巡线机器人设计说明书

合集下载

高压传输线路巡检机器人设计与开发说明书

高压传输线路巡检机器人设计与开发说明书

* Corresponding author. Email: ******************.myResearch ArticleDesign and Development of Three Arms Transmission Line Inspection RobotMuhammad Fairuz Abdul Jalal *, Khairul Salleh Mohamed Sahari, Ho Ming Fei, Justin Chan Tuck LeongDepartment of Mechanical Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang, Selangor 43000, Malaysia1. INTRODUCTIONHigh-voltage transmission lines is one of the main elements in power distribution from the power plant or power station to the customer. However, the transmissions line is exposed to various environment conditions namely thermo-mechanical loading, mechanical tension, material degradation and material corrosion. The transmissions lines undergoing such circumstances eventually lead to many problems such as electrical breakdown or even major accident if transmissions lines were not being inspect, fixed and replaced in appropriate time [1].The process of inspections of transmission line involved activities such as changing the ceramic insulators and switching on or off the circuit in between poles [2]. The manual inspection routine of transmission line is very tedious, dangerous and time-consuming inspection session [3]. The development of the mobile inspection robot will not only create a safer work environment in the trans-mission line inspection job, but also improve the efficiency of the inspection process [3].Various line inspection robots have been developed and proposed by researchers. Wang et al. [4] proposed a two arms transmission line robot. This robot utilized a line walking mechanism that based on biped structure either having both feet placed on the line or each feet is placed alternatively on and off the line. Another dual arm robot self-balancing was developed by Songyi et al. [5]. The two arm of the robot hold onto the transmission line and move with the wheel installed on the arm. The robot is integrated with counterweight to improve the robot stability while travelling on the trans-mission line.Xu et al. [6] developed a three arms transmission line robot thatf eatures two supporting arms and one assistant arm placed in between both supporting arms. This robot was designed to over-come obstacles by evading them with the lifting mechanism on each arm. Rui et al. [7] developed three arm transmission line inspection robot. The robot arms consist of rubber wheel and the both outer arm installed with gripper to hold unto the line. The rubber wheel enables the robot to bypass minor obstacles for instance the splicer and damper.Our research group already took initiatives to propose various conceptual design and selection based on requirement set by Tenaga Nasional Berhad, the main utility supplier to peninsular Malaysia [8]. In this paper, the prototype of a three arms trans-mission line inspection robot is presented. The robot has the capabilities to pass over in-line obstacles without deteriorating the robot stability.2. T RANSMISSION LINE INSPECTION ROBOT DESIGN 2.1. General Design RequirementThere are many components, which are installed on the transmis-sion line for various purposes namely tension insulator chain, sus-pension clamp, damper, tension clamp, jumper, splicing sleeve and others depending on type of transmission line as shown in Figure 1.A R T I C L E I N F OArticle HistoryReceived 19 July 2018Accepted 12 November 2018Keywords Inspection robot transmission line sliderA B S T R A C TThe high-voltage transmission line had been used primarily for power distribution from power plant or power station to the end users. However, the transmission line is highly prone to damage due to exposure to various thermal–mechanical loadings and material degradation. Therefore, periodical inspection on transmission line after prolonged service is needed to prevent any failure before it happens. In this paper, we present a new design of three arms inspection robot for transmission lines. The robot is able to transverse along the line and bypass the in-line obstacles namely the anti-vibration hammers, spacer, strain clamps and others. The design of the inspection robot in term of the robot design and configuration with slotted cam at each arm is presented. The detailed analysis via simulation with respect to the robot stability; kinematic and movement analysis; and power consumption during operation is executed to make sure the proposed design able to do the inspection without any unexpected difficulties. Later, the lab testing on the developed prototype is done for feasibility study and validation.© 2018 The Authors . Published by Atlantis Press SARL.This is an open access article under the CC BY-NC license (/licenses/by-nc/4.0/).158M.F. Abdul Jalal et al. / Journal of Robotics, Networking and Artificial Life 5(3) 157–160It is deemed necessary for robot to bypass these in-line components so that the inspection process can be executed effectively [9].2.2. Transmission Line Inspection RobotThe robot travel on the transmission line with the help of rollers that installed in each arm and cross obstacles by moving its arm up by rotating the power screw installed in each arm. The robot is installed with six motors; three motors run the roller at each arm for traversing on the transmission line. The others three motors are attached to the power screw for bypassing the in-line obstacles. The conceptual design and the prototype are shown in Figure 2.The three arms robot is hanged to the transmission line by means of roller and lower jaw as a griping element. The movement is pro-pelled by the roller at each arm. Each roller is powered by a motor as shown in Figure 3.The mechanism to bypass obstacle is illustrated in Figure 4. The gripping position and bypassing obstacle movement are realized by the rotational direction of the motor linked to power screw. To bypass the in-line obstacle, the motor is then actuated. The power screw pushes the arm upwards. As the arm moves up, it follows the curve of the slotted profile. The bottom of the arm will have a pin joint with a support to enable it to rotate as the arm follows the curve of the slot. The arm will move back to its original position by reversing the motor direction and the wheel on arm attached back to the line. The same step applied to the following next two arm. The mechanism to bypass the obstacles is shown in Figure 5.The stability of the transmission line inspection robot is an import-ant aspect to be considered as it influences the overall quality of the image taken during the inspection process.3. RESULT AND DISCUSSION3.1. Capability to Bypass ObstaclesThe robot must be able to avoid obstacles along the transmis-sion line or else the design will be deemed as a failure. Figure 6 shows that the roller and lower jaw do not interfere with the line as the arm gripper loosening and tightening its grip to the transmission line.The clearance between the arm and the obstacles is ranged from 90 to 130 mm and the maximum angle of arm rotation 21.6° as shown in Figure 7.Figure 1| Transmission line environment [9]Figure 2| The conceptual design (left) and prototype of the three armstransmission line inspection robot (right)Figure 3|The front view (left) and side view (right) of the gripperFigure 4|Mechanism to bypass in-line obstaclesFigure 6| The arm gripper during loosening (left) and tightening (right)its grip to the lineFigure 5| The arm movement to bypass obstacles. (a) initial state (b)obstacle bypassing state (c) return back to initial statea b cM.F. Abdul Jalal et al. / Journal of Robotics, Networking and Artificial Life 5(3) 157–160 159the operation. The average change of X -axis is 10.33 mm and Y -axis is 8.07 mm. The average distance between center of mass in various arm configuration is 13.1 mm. The results are plotted in X –Y plane as shown in Figure 9.3.3. Motor Torque and Power ConsumptionThe value of the motor torque required to rotate the power screw to move the arm up for bypassing the obstacle is analyzed in Solidworks Motion. The motor speed is set to reach 225 rpm based on the motor specification. The time needed for the arm to move up to bypass the obstacle is 20 s. The average motor torque and power consumption are 13 Nm and 0.254 W . The graph of the motor torque and power consumption against time is shown in Figure 10.3.2. Stability AnalysisThe significant changes of robot center of mass for bypassing the obstacle provide instability and tendency for the robot to swing. The analysis of the design center of gravity is done by means of center of mass analysis of the following arm configurations: (i) Configuration 1: Original configuration; all the arms rest onthe transmission line.(ii) Configuration 2: The first arm move up to avoid obstacles while the other two arm rest on the line.(iii) Configuration 3: The second arm move up to avoid obstacles while the other two arm rest on the line.(iv) Configuration 4: The third arm move up to avoid obstacles while the other two arm rest on the line.The robot XYZ axis and the value of center of mass for each config-uration is extracted from the CAD software is as shown in Figure 8. The coordinate center of mass of the different arm configuration is tabulated in Table 1.There is a small change in the coordinate of the center of mass in the X - and Y -axis as the robot change its configurations from the orig-inal configuration while the Z-axis remained constant throughoutFigure 7 | The arm gripper during loosening (left) and tightening (right)its grip to the lineFigure 8 | The coordinate center of mass extracted from simulationTable 1 | The coordinate of the center of mass by various arm configuration Coordinate Arm configuration1234X 88.4598.7898.8098.80Y 250.65258.67258.83258.83Z207.58207.58207.58207.58Figure 9 | The coordinate of robot center of mass in X –Y plane fordifferent arm configurationFigure 10 | Graph of motor torque (top) and power consumption (bottom) against time160 M.F. Abdul Jalal et al. / Journal of Robotics, Networking and Artificial Life 5(3) 157–1604. CONCLUSIONIn this paper, the three arms transmission line inspection robot and the analysis of robot stability and motor are presented. The mech-anism to bypass the in-line obstacles is achieved by using power screw and slotted profile. The robot is proven to be stabile during operation due to minimal changes of its centre of mass.ACKNOWLEDGMENTSThis work was supported by the Universiti Tenaga Nasional Bold (TNB) Grant 102289176/B/9/2017/63 and Internal Grant J510050707. The author would like to thank the TNB for the access of information and data for formulating the robot design specification.REFERENCES[1] Y.C. Zhang, Z.Z. Liang, M. Tan, Mobile robot for overhead pow-erline inspection: a review, Robot 9 (2009), 467–473.[2] L.E. Parker, J.V . Draper, Robotics applications in mainte-nance and repair, S. Nof, Handbook of Industrial Robotics, second ed., Hoboken, NJ, John Wiley & Sons Inc., 1998, pp. 1023–1036.[3] F.Y. Zhou, J.D. Wang, Y.B. Li, H.R. Xiao, Control of an inspec-tion robot for 110K V power transmission lines based on expert system design methods, Proceedings of the 2005 IEEEMr. Muhammad Fairuz Abdul JalalHe is a lecturer at Department of Mechanical Engineering, Universiti Tenaga Malaysia. He received his Diplom -Ing. (FH) in Mechanical Engineering and MSc. in Mechatronics from University of Applied Sciences Ravensburg - Weingarten Germany in 2008 and 2010 accordingly.His research interest include robotic, design methodology and inspectionsystem for power industry. He is a member of International TRIZ Association.International Conference on Control Applications, IEEE, Toronto, ON, Canada, 2005, pp. 1563–1568.[4] L. Wang, F. Liu, Z. Wang, S. Xu, S. Cheng, J. Zhang, Developmentof a practical power transmission line inspection robot based on a novel line walking mechanism, IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Taipei, Taiwan, 2010, pp. 222–227.[5] D. Songyi, W . Xuefeng, D. Hang, W . Tao, Development of a self-balance dual-arm robot for inspection of high-voltage power trans m ission lines, 2012 IEEE International Conference on Mecha-tronics and Automation, IEEE, Chengdu, China, 2012, pp. 2482–2487.[6] B. Xu, X. Wang, Y. Zhu, H. Chen, Design of obstacle crossingmechanism of high-voltage transmission line inspection robot, 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), IEEE, Zhuhai, China, 2015, pp. 2539–2544.[7] G. Rui, Z. Feng, C. Lei, Y. Jun, A mobile robot for inspectionof overhead transmission lines, Proceedings of the 2014 3rd International Conference on Applied Robotics for the Power Industry, IEEE, Foz do Iguassu, Brazil, 2014, pp. 1–3.[8] M.F . Abdul Jalal, K.S. Mohamed Sahari, A. Anuar, A.D. MohdArshad, M.S. Idris, Conceptual design for transmission line inspec-tion robot, IOP Conference Series: Earth and Environmental Science, Bristol, IOP Publishing Ltd, 2013, pp. 1–4.[9]G. Wu, T. Zheng, H. Xiao, C. Li, Navigation, location and non-collision obstacles overcoming for high-voltage power transmission- line inspection robot, 2009 International Conference on Mechatronics and Automation, IEEE, Changchun, China, 2009, 2014–2020.Dr. Khairul Salleh Mohamed SahariHe is currently a Professor at the Department of Mechanical Engineering, Universiti Tenaga Nasional. He received his PhD from Kanazawa University, Japan in 2006. His research inter-est includes robotics, mechatronics, Artificial Intelligence and MachineLearning.Mr. Ho Ming FeiHe received his degree in Mechanical Engineering from Universiti Tenaga Nasional in 2017. He is now work-ing as Production Executive in Perak, Malaysia.Mr. Justin Chan Tuck LeongHe received his Degree in Mechanical Engineering from Universiti Tenaga Nasional in 2010.Authors Introduction。

高压输电线路巡线机器人结构设计

高压输电线路巡线机器人结构设计

编号南京航空航天大学毕业设计题目高压输电线路巡线机器人结构设计二〇一四年六月学生姓名曹嘉彬学号*********学院机电学院专业机械工程及自动化班级0510101指导教师王扬威讲师南京航空航天大学本科毕业设计(论文)诚信承诺书本人郑重声明:所呈交的毕业设计(论文)(题目:高压输电线路巡线机器人结构设计)是在导师的指导下本人独立完成的。

尽本人所知,除了毕业设计(论文)中特别加以标注引用的内容外,本毕业设计(论文)不包含任何其他个人或集体已经发表或撰写的成果作品。

作者签名:年月日(学号):高压输电线路巡线机器人结构设计摘要目前在国内,高压输电线路的巡检、维护主要有两种方法:一种方法是人为地检查,其缺陷有人工劳动强度大、工作效率低、可靠性差、存在检查的盲区;另一种方法是用直升机检查,虽然这种方法有较高检测效率和精度,但是这种方法受一些环境因素的制约,同时不仅增加了巡检的技术难度,还将大大增加巡检的费用。

所以急需一种可以替代之的工作方式。

移动机器人技术的发展为高压输电线的检查工作提供了新的手段。

本文首先介绍了高压输电线路巡线机器人的研究背景及意义,综述了国内外巡线机器人的研究发展现状。

然后针对高压输电线路设计出一种全新的巡线机器人运动结构,该机构采用三臂式多自由度机械手臂,可以实现安全可靠的自主巡线,并且利用solidworks建立了巡线机器人的三维模型。

此结构的优点在于抓线能力强,运动稳定。

关键词巡线机器人,结构设计,运动学分析,动力学分析Structural design of high voltage transmission lineinspection robotAbstractAt present, there are mainly two methods in inspecting the transmission line: One method is artificially inspection which suffers from great labor intensity, low working efficiency and reliability and blind area of inspecting;the other method is the helicopter inspection, although this method enhanced inspecting efficiency and precision,it is rigour to the climate, moreover, it not only increases the technical difficulty for the viewer and the shooting device but also cost much more. So you can replace the need for a way of working. The development of mobile robot technology provided new means for inspection of the high-voltage transmission line.This paper introduces there search backgroundand significance of high-voltage transmission line inspection robot,summarizes the status of research and development at home and abroad inspection robot.Then for the high-voltage transmission lines to design a new structure inspection robot motio. The agency uses three arm multi-degree of freedom robotic arm can achieve safe and reliable autonomous transmission line and use solidworks established inspection robot of three-dimensional model .the advantage of this structure is that the strong grasp of line and stability of movement.Key words:inspection robot;structural design;kinematic anaylsis;kinetic analysis目录摘要 (i)Abstract (ii)目录 (iii)第一章绪论............................................................. - 1 -1.1巡线机器人研究目的及意义........................................... - 1 -1.2巡线机器人国内外研究现状........................................... - 2 -1.3本课题研究内容..................................................... - 5 - 第二章巡线机器人总体设计及理论分析...................................... - 7 -2.1巡线机器人工作环境分析............................................. - 7 -2.2巡线机器人的主要技术指标.......................................... - 10 -2.3巡线机器人运动学分析.............................................. - 10 -2.4机器人的工作空间分析.............................................. - 17 - 第三章巡线机器人详细结构设计............................................ - 19 -3.1巡线机器人机械手指结构设计........................................ - 19 -3.2巡线机器人跨线手臂与承重手臂结构设计.............................. - 21 -3.3巡线机器人连接手臂结构设计........................................ - 23 -3.4巡线机器人箱体结构设计............................................ - 24 -3.5轴校核............................................................ - 26 - 第四章巡线机器人越障能力分析............................................ - 28 -4.1巡线机器人越障步骤................................................ - 28 -4.2.机械臂运动学方程的正解............................................ - 29 - 第五章总结与展望........................................................ - 31 -5.1总结.............................................................. - 31 -5.2展望.............................................................. - 31 - 参考文献................................................................. - 32 - 致谢..................................................................... - 34 -第一章绪论1.1巡线机器人研究目的及意义电力系统,由发电、变电、输电、配电和用电等环节组成的电能生产与消费系统。

自动巡线机器人设计

自动巡线机器人设计

自动巡线机器人设计
自动巡线机器人是一种能够在规定的赛道上进行导航并行驶的机器人,可以应用于工业生产线、物流仓储、无人驾驶等领域。

下面是自动巡线机器人的设计方案要点:
1. 车身结构设计。

车身需要轻便、稳定,且具有前后轮驱动和转向能力,在移动时能够保持稳定通过障碍物。

2. 导航系统设计。

机器人需要搭载能够对周围环境进行感知的传感器,如激光雷达、摄像头等。

同时,需要配置实时动态地图,通过地标或者线路标识物的识别,来实现全天候的自动导航功能。

3. 电源供应设计。

机器人需要配备可充电的电池,能够提供长时间的工作能力。

4. 控制系统设计。

机器人要嵌入程序实现复杂的算法控制,能够识别各种情况下的驾驶指令,并具备避障、紧急停车等功能。

5. 环保设计。

机器人需要采用环保性高的材料,如绿色能源和生物降解材料等,同时减少机器人对环境的损害。

总体来说,自动巡线机器人需要精细地设计和开发,才能满足各类实际需求。

技术水平的提高和工业环境的不断升级,将决定它的未来发展方向和应用范围。

《巡线运球机器人的制作与编程作业设计方案-2023-2024学年高中通用技术地质版2019》

《巡线运球机器人的制作与编程作业设计方案-2023-2024学年高中通用技术地质版2019》

《巡线运球机器人的制作与编程》作业设计方案第一课时一、设计目的与意义本作业设计旨在引导学生熟练掌握机器人制作与编程的基本原理,培养学生动手能力和逻辑思维能力。

通过制作巡线运球机器人,学生不仅可以学习到电子元件的使用方法,还能够了解传感器的作用和编程语言的基本概念,为将来从事相关领域的工作奠定坚实基础。

二、设计内容1. 任务要求:学生需要制作一个巡线运球机器人,该机器人能够根据地面黑线行进,在行进过程中遇到球时能够将球吸附到机器人上并继续行进,最后将球送入指定位置。

机器人需要具备灵活性、稳定性和准确性。

2. 设计材料:学生需要准备Arduino控制板、巡线传感器、吸盘、电机、车轮、电池盒等材料。

3. 设计步骤:- 搭建底盘:将车轮和电机安装在底盘上,保证机器人行进时稳定性。

- 安装巡线传感器:将巡线传感器固定在机器人的前部,用于检测地面黑线。

- 设计吸盘装置:设计吸盘装置,使机器人能够有效吸附球。

- 编写程序:使用Arduino控制板,编写程序控制机器人巡线、吸球和送球的动作。

4. 测试与调试:完成机器人搭建后,对机器人进行测试并调试,保证其功能正常。

三、设计评价标准1. 机器人的稳定性和灵活性:机器人行进过程中是否稳定,是否能够根据地面黑线准确行进。

2. 机器人的吸球功能:机器人能否有效吸附球,并能够将球送入指定位置。

3. 编程方案的实际效果:编写的程序能否实现机器人的自主行走和吸球功能。

4. 创新性和实用性:机器人设计是否具有创新性和实用性。

四、教学方法与安排1. 教学方法:采用“理论讲解+ 实践操作”相结合的教学方法,引导学生通过实际操作来深化对理论知识的理解。

2. 教学安排:将本作业设计安排在课程的实践教学环节,每个学生独立完成一个机器人,并在小组内分享经验和成果。

3. 教学辅助:为学生提供相关的教学资料和视频教程,帮助学生更好地理解机器人制作与编程的基本原理。

五、总结与展望通过本作业设计,学生将能够深入了解机器人制作与编程的基本原理,培养动手能力和创新思维。

超高压电力传输线路巡检机器人结构设计与模拟分析说明书

超高压电力传输线路巡检机器人结构设计与模拟分析说明书

2nd International Conference on Advances in Mechanical Engineering and Industrial Informatics (AMEII 2016) Research into structural design and simulation of the inspection robot for ultra-high voltage power transmission linesYiheng Bian1, a1Department of electric power engineering, North China Electric Power University , Baoding of Hebeiprovince 071000, Chinaa*****************Keywords:inspection robot; extra-high voltage power transmission line; structural design; simulation analysisAbstract. With the rapid development of the power system, there has been a higher requirement of the power transmission lines. However, the traditional power transmission line test usually adopts the helicopter aerial survey and artificial visual inspection, which might incur a high inspection cost but can hardly ensure the inspection precision. Under the condition, the inspection robot is developed to respond to problems with the traditional power transmission line inspection methods, having achieved significantly positive effects. This paper is an exploration and analysis of the structural design thinking of the inspection robot, the robot kinematic issues and the robot movement simulation.IntroductionAs an important technical approach for the current power transmission line test, the inspection robot can be hung on the overhead ground wire to automatically conduct power transmission line inspection. Some commonly-seen problems like guide line damage, insulator degradation and line faults can be efficiently tested. However, how to give full play to the inspection robot and do a good work of structural design to meet the power transmission line inspection requirements remains an issue of great concern. This research targets at the design requirements of the inspection robot, so it is of vital significance.I. Research thinking of the structural designThe structure of the inspection robot shows obvious complex characteristics. Therefore, it is necessary to do a good work of 3D model building during the structural design. As the building of various robot parts, the CATIA software is introduced. The functions of the software include: 1) Assembly design: Introduce all assembly parts into it and meet the design, analysis and manufacturing requirements of assembly parts; 2) Engineering drawing: Directly build the engineering drawing; 3) Characteristic design module: Provide exclusive dialogues for users and guarantee prism parts design of users. Besides, the software can also introduce the curve design, the metal plate design and the assembly simulation into it.In the practical robot structural design, the 500kV power transmission lines are adopted as research objects. It is required that the robot design relies on the computer control system and can move on the overhead line and automatically finish the operation of evading obstacles. To the end, the inspection robot should have an edge in terms of obstacle crossing capability and climbing capability, and its weight should preferably be controlled within 100kg. During the practical design process, the overall framework of the inspection robot should be clarified, which mainly includes the flexible arms, the palm opening and closing device, the braking device, the driving device, the control cabinet and the power box. The schematic diagram of the specific structure is shown in Fig. 1 below:Fig. 1 Schematic diagram of the inspection robot structureIn the structure, the actuating components feature the flexible arms, which can support the end effector and the wrist of the robot to some extent. In this design, the joint-type structure dominates. Relevant movement parameters under the structure are reflected as the end effector length, the wrist length, the forearm length and the big arm length, which is 344mm, 72mm, 400mm and 250mm, respectively. Besides, all joints rotate within ±90°. Two mechanisms, the stepping-type and the wheel-type, can be introduced. The former has higher transmission efficiency; while the latter can increase the inspection speed of the robot. As to the braking device, it includes the spring guide axis, the bottom base, the upper base, the pin roll, and the fixed and flexible brake ratchets, which can prevent the robot in fault from falling down or being out of control. After functions of various parts are confirmed, the CATIA environment can be introduced to confirm the mass inertia parameters of various parts [1]. The parameters are shown in Table 1 in details.Table 1 Mass inertia parameters of major robot parts under the CATIA model Parts Mass Izz Iyy IxxFlexible brake ratchet 0.0115 2.094e-005 1.863e-005 2.375e-006 Fixed brake ratchet 0.085 4.021e-005 3.171e-004 2.849e-004 Forearm 0.279 0.005 0.005 97e-005 Rolling wheel 1.439 0.002 0.002 0.003 Big arm 1.437 0.013 0.012 0.002II. Analysis of kinematic issues of mechanical armsAnalysis of the kinematic characteristics of mechanical arms is an important guarantee for reasonable design of various robot joints. During the practical analysis process, relevant mathematical theories are introduced. First, homogeneous transformation and rigid body pose analysis. The analysis method is mainly for the research into the relationship between mechanical arms and the environment or the internal components of mechanical arms. In terms of the rigid body pose, Point P is chosen; Px, Py and Pz respectively stand for the coordinate of Point P in the coordinate system. Based on that, Point P is expressed in the vector form, and w is adopted as theproportional factor. Under the condition that Px=x·w, Py=y·w and Pz=z·w, there isxyPzw. In thisway, when the proportional factor, w, changes, pose of the referential point can be analyzed. Besides, D-H expression method can also introduced to express the kinematical equation and to make the robot connecting rod and joint design more reasonable [2].Kinematic analysis of mechanical arms can proceed from forward kinematics, inverse kinematics, speed and Jacobian matrix. In terms of forward kinematics, the D-H expression method can be adopted for the coordinate system building and the parameter table filling. After these parameters are clarified, they can be put into relevant equations. Assume that Ai stands for the transformation matrix of adjacent joints, and that the transformation between two coordinate systems, including the end face and the substrate of robot’s hands, can be expressed as RTH. Then, RTH=A1A2A3A4. After that, the pose of the hand end face in the coordinate system can be deduced. In terms of the inverse kinematics, the angle solution is finished through decoupling in different angles. For example, A1-1RTH=A2A3A4 can be directly employed to deduce the joint rotational angle. Besides, in termsof the component changes, the Jacobian matrix can be used for expression. Generally speaking, the value of the joint corner can be expressed as [D]=[J][Dθ] when time changes. The Jacobian matrix is expresse d as J, and the joint differential movements can be expressed as Dθ. The differential movement of the coordinate system is D. Through the equation the joint angular velocity can be solved [3].III. Robot movement simulation from the perspective of ADAMSDuring the practical simulation process, the mechanism movement situations are confirmed through the simulation software. During the simulation process, this paper introduces ADAMS many-body dynamics into it, which can integrate ODE solution, nonlinear solution and linear solution into it. The simulation can be subdivided into: 1) Model building: In this step, the part model should be built, and the model should be set with corresponding acting force and restraint; 2) Model test: The measurement should be defined quantitatively. Based on that, the model is simulated, and it should be judged whether the acting force, restraint and parts meet the simulation requirements; 3) Model validation: Simulation results and test results are compared and the model is judged to see whether it is reasonable; 4) Model refinement: The complex elements are introduced into the model, such as flexible connecting pieces and friction in the kinematic pair; 5) Model optimization and environment customization: Parameters can be optimized to make the whole model more reasonable. Users can directly conduct dialogues or customize menus. The specific modeling procedures are shown in Fig. 2.Fig. 2 Simulation flow diagramBased on the simulation, the kinematic modeling process should be considered. During the operation process, the tool magazine of the ADAMAS should be employed. In this way, the inspection robot model under the environment can be obtained. See Fig. 3 below.Fig. 3 Robot model under the ADAMAS environmentThrough simulation and model building, the specific conditions during the practical joint movements can be obtained. Based on that, the kinematic rules of all robot parts are analyzed. Under the faulted condition, the corresponding rotational angle can be measured. Besides, during the process of evading obstacles, the falling and rising of the mechanical arms can be deduced [4]. ConclusionsApplication of the inspection robot is an important approach to improve the current ultra-high voltage power transmission test level. The structural design of the inspection robot is critical to the application process. The structure should meet the transmission lien requirements. Besides, the robot structure should be simulated so as to judge whether relevant parts meet the practical operation requirements. Only in this way, functions of the inspection robot can be given into full play. References:[1]LI Yong. Research into the application mode of the unmanned aerial vehicle during the inspection of ultra-high voltage AC power transmission line[D]. North China Electric Power University, 2014.[2]ZHANG Hu. The research and implementation on control system of the flight-sliding type transmission line inspection robot[D]. North China Electric Power University, 2014.[3]SHI Huiwen. Design and analysis of broken strands reposition metamorphic mechanism of extra-high-voltage power transmission lines[D]. Northeastern University, 2012.[4]XIANG Xiangfei. System design and simulation study of inspection robot for extra-high voltage power transmission lines[D]. Changchun University of Science and Technology, 2012.。

机器人巡线教程

机器人巡线教程

巡线教程巡线教程1、引言1.1 简介巡线是一种基于视觉识别技术的自动导航方法,常用于工业生产线、仓库管理等场景。

本教程将介绍如何搭建一个巡线系统,并进行线路规划、路径规划等操作。

2、硬件准备2.1 平台选择在选择平台时,需考虑巡线的精度要求、工作环境等因素,并选择适合的平台。

2.2 视觉传感器选择常用的视觉传感器如摄像头、激光雷达等,需要根据实际需求选择合适的传感器。

2.3 控制电路巡线通常需要控制电路来实现传感器数据的采集和运动的控制。

可以选择开发板或自行设计电路。

3、软件配置3.1 操作系统选择根据平台的要求和开发者的熟悉程度,选择合适的操作系统,如Linux、ROS等。

3.2 视觉识别库选择选择合适的视觉识别库,如OpenCV、TensorFlow等,用于图像处理和目标识别。

3.3 巡线算法实现根据巡线的具体要求,实现巡线算法,包括图像处理、目标检测、轨迹规划等功能。

4、线路规划4.1 地图建立首先在巡线区域内建立地图,可以使用激光雷达或其他传感器获取地图信息,并进行地图构建。

4.2 路径规划根据巡线任务的要求,使用路径规划算法的巡线路径。

5、控制策略5.1 速度控制根据巡线任务的需求,设定的速度控制策略,包括加减速、转弯等操作。

5.2 线路跟踪根据视觉识别结果,实现的线路跟踪功能,保持在巡线路径上行驶。

6、实验与优化6.1 环境调试将放置在巡线区域中,调试视觉传感器、巡线算法等,确保系统正常运行。

6.2 巡线精度优化通过对巡线系统的各个模块进行优化,提高的巡线精度。

7、结论通过本教程,您已了解如何搭建一个巡线系统,并进行线路规划、路径规划等操作。

附件:无法律名词及注释:无。

《巡线运球机器人的制作与编程作业设计方案》

《巡线运球机器人的制作与编程作业设计方案》

《巡线运球机器人的制作与编程》作业设计方案第一课时一、课程背景介绍:本课程设计旨在让同砚通过制作巡线运球机器人,精通基础的机器人制作和编程知识,培育同砚的动手能力、创设力和逻辑思维能力。

通过本设计,同砚将进修如何设计和搭建机器人,以及如何运用编程软件控制机器人进行巡线和运球的操作。

二、设计目标:1. 精通机器人的基本原理和构造方法。

2. 进修Arduino编程语言及其应用。

3. 能够应用传感器进行巡线和实现运球功能。

4. 培育同砚分析和解决问题的能力。

5. 提高同砚的团队合作能力和创新认识。

三、设计内容:1. 机器人构建:同砚将进修如何选择合适的电机、传感器、轮子等材料,并按照设计图纸进行机器人的搭建和组装。

2. Arduino编程:同砚将进修Arduino编程语言的基础知识,包括变量、循环结构、条件语句等,并运用这些知识编写代码控制机器人行走、巡线和运球操作。

3. 传感器应用:同砚将进修如何正确应用红外线传感器进行巡线功能的实现,以及怎样运用颜色传感器实现运球的操作。

4. 实践操作:同砚将在试验室进行实践操作,通过调试和优化程序,使机器人能够准确地巡线和运球。

四、设计步骤:1. 进修筹办阶段:老师将介绍机器人的基本原理和构造方法,同砚进修相关知识。

2. 材料筹办阶段:同砚依据设计要求筹办所需的材料和工具。

3. 机器人构建阶段:同砚按照设计图纸进行机器人的搭建和组装。

4. Arduino编程阶段:同砚进修Arduino编程语言的基础知识,并编写控制程序。

5. 传感器应用阶段:同砚进修如何应用传感器进行巡线和运球功能的实现。

6. 实践操作阶段:同砚在试验室进行实践操作,调试和优化程序,使机器人能够顺畅完成任务。

五、课程评估:1. 课程作业:同砚依据设计要求完成机器人的制作和程序编写,并进行任务演示。

2. 知识考核:考察同砚对机器人制作和编程知识的精通水平。

3. 实践能力:考察同砚在实践操作中的动手能力和解决问题能力。

机器人巡线教程范文

机器人巡线教程范文

机器人巡线教程范文一、材料准备二、巡线原理三、巡线模块设计四、巡线算法实现五、巡线实验验证六、巡线优化一、材料准备在进行机器人巡线过程中,我们需要以下材料:1.一台具备图像处理功能的单片机或者嵌入式主控板;2.一个摄像头模块;3.一套电机驱动系统;4.一个巡线赛道;5.其他常规使用的硬件组件。

二、巡线原理巡线原理是基于摄像头采集到的图像信息进行分析和处理,从而控制机器人按照线路进行行驶。

巡线的主要思路是:通过图像处理技术,提取图像中的线路信息,确定机器人当前位置和朝向,根据设定的控制算法,使机器人按照预定的线路进行行驶。

三、巡线模块设计巡线模块包括图像处理模块和控制模块。

图像处理模块将摄像头采集到的图像进行处理,提取出线路信息;控制模块根据线路信息控制电机驱动系统,使机器人按照线路进行行驶。

巡线模块的设计需要考虑摄像头的布局、图像处理算法的选择、电机驱动系统的设计等因素。

四、巡线算法实现巡线算法是实现机器人自动巡线的核心,常见的巡线算法包括二值化、边缘检测、Hough变换等。

在实现巡线算法时,需要根据赛道的具体特点进行调试和优化,使得机器人能够准确识别线路并进行相应的行驶控制。

五、巡线实验验证巡线算法实现后,需要进行实验验证。

首先需要安装巡线模块到机器人上,然后通过摄像头采集赛道图像,并将图像进行处理和分析,确定机器人的行驶方向和速度。

在实验中,可以逐步调整巡线算法的参数,优化机器人的行驶效果。

六、巡线优化在巡线实验过程中,可能会遇到一些问题,例如:识别不准确、转弯不稳定等。

针对这些问题,我们可以通过优化算法、调整参数、增加传感器等方式进行改进。

另外,在巡线过程中还可以考虑一些应对策略,例如:遇到交叉路口时,通过识别交通标志或者跳过已识别的线路等。

总结:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章绪论§1.1研究背景及意义电力系统最重要的任务是提供高质量和高可靠性的电力。

电力传输必须依靠高压输电线路,它的安全稳定运行直接影响电力系统的可靠性。

由于输电线路分布点多、面广,绝大部分远离城镇,所处地形复杂,自然环境恶劣,且电力线及杆塔附件长期暴露在野外,会受到持续的机械张力、电气闪络、材料老化的影响而产生断股、磨损、腐蚀等损伤,如不及时修复更换,原来微小的破损和缺陷就可能扩大,最终导致严重事故,造成大面积停电,从而造成极大的经济损失和严重的社会影响。

所以,必须对输电线路进行定期巡视检查,随时掌握和了解输电线路的运行情况以及线路周围环境和线路保护区的变化情况,以便及时发现和消除隐患,预防事故的发生,确保供电安全。

目前,对输电线路的巡检主要采用两种方法,即地面人工目测法和直升飞机航测法。

前者的巡检精度低,劳动强度大,且存在巡检盲区。

部分地区大雪封山时,车辆和行人无法进入(如图1.1所示);在深山还有野兽出没,这给巡视人员带来了很大的安全隐患;后者则存在飞行安全隐患且巡线费用昂贵(如图1.2所示)。

如果用直升机巡视替代地面巡视,则每100公里1年巡视费用同塔双回线需217.92万元(单回线136万元)。

如果用直升机在整个东北电网覆盖地区巡视则需超过5000万元。

费用过于昂贵,直接限制了直升机巡视的广泛推广。

由于巡线机器人可以克服上述缺陷,因此,巡线机器人已成为特种机器领域的一个研究热点。

巡线机器人不仅可以减轻工人巡线的劳动强度,降低高压输电的运行维护成本,还可以提高巡检作业的质量和科学管理技术水平,对于增强电力生产自动化综合能力,创造更高的经济效益和社会效益都具有重要意义。

巡线机器人悬挂于架空避雷线上,并以此为行驶作业路径,通过自动控制方式完成输电线路巡检作业,及对线路的机械电气故障,包括绝缘子劣化和污秽、导线的机械破损、连接金具机械松脱等故障进行检测。

其特殊的作业环境要求机器人能够沿输电导线全程运行,包括沿输电导线的直线段和耐张线段实现滚动爬行,跨越及避让悬垂线夹、悬垂绝缘子、防振锤、耐张线夹等结构型障碍物。

因此,机器人的本体设计是整机设计中一个相当重要的部分,需经过多次反复才能完成;在进行机器人结构分析和设计时,需要建立一定的实验环境(导线物理模型、障碍物等),对样机进行多次实验以检验其是否能达到预期的目标,这就导致其设计的周期长、设计效率低以及改型工作量大等缺点。

此外,样机的单机制造增加了成本。

在竞争的市场条件下,基于物理样机的设计验证过程严重地制约了产品质量的提高、成本的降低及市场推广应用。

然而,利用仿真技术可以方便地建立机器人的虚拟样机模型。

在设计之初,就可以实现对整个系统的运动分析、动力分析、载荷及应力分析等,可大大提高机器人本体设计的质量和效率。

而且,仿真软件的应用可以使设计更为优化,即在计算机上修改设计缺陷,仿真试验不同的设计方案,对整个系统进行不断改进,直至获得最优设计方案[]1。

同时,通过计算机仿真可以代替己有的物理样机进行各种状态的仿真分析,降低物理样机现场实验的风险。

利用仿真数据对模型进行修改,综合仿真数据与理论数据对所设计的虚拟样机性能做出准确的评价及提出建议。

本文将仿真技术引入到巡线机器人机构、运动学分析中,为研究巡线机器人作业性能及运动学特性,从虚拟样机的角度,提供了一定的参考依据。

本文所建立的巡线机器人全参数化模型,可以通过实验数据对其进行修正,从而为机构的设计优化、路径规划等做出铺垫。

§1.2架空线路巡线机器人与机器人仿真文献综述1.2.1架空线路巡线机器人研究概况国外巡线机器人的研究始于20世纪80年代末,日本、加拿大、美国等发达国家先后开展了巡线机器人的研究工作。

1988年,东京电力公司的Swada等人研制了光纤复合架空地线(OPGW)巡线移动机器人[]2,如图1.3所示。

该机器人利用一对驱动轮和一对夹持轮沿地线爬行,能跨越地线上防振锤、螺旋减震器等障碍物。

遇到杆塔时,机器人采用仿人攀援机理,先展开携带的弧形手臂,手臂两端勾住线塔两侧的地线,构成一个导轨,然后本体顺着导轨滑到线塔的另一侧;待机器人夹持轮抱紧线塔另一侧的地线后,将弧形手臂折叠收起,以备下次使用。

机器人运动控制有粗略和精确定位两种模式,粗略控制是把线塔和地线的资料数据(线塔的高度、位置、电线长度、线路上附件数量等)预先编制好程序输入机器人,据此控制机器人的行走和越障;精确定位控制则根据传感器反馈信息进行控制。

机器人携带的损伤探测单元采用涡流分析方法探测光纤复合架空地线的损伤情况,并把探测数据记录到磁带上。

但因其质量过大,达到100kg,而不能推广应用。

加拿大魁北克水电研究院的Serge Montambault等人在2000年开始了HQLineROVer遥控小车(见图1.4)的研制工作[]4,3,遥控小车起初用于线路巡检、维护等多用途移动平台。

第三代原型机构紧凑,仅重25kg,驱动力大,抗电磁干扰能力强,能爬52度的斜坡,通信距离可达1000m,小车采用灵活的模块化结构,安装不同的工作头即可完成架空线视觉和红外检查、压接头状态评估、导线和地线更换、导线清污和除冰等带电作业,已在工作电流为800A的315kV电力线上进行了多次现场测试,但是HQ LineROV er没有越障能力,只能在两线塔间的电力线上工作。

美国TRC公司1999年研制了一台悬臂巡线机器人原型,如图1.5所示。

它能沿架空导线长距离爬行,执行电晕损耗、绝缘子、结合点、压接头等视觉检查任务,对探测到的线路故障数据预处理后,传送给地面人员。

当机器人遇到杆塔时,利用手臂采用仿人攀援的方法从侧面越过杆塔。

其缺点是无法攀爬30度以上的斜坡而不能广泛应用。

文献[]6中,介绍了工作于66kV光纤架空地线,能够跨越防振锤和线夹的机器人。

文献[]7给出了一种新型移动机器人机构,由双臂、四套执行机构和手爪构成,该机器人能够沿架空地线行走,并且能够跨越杆塔。

文献[]8给出了一种能够沿架空地线行走并且跨越防振锤、杆塔、线夹等障碍物的移动机器人。

但上述机器人都具有18个以上的自由度,导致功耗过高而不能应用到实际工作中[]9。

图1.6是中国科学院沈阳自动化研究所研制出的具有自主知识产权的超高压输电线路巡检机器人,并于2006年4月12日与锦州超高压局合作开展了现场带电巡检试验,在其所管辖的500kV超高压输电线(东辽二线)上成功地完成了沿线行走,但没有越障能力。

综合国内外对于巡线机器人的研究情况,当代巡线机器人的研究主要集中于以下几个方面[]11,10:(1)机器人结构机器人机械结构形式的选型和设计,是根据实际需要进行的。

在机器人机构方面,结合机器人在各个领域及各种场合的应用,研究人员开展了丰富而富有创造性的工作。

但大多数仍处于实验阶段,而轮式机器人由于其控制简单、运动稳定和能源利用率高等特点,正在向实用化迅速发展[]12。

(2)运动控制技术稳健的运动控制技术是移动机器人整体性能的基础,由于移动机器人本身是一个非完整约束系统,是一个欠驱动的零漂移的动力学系统,因此,该系统不能通过连续可微的时不变的状态反馈加以镇定。

为此,通过时变、不连续控制以及混合策略,根据动力学模型和运动学模型,建立合理的反馈控制律,实现车速和转向的自动控制,以及不同工作状态之间的平稳过渡,是该项技术的核心内容。

(3)路径规划技术该技术主要包括基于地理信息的全局路径规划技术和基于传感信息的局部路径规划技术。

由于自主式移动机器人在地面上行驶,必须避开它无法通过的或对其安全行驶构成威胁的障碍物或区域,因此局部路径规划,尤其是复杂环境下的路径规划问题,显得更为重要。

(4)实时视觉技术该技术主要涉及到视觉信息的实时采集、预处理、特征提取和模式识别。

而且,视觉信息处理的能力、处理速度、处理的可靠性和准确性是决定智能机器人整体性能的决定性因素。

(5)定位和导航技术该技术是现代轮式移动机器人研制所急需的关键技术,也是下一代无人战车的技术基础。

位置的测量可以分为相对位置测量和绝对位置测量,测量方法有里程计、惯性导航、主动灯塔、磁罗盘、全球定位系统、地图模型匹配和自然路标导航等。

(6)多传感集成和数据融合技术自主式移动机器人采用测距技术,GPS定位技术和小型陀螺仪技术等多种传感技术来采集不同类型的环境信息。

因此,准确地处理和分析不同传感器采集到的信息,用于对所处环境作出准确可靠的描述并据此作出正确的决策和控制,是多传感集成和数据融合研究的任务。

(7)检测技术一种是可见光检测方法,采用高分辨率摄像机摄取目标图像,一般能发现架空线大部分表面故障现象,精度和准确度取决于图像质量。

如何让巡线机器人自主控制携带的摄像设备,捕捉特定目标,获取多视角、高清晰度目标图像是关键;另一种是红外探测技术,当输电导线存在诸如导线断股、绝缘子破损等故障时,故障点附近会出现局部温升,产生热辐射。

这些故障难以通过视觉检查发现,我们可以采用红外探测技术加以弥补。

具体来说,就是热成像技术,这是一种广泛用于输变电系统的故障探测技术,可以摄取表面温度超过周围环境温度的异常温升点的红外光谱图像,然后根据图像,人工或自动判读可能的故障器件。

(8)高性能计算技术在移动机器人的早期研究工作中,专用硬件结构为多数研究者所采用,这是因为当时市场上的通用硬件不能满足诸如实时图像处理所需的计算能力。

近年来,随着计算机计算能力的迅猛提高,研究者们开始采用通用处理器来构建机器人系统。

目前用于移动机器人的硬件结构多数采用一个高速通用处理器加上几个专用板卡或芯片(用于颜色查表、模板匹配或数学形态学计算),或者通过实验确定算法和硬件原型后,利用嵌入式的系统来缩小体积,达到优化的性能。

(9)无线通信与因特网技术这两项技术可以实现多机器人之间的通信和信息共享,以及机器人与外部的联系。

1.2.2机器人仿真简介仿真是以相似性原理、控制论、信息技术及相关领域的有关知识为基础,以计算机和各种专用物理设备为工具,采用系统模型对真实系统进行试验研究的一门综合性技术。

它利用物理或数学方法来建立模型,类比模拟现实过程或者建立假想系统,以寻求过程的规律,研究系统的动态特性,从而达到认识和改造实际系统的目的。

计算机仿真[]15是在研究系统过程中根据相似原理,利用计算机来逼真模拟研究对象。

研究对象可以是实际的系统,也可以是设想中的系统,是将研究对象进行数学描述、建模编程,且在计算机中允许实现。

它不怕破坏、易修改、可重用。

计算机仿真可以用于研制产品或设计系统的全过程中,包括方案论证、技术指标确定、设计分析、生产制造、试验测试、维护训练、故障处理等各个阶段。

机器人计算机仿真具有以下意义:1)开发前期对设计思想论证和评优,包括对各种方案的运动学及动力学特性进行评估;2)准确的动力学模型为机器人控制提供参考依据;3)最终设计的产品进行性能校核,包括检验机器人能否完成预定目标,及对其运行状况进行评价;4)有效的仿真模型还可以用来对最终产品性能进行跟踪、故障预测、诊断等。

相关文档
最新文档