量安全;在环境监测领域,可以及时发现环境中的耐药菌,为环境卫生管理提供参考依据。

综上所述,细菌耐药性的检测方法既有传统的药敏试验和漏斗法,也有分子检测的PCR技术、基因芯片技术和下一代测序技术。

各种方法各有优缺点,可以根据具体实验需求和资源条件选择合适的方法。

细菌的耐药性的产生及检测方法解析

细菌的耐药性的产生及检测方法解析
上经突变而成的多种β -内酰胺酶,水解青霉素、广谱青霉 素、头孢菌素、单环类、第四代头孢菌素,但不能水解碳青 霉烯类、头霉素类。除了对β 内酰胺类抗生素耐药外,经常 伴随对氨基糖苷类等其他抗生素的耐药性。
准确区分ESBLs和非ESBLs菌株,不仅可指导临床合理用药,
以免延误病情和增加医疗费用,而且有利于对ESBL菌株的管 理,控制其传播,防止爆发流行,对提高治疗效果和控制医 院院内感染均有重要意义。
LAT、ACT、ACC、MIR和DHA
D型β-内酰胺酶
D型β -内酰胺酶Bush分类属2d群,它们对
苯唑西林和氯唑西林的水解速度明显大于
苄青霉素,因此,它们又被称为“苯唑西林
酶”,其中OXA-48 在碳青霉烯类耐药中显示
出了日趋重要的碳青霉烯酶的活性。
超广谱β-内酰胺酶
ESBLs是一大类基于TEM-1、TEM-2和 SHV-1型β 内酰胺酶基础
根据不同特性分为:
抑菌剂:速效抑菌剂 (四环素类、林可霉素 类、氯霉素与大环内酯 类)和慢效抑菌剂(磺 胺类) 杀菌剂:繁殖期杀菌剂 (青霉菌素类及头孢菌 素类)和静止期杀菌剂 (喹诺酮类、氨基糖苷 类、多粘菌素类)
抗菌药物分类
(1)β-内酰胺类:青霉素类和头孢菌素类的分子结构中含有β内酰胺环。 (2) 氨基糖苷类:包括链霉素、庆大霉素、卡那霉素、妥布霉 素、丁胺卡那霉素、新霉素等。 (3) 四环素类:包括四环素、土霉素、金霉素及强力霉素等。 (4) 氯霉素类:包括氯霉素、甲砜霉素等。 (5) 大环内脂类:红霉素、白霉素、乙酰螺旋霉素、麦迪霉素、 阿奇霉素等。 (6) 糖肽类抗生素:万古霉素、去甲万古霉素、替考拉宁。 (7) 喹诺酮类:诺氟沙星、氧氟沙星、环丙沙星、培氟沙 星、加替沙星等。

检验科微生物室多重耐药的检测及分析

检验科微生物室多重耐药的检测及分析

检验科微生物室多重耐药的检测及分析多重耐药是指微生物对多种抗生素产生耐药性的情况。

在临床上,多重耐药致使临床用药受限,难以有效治疗感染性疾病,给患者带来严重的健康风险。

对多重耐药的检测及分析具有重要的临床意义。

目前,多重耐药的检测及分析方法主要包括传统培养方法、分子生物学方法和基因测序方法。

下面将对这些方法进行详细介绍。

1.传统培养方法:传统培养方法主要是通过培养细菌样本来进行细菌的分离和鉴定,并通过有效浓度抗生素的敏感试验来检测细菌的耐药性。

这种方法的优点是简单易行,成本低廉。

由于某些细菌的生长速度慢,以及存在一些细菌难以培养或形成菌落的情况,导致该方法的检测结果可能存在偏差。

2.分子生物学方法:分子生物学方法主要包括聚合酶链式反应(PCR)和核酸杂交等。

PCR方法通过扩增目标基因片段,然后通过DNA测序或比色法来检测细菌的耐药性基因。

该方法的优点是灵敏度高,特异性强,能够快速检测细菌耐药性基因。

该方法的缺点是不能获取整个细菌基因组的信息。

3.基因测序方法:基因测序方法通过对细菌基因组的全面测序,来获得细菌的整个基因组信息,从而判断细菌的耐药性。

该方法利用高通量测序技术,能够快速、准确地获得细菌基因组序列,并通过比对数据库来鉴定细菌的耐药性基因和耐药基因突变。

该方法的优点是能够获得全面的基因组信息,对细菌的耐药性分析更加准确和全面。

该方法的缺点是成本较高,对技术要求较高。

在多重耐药的检测及分析中,综合以上三种方法可以更准确地判断细菌的耐药性。

通过传统培养方法进行细菌分离和鉴定,同时进行有效浓度抗生素的敏感试验。

然后,通过PCR或核酸杂交等分子生物学方法对细菌的耐药性基因进行检测。

通过基因测序方法对细菌的整个基因组进行测序和分析,以获得更准确和全面的耐药性信息。

多重耐药的检测及分析是一项重要的临床工作,能够指导合理用药、减少抗生素滥用、提高临床治疗效果。

多种方法的综合应用可以更准确地判断细菌的耐药性。

检验科微生物室多重耐药菌的检测及分析

检验科微生物室多重耐药菌的检测及分析

检验科微生物室多重耐药菌的检测及分析微生物室是医院检验科的重要部门,负责对临床样本中的微生物进行检测和分析。

微生物室中最重要的工作之一就是对多重耐药菌的检测及分析。

多重耐药菌是指对多种抗生素产生耐药性的细菌,它们对临床治疗构成了严重的挑战。

本文将详细介绍微生物室对多重耐药菌的检测及分析过程。

一、样本采集在进行多重耐药菌的检测和分析前,首先需要收集临床样本。

临床样本通常包括血液、尿液、痰液、脑脊液等。

这些样本可能携带有各种病原微生物,包括多重耐药菌。

在样本采集过程中,需要严格遵守无菌操作规范,以避免外部细菌的污染。

采集到的样本需要迅速送至微生物室进行后续的检测分析。

二、细菌培养在微生物室中,对多重耐药菌的检测首先需要进行细菌培养。

培养是指将临床样本中的微生物在含有营养物质的培养基上进行培养繁殖,从而得到足够数量的微生物以供后续的检测。

在培养过程中,需根据临床样本的特点选择合适的培养条件,比如温度、氧气浓度等。

培养时间通常为24-48小时,确保细菌有足够的时间生长繁殖。

三、药敏试验细菌培养后,接下来需要进行药敏试验。

药敏试验是通过将不同抗生素涂抹于培养基上,观察细菌在不同抗生素下的生长情况,以确定细菌对各种抗生素的敏感性。

对多重耐药菌的检测就是要通过药敏试验来确定这些细菌对哪些抗生素存在耐药性。

通常会对常用的抗生素进行测试,比如青霉素、庆大霉素、头孢菌素等。

通过药敏试验的结果,可以为临床治疗提供重要参考,避免对耐药菌使用无效的抗生素。

四、分子生物学检测除了传统的培养和药敏试验外,现代的微生物室还可以利用分子生物学技术来进行多重耐药菌的检测。

分子生物学检测可以更快速、更准确地确定细菌的种类和耐药基因的存在。

比如PCR(聚合酶链式反应)技术可以检测细菌在基因水平上的特征,快速确定细菌是不是多重耐药菌,以及其具体的耐药基因类型。

这种检测方法在临床诊断中具有重要的意义,可以帮助医生更准确地选择治疗方案,避免对耐药菌的误用。

《细菌耐药性监测》课件

《细菌耐药性监测》课件
《细菌耐药性监测》PPT 课件
本课件将介绍细菌耐药性及其监测。细菌耐药性是细菌对抗生素的耐药能力, 对公共卫生和临床治疗都具有重要影响。
细菌耐药性的定义
细菌耐药性是指细菌对抗生素或其他药物的抵抗力,使其在治疗时无法有效消除细菌感染。
细菌耐药性监测的重要性
公共卫生
监测细菌耐药性可以帮助制 定有效的公共卫生政策,预 防细菌感染的传播和扩散。
细菌耐药性监测的挑战和困境
新的耐药机制
细菌不断进化,产生新的耐药 机制,挑战现有的监测方法和 治疗策略。
数据收集和分析
大规模数据的收集和分析是一 项复杂的任务,需要跨学科的 合作和高效的数据管理。
多样性和流动性
细菌耐药性具有多样性和流动 性,跨越国界和领域,需要全 球合作应对。
细菌耐药性监测的未来发展方向
1
基因测序技术
Hale Waihona Puke 利用高通量基因测序技术,快速识别细菌耐药性基因,实现快速监测和定位。
2
大数据分析
应用人工智能和机器学习算法,对大规模的耐药性数据进行分析和预测,提高监 测效率。
3
新型抗生素研发
加强新型抗生素的研发和推广,应对不断变化的细菌耐药性。
细菌耐药性监测的应用和意义
指导治疗
根据细菌耐药性监测结果,指导临床医生选择最有效的抗生素治疗细菌感染。
临床治疗
监测细菌耐药性可以指导临 床医生选择合适的抗生素治 疗细菌感染,提高治疗效果。
药物开发
监测细菌耐药性可以为研发 新的抗生素和药物提供数据 支持,应对不断变化的细菌 耐药性。
常见的细菌耐药性监测方法
1 药敏试验
通过培养细菌和敏感试验 药物,确定细菌对抗生素 的敏感度和耐药性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绿脓杆菌
肠球菌
阴沟、产气、 费氏柠檬酸杆菌
部份假单胞菌 嗜麦芽单胞菌
奇异变形杆菌
普通变形杆菌 沙雷菌 洋葱伯克 粘质沙雷、 斯氏普罗威登
呋喃妥因、四环素类、多粘菌素
氨苄西林、阿莫西林、多粘菌素、头孢呋辛 头孢呋辛,氨苄西林、阿莫西林、I 代头孢菌素 氨基糖甙类、青霉素 多粘菌素、呋喃妥因,氨苄西林、阿莫西林, I代头孢、头孢呋辛
最主要的耐药因素

对β-内酰胺抗生素造成威胁
细菌遗传变异
β-内酰胺酶的种类
A组β-内酰胺酶 (青霉素酶) [ESBLs] 丝氨酸β-内酰胺酶 D组β-内酰胺酶 (苯唑西林酶) C组β-内酰胺酶 (头孢菌素酶)[AmpC]
金属β-内酰胺酶 B组β-内酰胺酶 (碳青霉烯酶)[IMP-1] 细菌遗传变异
R质粒—耐药质粒 接合型 非接合型
接合型:耐药决定因子+耐药接合因子
非接合型:耐药决定因子
转移方式:接合型:接合转移
非接合型:转化、转导等方式
细菌遗传变异
细菌遗传变异
基因传播的方式
转化:耐药菌溶解后释放的DNA进入敏感菌 体内,其耐药基因与敏感菌中的同种基因重 新组合,使其变成耐药菌。 转导:耐药菌以噬菌体为媒介将耐药基因转 移给敏感菌的现象。 转座:耐药基因可自一个质粒转座到另一个 质粒,丛质粒到染色体或从染色体到噬菌体 等的现象。
细菌遗传变异
(二)获得耐药性
由于细菌基因的突变、耐药基因片段的 转化、质粒的转移、噬菌体的转导等原因,
导致细菌产生耐药。
细菌遗传变异
基因突变
耐药基因位于染色体上,随细菌分裂传至后

基因突变频率105~109
通常只对1,2种类似药物产生耐药
细菌遗传变异
质粒介导的耐药性
质粒是位于染色体外的DNA
重要的β-内酰胺酶
广谱酶:TEM-1,2, SHV-1
超广谱酶: ESBLs (TEM-3 to TEM100;SHV-2 to SHV-36; CTX-M type ESBLs) 高产C类头孢菌素酶:AmpC
细菌遗传变异
细菌产生耐药性的原因
服药疗程不足: 用药不当: 重复用药: 剂量不足: 药物交互作用:
细菌遗传变异




服药疗程不足:很多病人以為症狀已經缓解就不需再服 药,令所幸存的细菌开始产生耐药性,留在病人体內,甚至 传播到他人。 用药不当:医生在某些情況下會誤用抗生素, 又或者因應病 人要求而濫用抗生素, 不是細菌引起的疾病(例如多數傷風由 病毒引起),卻使用抗生素治療,不但對症狀毫無幫助,更 促使細菌產生抗藥。 重複用藥:要時抗生素的應用廣泛,在醫學,動植物及農業 上都大量應用抗生素.若重複使用某種抗生素,細菌會慢慢學 習改造自己以產生抗藥性,就像適應環境一樣,最後就不會 被該種抗生素殺死。 劑量不足:當抗生素劑量不足,只能殺死部分細菌,存活下 來的細菌,為求生存就利用基因轉變等方法改造自己,而不 再被相同的抗生素消滅。 藥物交互作用:有些藥物若與抗生素共同服用,會在身體內 產生化學反應,而減低抗生素的效用,造成無法殺死細菌, 存活的細菌因此產生抗藥性。 细菌遗传变异
细菌遗传变异
三、抗生素渗透屏障作用
细菌可通过各种途径使抗生素不易进入菌
体,如某些杆菌的细胞外膜对青霉素等有天
然屏障作用;还有些细菌可通过细胞壁水孔
或细胞外膜通道的改变,使抗生素不易渗透
至细菌体内,产生耐药。
细菌遗传变异
四、主动外排功能增强
有些抗菌药物(常见的有四环素与喹 诺酮类)能诱导细菌主动外排,抗菌药
细菌耐药性的分类
(一)固有耐药性 指天然耐药性。是由细菌染色体决定
的,具有稳定的遗传性,可代代相传,故
有绝对耐药之说,如革兰氏阴性菌对早期
青霉素天然耐药,产气杆菌对头孢西丁天
然耐药等。
细菌遗传变异
常见细菌的天然耐药
克雷伯菌属 鲍曼不动杆菌 流感嗜血杆菌 沙门氏菌 氨苄西林、阿莫西林,替卡西林、氨基糖苷类 氨苄西林、阿莫西林、I 代头孢菌素 青霉素、红霉素、克林霉素 头孢呋肟、I 代头孢菌素 氨苄西林、阿莫西林、头孢曲松、头孢噻肟、复方新诺明、 I 、II 头孢菌素 复方新诺明、头孢菌素、克林霉素、低浓度的氨基糖苷类 头孢西丁 亚胺培南 亚胺培南、ß-内酰胺类
物难以在菌体内积累到有效浓度,造成
对抗菌药物耐药程度普遍提高。
细菌遗传变异
五、细菌菌膜形成
指细菌粘附在固体或有机腔道表面, 形成为微菌落,并分泌多糖蛋白复合物 将自身包裹其中而形成膜状物,可阻止 药物作用于细菌。
细菌遗传变异
4种主要耐药机制
渗透障碍 泵出
失活
X
靶位改变
细菌遗传变异
细菌遗传变异
β- 内酰胺酶
细菌的耐药性 与耐药细菌检测
细菌遗传变异
细菌耐药性
指细菌与抗生素多次接触后,对抗生素 的敏感性下降甚至消失,致使抗生素对耐药
菌的疗效降低或无效。耐药的程度以最小抑
菌浓度( 細菌如何產生抗藥性?
细菌遗传变异

据国内权威医疗机构调查统计:我国每 年约有20万人死于药品不良反应,其中4 0%(8万人)死于抗生素滥用。 “抗生素本身无辜,问题在于人们滥用了 它。” “抗生素如同一把双刃剑,合理使用当然有 益,使用不当就会伤害自己。”
细菌遗传变异
细菌遗传变异
细菌主要耐药机制
一、水解酶或钝化酶的产生
二、靶位结构改变
三、抗生素渗透屏障作用 四、主动外排功能增强(泵出机制) 五、细菌菌膜形成
细菌遗传变异
一、灭活酶或钝化酶的产生
β-内酰胺酶可以打开β-内酰胺类药物分 子结构中的β-内酰胺环,使其完全失去抗菌 活性。 氨基糖苷类药物钝化酶、氯霉素乙酰转移 酶、MLS(大环内酯类、林可霉素、链阳菌 素类)抗菌药物钝化酶,可催化某些基团结 合到抗生素上,使之失活。
细菌遗传变异
二、靶位结构改变
药物作用的靶位发生改变:使抗生素不易
与之结合。
如利福平作用点是RNA聚合酶的β亚基,
当β亚基的编码基因突变时,就产生了耐药性。
细菌遗传变异
主要抗菌药物作用靶位
β-内酰胺类-青霉素结合蛋白(PBP) 氨基糖苷类-核糖体30S亚基 大环内酯类-核糖体50S亚基 氟喹诺酮类-DNA旋转酶(拓扑异构酶Ⅱ)、拓 扑异构酶Ⅳ 糖肽类D-丙氨酰D-丙氨酸 四环素类-核糖体50S亚基
相关文档
最新文档