机械原理大作业凸轮设计
机械原理大作业凸轮

机械原理大作业二题目:凸轮机构设计19班号: 1408301学号: 1140830118姓名:高奎教师:焦映厚完成时间: 2016.6.11.从动件位移,速度,加速度图syms fai1fai2fai3=pi/3:0.01:8/9*pi;fai4=4/3*pi:0.01:2*pi;omiga=1;h=25;fai1=0:0.01:pi/3;fai2=160/180*pi:0.01:240/180*pi;s1=h*(fai1*3/pi-1/(2*pi)*sin(360/60*fai1));s2=h/2*(1+cos(180/80*(fai2-160/180*pi)));figure(1);subplot(3,1,1);subs(s1,'fai1',fai1);subs(s2,'fai2',fai2);plot(fai1,s1);hold on;plot(fai2,s2);plot(fai3,25);plot(fai4,0);xlabel('凸轮转角(rad)');ylabel('位移(mm)');title('位移图');v1=h*omiga*3/pi*(1-cos(360/60*fai1));v2=-h*omiga*180/160*sin(180/80*(fai2-160/180*pi));subplot(3,1,2);plot(fai1,v1,'g');hold on;plot(fai2,v2,'g');plot(fai3,0,'g');plot(fai4,0,'g');xlabel('凸轮转角(rad)');ylabel('速度(mm/s)');title('速度图');a1=2*pi*h*omiga^2/((60/180*pi)^2)*sin(360/60*fai1);a2=-(180/80)^2/2*h*omiga^2*cos(180/80*(fai2-160/180*pi)); subplot(3,1,3);plot(fai1,a1,'r');hold on;plot(fai2,a2,'r');plot(fai3,0,'r');plot(fai4,0,'r');xlabel('凸轮转角(rad)');ylabel('加速度(mm/s^2)');title('加速度图');2.类速度-位移图x1=60;t1=100;x2=80;t2=120;h=25;x1=x1*pi/180;x2=x2*pi/180;t1=t1*pi/180;t2=t2*pi/180; x= 0:0.001:60*pi/180;%升程s = h*(x/x1-sin(2*pi*x/x1)/(2*pi));k =-h*(1-cos(2*pi*x/x1))/x1;plot(k,s,'r'),hold on;x=160*pi/180:0.001:240*pi/180;%回程s = h*(1+cos(pi*(x-(x1+t1))/x2))/2;k = pi*h*sin(pi*(x-(x1+t1))/x2)/(2*x2);plot(k,s,'r'),hold on;%回程切线for i=-3.9:1:-3.9;f=@(k)k*tan(20/180*pi)+i;k =-50:0.1:50;s=f(k);plot(k,s),hold on;end%升程切线for i=-57:0.2:-57;f=@(k)-k*tan(55*pi/180)+i;k =-50:0.1:50;s=f(k);plot(k,s),hold on;endgrid onf=@(k)k*tan(55*pi/180);k=-50:0.1:0;s=f(k);plot(k,s);hold on;xlabel('ds/dψ');ylabel('s');title('类位移-速度图');3.压力角和曲率半径图figure(3);e=20;r0=102;s0=sqrt(r0.^2-e.^2);rs1=s0+s1;rs2=s0+s2;ang1=abs(atan((v1/omiga-e)./rs1))*180/pi; ang2=abs(atan((v2/omiga-e)./rs2))*180/pi; plot(fai1,ang1);hold on;plot(fai2,ang2);hold on;plot(fai3,9.0789);hold on;plot(fai4,11.5257);title('压力角图');h=25;t0=pi*60/180;t01=pi*80/180;ts=pi*100/180;ts1=pi*120/180;e=20;s0=100;t=0:0.001:60*pi/180;s=h*(t/t0-sin(2*pi*t/t0)/(2*pi));dx1 =(h/t0-h*cos(2*pi*t/t0)).*cos(t)-(s0+s).*sin(t)- e*cos(t); dy1=(h/t0-h*cos(2*pi*t/t0)).*sin(t)+(s0+s).*cos(t)- e*sin(t); p=sqrt(dx1.^2+dy1.^2);hold onplot(t,p);t=60*pi/180:pi/200:160*pi/180;s=h;dx2 =- sin(t).*(s + s0) - e*cos(t);dy2 =cos(t).*(s + s0) - e*sin(t);p=sqrt(dx2.^2+dy2.^2);hold onplot(t,p);t=160*pi/180:pi/200:240*pi/180;s=0.5*h*(1+cos(pi*(t-(t0+ts))/t01));dx3 =-0.5*h*pi/(2*t01)*sin((pi/t01)*(t-(t0+ts))).*cos(t)-sin(t).*(s + s0) - e*cos(t);dy3 =-0.5*h*pi/(2*t01)*sin((pi/t01)*(t-(t0+ts))).*sin(t)+ cos(t).*(s + s0) - e*sin(t);p=sqrt(dx3.^2+dy3.^2);hold onplot(t,p);t=240*pi/180:pi/200:2*pi;s=0;dx4 =- sin(t).*(s + s0) - e*cos(t);dy4 =cos(t).*(s + s0) - e*sin(t);p=sqrt(dx4.^2+dy4.^2);hold on;plot(t,p);hold off;title('曲率半径');grid on;4.凸轮理论轮廓和实际轮廓的绘制fai=0:0.01:2*pi;x1=60;t1=100;x2=80;t2=120;h=25;x1=x1.*pi./180;x2=x2.*pi./180;t1=t1.*pi./180;t2=t2.*pi./180; e=20;r0=102;s0=100;rr=20;%滚子半径x=0:pi/200:60.*pi/180;s = h.*(x./x1-sin(2.*pi.*x./x1)./(2.*pi));X1=(s0+s).*cos(x)-e.*sin(x);Y1=(s0+s).*sin(x)+e.*cos(x);X11=X1-(rr.*(cos(x).*(s + s0) - e.*sin(x)))./((sin(x).*(s + s0) + e.*cos(x)).^2 + (cos(x).*(s + s0) - e.*sin(x)).^2).^(1./2);Y11=Y1-(rr.*(sin(x).*(s + s0) + e.*cos(x)))./((sin(x).*(s + s0) + e.*cos(x)).^2 + (cos(x).*(s + s0) - e.*sin(x)).^2).^(1./2);plot(X1,Y1,'r',X11,Y11,'k'),hold on;plot(e*cos(fai),e*sin(fai));plot(r0*cos(fai),r0*sin(fai),'--g');x=60.*pi/180:pi/200:160.*pi/180;s=25;X2=(s0+s).*cos(x)-e.*sin(x);Y2=(s0+s).*sin(x)+e.*cos(x);X22=X2-(rr.*(cos(x).*(s + s0) - e.*sin(x)))./((sin(x).*(s + s0) + e.*cos(x)).^2 + (cos(x).*(s + s0) - e.*sin(x)).^2).^(1./2);Y22=Y2-(rr.*(sin(x).*(s + s0) + e.*cos(x)))./((sin(x).*(s + s0) + e.*cos(x)).^2 + (cos(x).*(s + s0) - e.*sin(x)).^2).^(1./2);plot(X2,Y2,'r',X22,Y22,'k'),hold on;x=160.*pi/180:pi/200:240.*pi/180;s=h.*(1+cos(pi.*(x-(x1+t1))./x2))./2;X3=(s0+s).*cos(x)-e.*sin(x);Y3=(s0+s).*sin(x)+e.*cos(x);X33=X3-(rr.*(cos(x).*(s + s0) - e.*sin(x)))./((sin(x).*(s + s0) + e.*cos(x)).^2 + (cos(x).*(s + s0) - e.*sin(x)).^2).^(1./2);Y33=Y3-(rr.*(sin(x).*(s + s0) + e.*cos(x)))./((sin(x).*(s + s0) + e.*cos(x)).^2 + (cos(x).*(s + s0) - e.*sin(x)).^2).^(1./2);plot(X3,Y3,'r',X33,Y33,'k'),hold on;x=240*pi/180:pi/200:2*pi;s=0;X4=(s0+s).*cos(x)-e.*sin(x);Y4=(s0+s).*sin(x)+e.*cos(x);X44=X4-(rr.*(cos(x).*(s + s0) - e.*sin(x)))./((sin(x).*(s + s0) + e.*cos(x)).^2 + (cos(x).*(s + s0) - e.*sin(x)).^2).^(1./2);Y44=Y4-(rr.*(sin(x).*(s + s0) + e.*cos(x)))./((sin(x).*(s + s0) + e.*cos(x)).^2 + (cos(x).*(s + s0) - e.*sin(x)).^2).^(1./2);plot(X4,Y4,'r',X44,Y44,'k'),hold on;x=240:pi/200:2*pi;X4=(s0+s).*cos(x)-e.*sin(x);Y4=(s0+s).*sin(x)+e.*cos(x);plot(X4,Y4,'b');legend('凸轮实际轮廓','凸轮理论轮廓','偏距圆','基圆');grid on;axis equal;。
机械原理大作业二凸轮(完整版) 20

Harbin Institute of Technology机械原理大作业二作业名称:凸轮机构设计设计题目: 20 院系:机电工程学院班级:设计者:学号:指导教师:**设计时间: 2014年5月哈尔滨工业大学一、设计题目如图1所示直动从动件盘形凸轮机构,其原始参数见表1。
表1 凸轮机构参数升程/h mm 升程运动角 0/ϕ 升程运动规律 升程许用压力角[]/α 回程运动角 0/ϕ'回程运动规律 回城许用压力角[]/α'远休止角/s ϕ 近休止角/s ϕ' 110 120 正弦加速度 3590 正弦加速度 65 50 100二、运动方程式及运动线图本实验假设凸轮逆时针旋转。
1.确定凸轮机构推杆升程、回程运动方程(ϕ为凸轮转角,ω为凸轮角速度)。
推程(余弦加速度)(203ϕπ≤≤): 图1远休止段:当21738πϕπ≤≤时,110s h==,0v=,0a=回程(正弦加速度)(171389πϕπ≤≤):近休止段:当1329πϕπ≤≤时,0s=,0v=,0a=2.绘制推杆位移、速度、加速度线图图2三、绘制凸轮机构的ds s d ϕ-线图,并由此确定凸轮的基圆半径和偏距图3图4如图3、图4所示,在ds d ϕ轴正侧(对应于推程),以tan(90[])α-为斜率做ds s d ϕ-曲线的切线1L ,在ds d ϕ轴负侧(对应于回程),以tan(90[])α'+为斜率做ds s d ϕ-曲线的切线2L ,再过点(0,0)O 做斜率为tan(90[])α+的直线3L ,则直线1L 、2L 、3L 与s 轴的夹角分别为[]α、[]α'、[]α。
显然,1L 、2L 、3L 三条直线下方的公共部分即为满足推程压力角不超过[]α和回程压力角不超过[]α'时,凸轮回转中心的可取区域。
记直线1L 与2L 的交点为12P ,直线1L 与3L 的交点为13P ,则最小基圆半径013r OP ==45.79mm ,对应的偏距e =26.27mm (点13P 到s 轴的距离),2200s r e =-=37.51mm 。
机械原理大作业2-1120810417-凸轮

机械原理大作业二课程名称:机械原理设计题目:凸轮机构设计院系:机电工程学院班级:1208104完成者:学号:1120810417指导教师:林琳刘福利设计时间:2014年6月2日哈尔滨工业大学一、设计题目如下图所示为直动从动件盘形凸轮机构,据此设计该凸轮机构:二、原始参数 序号升程升程运动角 升程运动规律 升程许用压力角 回程运动角 回程运动规律 回程许用压力角 远休止角 近休止角 15 90mm150°正弦加速度30°100°余弦加速度60°55°55°三、推杆升程方程和推杆回程方程: 在这里取ω=1rad/s. (1)推杆升程方程:650,)512sin(215690)(πφφππφφ≤≤⎥⎦⎤⎢⎣⎡-=s 650),512cos(108)(πφφφπφν≤≤-=650,512sin 2.259)(πφφπφ≤≤=a(2)推杆回程方程:36613641,)05.059cos(145)(πφππφφ≤≤⎥⎦⎤⎢⎣⎡-+=s ω36613641,)05.059sin(181)(πφππφφν≤≤⎥⎦⎤⎢⎣⎡---= 36613641),05.059cos(8.145)(≤≤--=φππφφa四、matlab 程序及曲线图像注:每一段都为完整程序,可直接运行。
1.推杆位移曲线clear allp1=0:pi/360:(5*pi/6-pi/360); w=1;s1=90*(6*p1/(5*pi)-1/(2*pi)*sin(12*p1/5)); p2=5*pi/6:pi/360:(41*pi/36-pi/360); s2=90*ones(1,length(p2));p3=41*pi/36:pi/360:(61*pi/36-pi/360); s3=45*(1+cos(9*p3/5-1*pi/20)); p4=61*pi/36:pi/360:2*pi; s4=0*p4;p=[p1,p2,p3,p4]; s=[s1,s2,s3,s4];plot(p,s)xlabel('Φ(角度)');ylabel('S(位移)'); title('推杆位移曲线');2.推杆速度曲线clear allp1=0:pi/360:(5*pi/6-pi/360);w=1;v1=108*w/pi*(1-cos(12*p1/5));p2=5*pi/6:pi/360:(41*pi/36-pi/360);v2=0*p2;p3=41*pi/36:pi/360:(61*pi/36-pi/360);v3=-81*w*sin(9*p3/5-1*pi/20);p4=61*pi/36:pi/360:2*pi;v4=0*p4;p=[p1,p2,p3,p4];v=[v1,v2,v3,v4];plot(p,v)xlabel('Φ(角度)');ylabel('V(速度)'); title('推杆速度曲线');3.推杆加速度曲线clear allp1=0:pi/360:(5*pi/6-pi/360);w=1;a1=36*36*w^2/5/pi*sin(12*p1/5);p2=5*pi/6:pi/360:(41*pi/36-pi/360);a2=0*p2p3=41*pi/36:pi/360:(61*pi/36-pi/360);a3=-18*81*w^2/10*cos(9*p3/5-1*pi/20);p4=61*pi/36:pi/360:2*pi;a4=0*p4;p=[p1,p2,p3,p4];a=[a1,a2,a3,a4];plot(p,a)xlabel('Φ(角度)');ylabel('a(加速度)'); title('推杆加速度曲线');4.凸轮机构的ds/dφ-s线图clear allp1=0:pi/360:(5*pi/6-pi/360);w=1;s1=90*(6*p1/(5*pi)-1/(2*pi)*sin(12*p1/5)); p2=5*pi/6:pi/360:(41*pi/36-pi/360);s2=90*ones(1,length(p2));p3=41*pi/36:pi/360:(61*pi/36-pi/360);s3=45*(1+cos(9*p3/5-1*pi/20));p4=61*pi/36:pi/360:2*pi;s4=0*p4;p=[p1,p2,p3,p4];s=[s1,s2,s3,s4];p1=0:pi/360:(5*pi/6-pi/360);w=1;v1=108*w/pi*(1-cos(12*p1/5));p2=5*pi/6:pi/360:(41*pi/36-pi/360);v2=0*p2;p3=41*pi/36:pi/360:(61*pi/36-pi/360);v3=-81*w*sin(9*p3/5-1*pi/20);p4=61*pi/36:pi/360:2*pi;v4=0*p4;p=[p1,p2,p3,p4]; v=[v1,v2,v3,v4]; vx=-v; hold on plot(vx,s)%直线Dtdty=-100:0.01:100; x=-69; hold onplot(x,y,'-r'); % 直线Dt’dt’ x=-100:0.01:100; y=-0; hold onplot(x,y,'-r'); grid on hold offtitle('ds/d φ-s 曲线');曲线为升程阶段的类速度-位移图,根据升程压力角与回城压力角做直线与其相切,, 其直线斜率分别为:K 1=)30150tan(+=0 K 2=)60150tan(-为∞;两直线方程为: }{0,69=-=y x进而确定凸轮偏距和基圆半径:在轴心公共许用区内取轴心位置,能够满足压力角要求,由图可得:取s0=200mm ,e=30;r0=(2002 +502)1/2=206.2mmclear allp1=0:pi/360:(5*pi/6-pi/360);w=1;s1=90*(6*p1/(5*pi)-1/(2*pi)*sin(12*p1/5));p2=5*pi/6:pi/360:(41*pi/36-pi/360);s2=90*ones(1,length(p2));p3=41*pi/36:pi/360:(61*pi/36-pi/360);s3=45*(1+cos(9*p3/5-1*pi/20));p4=61*pi/36:pi/360:2*pi;s4=0*p4;p=[p1,p2,p3,p4];s=[s1,s2,s3,s4];s0=200;e=30;x=(s0+s).*cos(p)-e*sin(p);y=(s0+s).*sin(p)+e*cos(p);plot(x,y)title('凸轮理论轮廓');6.凸轮实际轮廓工作轮廓曲率半径ρ、理论轮廓曲率半径ρ与滚子半径r三者存在如下关系aρa=ρ+r,不妨最终设定滚子半径为30mm,这时滚子与凸轮间接触应力最小,可提高凸轮寿命。
机械原理大作业-凸轮结构20

凸轮机构设计 题目要求:试用计算机辅助设计完成下列偏置直动推杆盘形凸轮机构的设计,已知数据如下各表所示。
凸轮沿逆时针方向作匀速转动。
表一 偏置直动滚子推杆盘形凸轮机构的已知参数升程/mm 升程运动角/。
升程运动规律 升程许用压力角/。
回程运动角/。
回程运动规律 回程许用压力角/。
远休止角/。
近休止角/。
70 120 余弦加速度 35 90 正弦加速度65 60 90要求:1)确定凸轮推杆的升程、回程运动方程,并绘制推杆位移、速度、加速度线图。
2)绘制凸轮机构的sd ds -ϕ线图;3)确定凸轮基圆半径和偏距;4)确定滚子半径;5)绘制凸轮理论廓线和实际廓线。
推杆运动规律:(取32w π=) 1)推程运动规律:由余弦加速度运动公式可得⎥⎦⎤⎢⎣⎡-=)cos(1211θπψh s)sin(2hw v111θπϕθπ=)cos(2h 112122θπϕθπw a = 2)回程运动规律:正弦加速度运动公式可得⎥⎦⎤⎢⎣⎡+-=)2sin(211322T h s Tθππθ ⎥⎦⎤⎢⎣⎡--=)2cos(1v322T hw θπθ )2sin(2a32222T hw θπθπ-=试中:T=)(s θθϕ+1- 经带入计算可得:s1 = 0.035*(1 - cos(1.5*x));v1=0.105/2 * w * sin(1.5 * x);a1 = 0.1575/2 * w^2 .* cos(1.5*x);s3 = 0.070*(3 - 2*z/pi + 1/(2*pi).*sin (4*z - 4* pi));v3 = -0.140/pi * w .* (1 - cos(4*z - 4* pi));a3 = 0.56 * w^2/pi .*sin(4*z - 4* pi);三 计算程序(matlab )(1)推杆位移、速度、加速度线图编程;a.位移与转角曲线w = 2*pi/3x = 0:(pi/100):(2*pi/3);s1 = 0.035*(1 - cos(1.5*x));v1=0.105/2 * w * sin(1.5 * x);a1 = 0.1575/2 * w^2 .* cos(1.5*x);y = (2*pi/3):(pi/100):(pi);s2 = 0.070;v2=0;a2 = 0;z = (pi ):(pi/100):(3*pi/2);s3 = 0.070*(3 - 2*z/pi + 1/(2*pi).*sin (4*z - 4* pi)); v3 = -0.140/pi * w .* (1 - cos(4*z - 4* pi));a3 = 0.56 * w^2/pi .*sin(4*z - 4* pi);c = (3*pi/2):(pi/100):( 2*pi);s4 = 0;v4 = 0;a4 = 0;plot(x,s1,'b',y,s2,'b',z,s3,'b',c,s4,'b')xlabel('转角/rad')ylabel('位移/m/')title('位移与转角曲线')b.速度与转角曲线w = 2*pi/3x = 0:(pi/100):(2*pi/3);s1 = 0.035*(1 - cos(1.5*x));v1=0.105/2 * w * sin(1.5 * x);a1 = 0.1575/2 * w^2 .* cos(1.5*x);y = (2*pi/3):(pi/100):(pi);s2 = 0.070;v2=0;a2 = 0;z = (pi ):(pi/100):(3*pi/2);s3 = 0.07*(3 - 2*z/pi + 1/(2*pi).*sin (4*z - 4* pi)); v3 = -0.140/pi * w .* (1 - cos(4*z - 4* pi));a3 = 0.56 * w^2/pi .*sin(4*z - 4* pi);c = (3*pi/2):(pi/100):( 2*pi);s4 = 0;v4 = 0;a4 = 0;plot(x,v1,'g',y,v2,'g',z,v3,'g ',c,v4,'g')xlabel('转角/rad')ylabel('速度/(m/s)')title('速度与转角曲线')c.加速度与位移转角曲线w = 2*pi/3x = 0:(pi/100):(2*pi/3);s1 = 0.035*(1 - cos(1.5*x));v1=0.105/2 * w * sin(1.5 * x);a1 = 0.1575/2 * w^2 .* cos(1.5*x);y = (2*pi/3):(pi/100):(pi);s2 = 0.070;v2=0;a2 = 0;z = (pi):(pi/100):(3*pi/2);s3 = 0.070*(3 - 2*z/pi + 1/(2*pi).*sin (4*z - 4* pi)); v3 = -0.140/pi * w .* (1 - cos(4*z - 4* pi));a3 = 0.56 * w^2/pi .*sin(4*z - 4* pi);c = (3*pi/2):(pi/100):( 2*pi);s4 = 0;v4 = 0;a4 = 0;plot(x,a1,'r',y,a2,'r',z,a3,'r ',c,a4,'r')xlabel('转角/rad')ylabel('加速度/(m^2/s)')title('加速度与转角曲线')(2)凸轮机构的s d -ϕds 线图编程; w = 2*pi/3x = 0:(pi/100):(2*pi/3);s1 = 35*(1 - cos(1.5*x));news1 = 35*1.5*sin(1.5*x);y = (2*pi/3):(pi/100):(pi);s2 = 70;news2 = 0;z = (pi ):(pi/100):(3*pi/2);s3=70*(3 - 2*z/pi + 1/(2*pi).*sin (4*z - 4* pi));news3 =-140/pi * w .* (1 - cos(4*z - 4* pi));c = (3*pi/2):(pi/100):( 2*pi);s4 = 0;news4 = 0;plot(news1,s1,'b',news2,s2,'b',news3,s3,'b',news4,s4,'b')xlabel('ds/dp');ylabel('(位移s/mm)')title('ds/dp 与位移s 曲线') grid(3)确定基圆半径和偏距;(4)经过对凸轮机构的s d -ϕds 线图分析确定其偏距e=17,s=70,基圆半径r0=32,,得s0=50; a.先求凸轮理论轮廓曲线,程序如下:w = 2*pi/3;s0 = 50;s = 70;e = 17;x = 0:(pi/100):(2*pi/3);x1 = (s + s0)*cos(x)-e*sin(x);y1 = (s0 + s)*sin(x) - e*cos(x);y = (2*pi/3):(pi/100):(pi);x2 = (s + s0)*cos(y)-e*sin(y);y2 = (s0 + s)*sin(y) - e*cos(y);z = (pi):(pi/100):(3*pi/2);x3 = (s + s0)*cos(z)-e*sin(z);y3 = (s0 + s)*sin(z) - e*cos(z);c = (3*pi/2):(pi/100):( 2*pi);x4 = (s + s0)*cos(c)-e*sin(c);y4 = (s0 + s)*sin(c) - e*cos(c);plot(x1,y1,'b',x2,y2,'b',x3,y3,'b',x4,y4,'b');xlabel('x/mm')ylabel('y/mm')title('理轮轮曲线')b.再通过该廓线求其最小曲率半径,程序如下:v=[];syms x1 x2 x3 x4 x5s0 = 50;e = 20;s1 = 35*(1 - cos(1.5*x1));t1 = (s1 + s0)*cos(x1)-e*sin(x1);y1 = (s0 + s1)*sin(x1) - e*cos(x1);tx1=diff(t1,x1);txx1=diff(t1,x1,2);yx1=diff(y1,x1);yxx1=diff(y1,x1,2);for xx1= 0:(pi/100):(2*pi/3);k1=subs(abs((tx1*yxx1-txx1*yx1)/(tx1^2+yx1^2)^1.5),{x1},{xx1}); v=[v,1/k1];ends2 = 70;t2 = (s2 + s0)*cos(x2)-e*sin(x2);y2 = (s0 + s2)*sin(x2) - e*cos(x2);tx2=diff(t2,x2);txx2=diff(t2,x2,2);yx2=diff(y2,x2);yxx2=diff(y2,x2,2);for xx2=(2*pi/3):(pi/100):(pi);k2=subs(abs((tx2*yxx2-txx2*yx2)/(tx2^2+yx2^2)^1.5),{x2},{xx2}); v=[v,1/k2];ends3 = 110*(10/3- 2*x3/pi + 1/(2*pi).*sin (4*x3 - 14* pi/3));t3 = (s3 + s0)*cos(x3)-e*sin(x3);y3 = (s0 + s3)*sin(x3) - e*cos(x3);tx3=diff(t3,x3);txx3=diff(t3,x3,2);yx3=diff(y3,x3);yxx3=diff(y3,x3,2);for xx3=(pi):(pi/100):(3*pi/2);k3=subs(abs((tx3*yxx3-txx3*yx3)/(tx3^2+yx3^2)^1.5),{x3},{xx3}); v=[v,1/k3];ends4 = 0;t4 = (s4 + s0)*cos(x4)-e*sin(x4);y4 = (s0 + s4)*sin(x4) - e*cos(x4);tx4=diff(t4,x4);txx4=diff(t4,x4,2);yx4=diff(y4,x4);yxx4=diff(y4,x4,2);for xx4=(3*pi/2):(pi/100):( 2*pi);k4=subs(abs((tx4*yxx4-txx4*yx4)/(tx4^2+yx4^2)^1.5),{x4},{xx4}); v=[v,1/k4];endmin(v)(3)凸轮的理论廓线和其包络线;由基圆半径确定其滚子的半径为r=8mm,其他参数保持不变;a.凸轮的理论廓线w = 2*pi/3;s0 = 50;s = 70;e = 17;x = 0:(pi/100):(2*pi/3);x1 = (s + s0)*cos(x)-e*sin(x);y1 = (s0 + s)*sin(x) - e*cos(x);y = (2*pi/3):(pi/100):(pi);x2 = (s + s0)*cos(y)-e*sin(y);y2 = (s0 + s)*sin(y) - e*cos(y);z = (pi ):(pi/100):(3*pi/2);x3 = (s + s0)*cos(z)-e*sin(z);y3 = (s0 + s)*sin(z) - e*cos(z);c = (3*pi/2):(pi/100):( 2*pi);x4 = (s + s0)*cos(c)-e*sin(c);y4 = (s0 + s)*sin(c) - e*cos(c);plot(x1,y1,'b',x2,y2,'b',x3,y3,'b',x4,y4,'b');xlabel('x/mm')ylabel('y/mm')title('理轮轮曲线')b.凸轮的包络线w = 2*pi/3;s0 = 50;e = 17;r = 8;x = 0:(pi/100):(2*pi/3);s1 = 35*(1 - cos(1.5*x));x1 = (s1 + s0).*cos(x) - e*sin(x);y1 = (s0 + s1).*sin(x) - e*cos(x);n1 = -(35*1.5*sin(x) + s0).*sin(x) -e*cos(x);m1 = (s0 + 35*1.5*sin(x) ).*cos(x) + e*sin(x);xt1 = x1+(r*m1)./(sqrt(n1.^2+m1.^2));yt1 = y1 - (r*n1)./sqrt(m1.^2 +n1.^2);xw1 = x1 - (r*m1)./sqrt(m1.^2 +n1.^2);yw1 = y1 + (r*n1)./sqrt(m1.^2 +n1.^2);y = (2*pi/3):(pi/100):(pi);s2 = 70;x2 = (s2 + s0).*cos(y)-e*sin(y);y2 = (s0 + s2).*sin(y) - e*cos(y);n2 = -s0.*sin(y)-e*cos(y);m2 = s0 .*cos(y) + e*sin(y);xt2 = x2 + (r*m2)./sqrt(m2.^2+n2.^2);yt2 = y2 - (r*n2)./sqrt(m2.^2+n2.^2);xw2 = x2 - (r*m2)./sqrt(m2.^2+n2.^2);yw2 = y2 + (r*n2)./sqrt(m2.^2+n2.^2);z = (pi ):(pi/100):(3*pi/2);s3 = 70*(3- 2*z/pi + 1/(2*pi).*sin (4*z - 4* pi));x3 = (s3 + s0).*cos(z)-e*sin(z);y3 = (s0 + s3).*sin(z) - e*cos(z);n3 = -(140/pi *cos(4*z - 4*pi) + s0).*sin(z)-e*cos(z); m3 = (s0 + 140/pi *cos(4*z - 4*pi)).*cos(z) + e*sin(z);xt3= x3 + (r*m3)./sqrt(m3.^2+n3.^2);yt3 = y3 - (r*n3)./sqrt(m3.^2+n3.^2);xw3 = x3 -(r* m3)./sqrt(n3.^2+m3.^2);yw3 = y3 + (r*n3)./sqrt(n3.^2+m3.^2);c = (3*pi/2):(pi/100):( 2*pi);s4 = 0;x4 = (s4 + s0).*cos(c)-e*sin(c);y4 = s0 .*sin(c) - e*cos(c);n4 = - s0.*sin(c)-e*cos(c);m4 = s0 .*cos(c) + e*sin(c);xt4= x4 + (r*m4)./sqrt(m4.^2+n4.^2);yt4 = y4 - (r*n4)./sqrt(m4.^2+n4.^2);xw4 = x4 - (r*m4)./sqrt(n4.^2+m4.^2);yw4 = y4 + (r*n4)./sqrt(n4.^2+m4.^2);plot(xw1,yw1,'b',xw2,yw2,'b',xw3,yw3,'b',xw4,yw4,'b') xlabel('x/mm')ylabel('y/mm')title('凸轮的包络线')grid。
机械原理大作业凸轮结构设计

机械原理大作业(二) 作业名称:机械原理设计题目:凸轮机构设计院系: 机电工程学院班级:设计者:学号:指导教师:丁刚陈明设计时间:哈尔滨工业大学机械设计1、设计题目如图所示直动从动件盘形凸轮机构,根据其原始参数设计该凸轮。
表一:凸轮机构原始参数序号升程(mm) 升程运动角(º)升程运动规律升程许用压力角(º)回程运动角(º)回程运动规律回程许用压力角(º)远休止角(º)近休止角(º)12 80 150正弦加速度30 100 正弦加速度60 60 502、凸轮推杆运动规律(1)推杆升程运动方程S=h[φ/Φ0-sin(2πφ/Φ0)]V=hω1/Φ0[1-cos(2πφ/Φ0)]a=2πhω12sin(2πφ/Φ0)/Φ02式中:h=150,Φ0=5π/6,0<=φ<=Φ0,ω1=1(为方便计算)(2)推杆回程运动方程S=h[1-T/Φ1+sin(2πT/Φ1)/2π]V= -hω1/Φ1[1-cos(2πT/Φ1)]a=-2πhω12sin(2πT/Φ1)/Φ12式中:h=150,Φ1=5π/9,7π/6<=φ<=31π/18,T=φ-7π/63、运动线图及凸轮线图运动线图:用Matlab编程所得源程序如下:t=0:pi/500:2*pi;w1=1;h=150;leng=length(t);for m=1:leng;if t(m)<=5*pi/6S(m) = h*(t(m)/(5*pi/6)-sin(2*pi*t(m)/(5*pi/6))/(2*pi));v(m)=h*w1*(1-cos(2*pi*t(m)/(5*pi/6)))/(5*pi/6);a(m)=2*h*w1*w1*sin(2*pi*t(m)/(5*pi/6))/((5*pi/6)*(5*pi/6));% 求退程位移,速度,加速度elseift(m)<=7*pi/6S(m)=h;v(m)=0;a(m)=0;% 求远休止位移,速度,加速度elseif t(m)<=31*pi/18T(m)=t(m)-21*pi/18;S(m)=h*(1-T(m)/(5*pi/9)+sin(2*pi*T(m)/(5*pi/9))/(2*pi));v(m)=-h/(5*pi/9)*(1-cos(2*pi*T(m)/(5*pi/9)));a(m)=-2*pi*h/(5*pi/9)^2*sin(2*pi*T(m)/(5*pi/9));%求回程位移,速度,加速度elseS(m)=0;v(m)=0;a(m)=0;% 求近休止位移,速度,加速度endend推杆位移图推杆速度图推杆加速度图4、确定凸轮基圆半径与偏距在凸轮机构得ds/dφ-s线图里再作斜直线Dt dt与升程得[ds/dφ-s(φ)]曲线相切并使与纵坐标夹角为升程许用压力角[α],则D t d t线得右下方为选择凸轮轴心得许用区。
机械原理大作业凸轮机构设计

机械原理大作业凸轮机构设计一、凸轮机构概述凸轮机构是一种常见的传动机构,它通过凸轮的旋转运动,带动相应零件做直线或曲线运动。
凸轮机构具有结构简单、运动平稳、传递力矩大等优点,在各种机械设备中得到广泛应用。
二、凸轮基本结构1. 凸轮凸轮是凸起的圆柱体,通常安装在主轴上。
其表面通常为圆弧形或其他曲线形状,以便实现所需的运动规律。
2. 跟随件跟随件是与凸轮配合的零件,它们通过接触面与凸轮相互作用,并沿着规定的路径做直线或曲线运动。
跟随件可以是滑块、滚子、摇臂等。
3. 连杆连杆连接跟随件和被驱动部件,将跟随件的运动转化为被驱动部件所需的运动。
连杆可以是直杆、摇杆等。
三、凸轮机构设计要点1. 几何参数设计设计时需要确定凸轮半径、角度和曲率半径等参数,这些参数的选择将直接影响凸轮机构的运动规律和性能。
2. 运动规律设计根据被驱动部件的运动要求,选择合适的凸轮曲线形状,以实现所需的运动规律。
3. 稳定性设计在设计凸轮机构时,需要考虑其稳定性。
例如,在高速旋转时,可能会发生跟随件脱离凸轮或者产生振动等问题,因此需要采取相应措施提高稳定性。
4. 材料和制造工艺设计在材料和制造工艺方面,需要考虑凸轮机构所承受的载荷和工作环境等因素,选择合适的材料和制造工艺。
四、几种常见凸轮机构及其应用1. 摇臂式凸轮机构摇臂式凸轮机构由摇臂、连杆和被驱动部件组成。
它通常用于实现直线运动或旋转运动,并且具有结构简单、运动平稳等优点。
摇臂式凸轮机构广泛应用于各种机械设备中,如发动机气门控制系统、纺织设备等。
2. 滑块式凸轮机构滑块式凸轮机构由凸轮、滑块、连杆和被驱动部件组成。
它通常用于实现直线运动,并且具有结构简单、运动平稳等优点。
滑块式凸轮机构广泛应用于各种机械设备中,如冲压设备、印刷设备等。
3. 滚子式凸轮机构滚子式凸轮机构由凸轮、滚子、连杆和被驱动部件组成。
它通常用于实现圆弧形运动,并且具有运动平稳、传递力矩大等优点。
滚子式凸轮机构广泛应用于各种机械设备中,如汽车发动机气门控制系统等。
机械原理大作业——凸轮.docx

大作业(二)凸轮机构设计题号:6班级:姓名:学号:同组者:成绩:完成时间:目录一凸轮机构题目要求 (1)二摆杆的运动规律及凸轮轮廓线方程 (2)三计算程序 (3)四运算结果及凸轮机构图 (9)4.1 第一组(A组)机构图及计算结果 (9)4.2 第二组(B组)机构图及计算结果 (14)4.3 第三组(C组)机构图及计算结果 (19)五心得体会 (24)第一组(A组) (24)第二组(B组) (24)第三组(C组) (24)六参考资料 (25)附录程序框图 (26)一凸轮机构题目要求(摆动滚子推杆盘形凸轮机构)题目要求:试用计算机辅助设计完成下列偏置直动滚子推杆盘形凸轮机构或摆动滚子推杆盘形凸轮机构的设计,已知数据如下各表所示。
凸轮沿逆时针方向作匀速转动。
表一摆动滚子推杆盘形凸轮机构的已知参数题号初选的基圆半径R0/mm机架长度Loa/mm摆杆长度Lab/mm滚子半径Rr/mm推杆摆角φ许用压力角许用最小曲率半径[ρamin][α1] [α2]A 15 60 55 10 24°35°70°0.3RrB 20 70 65 14 26°40°70°0.3RrC 22 72 68 18 28°45°65°0.35Rr 要求:1)凸轮理论轮廓和实际轮廓的坐标值2)推程和回程的最大压力角,及凸轮对应的转角3)凸轮实际轮廓曲线的最小曲率4)半径及相应凸轮转角5)基圆半径6)绘制凸轮理论廓线和实际廓线7)计算点数:N:72~120推杆运动规律:1)推程运动规律:等加速等减速运动2)回程运动规律:余弦加速度运动二摆杆的运动规律及凸轮轮廓线方程1)推程:1,运动规律:等加速等减速运动;2,轮廓线方程:A:等加速推程段设定推程加速段边界条件为:在始点处δ=0,s=0,v=0。
在终点处。
整理得:(注意:δ的变化范围为0~δ0/2。
西工大机械原理大作业2凸轮机构作业

西工大机械原理大作业2凸轮机构作业摘要:凸轮机构是机械传动中十分重要的一种机构,它通过凸轮的回转运动将直线运动或其他运动转化为需要的曲线运动。
本文将对凸轮机构的结构和工作原理进行详细介绍,并以汽车发动机中凸轮机构为例进行分析。
通过本次作业的学习,可以更好地理解和应用凸轮机构的原理。
关键词:凸轮机构、结构、工作原理、汽车发动机一、引言凸轮机构是一种将直线运动或其他运动转化为需要的曲线运动的机构。
它广泛应用于各种机械传动中,尤其在汽车发动机中扮演着重要的角色。
凸轮机构能够将发动机的气缸活塞的直线往复运动转化为曲轴的回转运动,从而实现汽缸进、排气门的开闭。
凸轮机构还广泛应用于各种机械设备中,如机床、印刷机等。
因此,对凸轮机构的学习和掌握是十分重要的。
二、凸轮机构的结构和工作原理凸轮机构主要由凸轮、凸轮轴和从动件等组成。
凸轮是一个平面上的旋转曲线,它通过与凸轮轴的配合将转动运动转化为需要的曲线运动。
从动件则是根据需要进行曲线运动的机构组成部分,如气缸活塞、机床刀架等。
凸轮的工作原理是通过其凸轮轴的旋转将自身上的凸点或凹槽与从动件相配合,从而实现曲线运动。
当凸轮轴旋转时,凸轮上的凸点或凹槽与从动件相接触,从而驱动从动件做曲线运动。
凸轮机构的运动规律可以通过凸轮的轮廓形状来确定,因此,在设计凸轮机构时,需要根据所需要的运动曲线来确定凸轮的形状和参数。
三、汽车发动机中的凸轮机构汽车发动机中的凸轮机构是一个非常典型的凸轮机构应用案例。
它通过凸轮的回转运动来驱动气缸活塞做往复运动,并控制气缸进、排气门的开闭。
凸轮机构通过凸轮轴上的凸点和凹槽与气门机构相连接,从而实现曲线运动。
汽车发动机中的凸轮机构一般由凸轮轴、凸轮、气门弹簧、气门和凸轮轴链条组成。
凸轮轴位于汽车发动机的上部,凸轮装在凸轮轴上,通过气门弹簧与气门相连接。
当凸轮轴旋转时,凸轮上的凸点或凹槽与气门弹簧相接触,从而控制气门的开闭,进而控制气缸的进、排气。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械原理大作业凸轮设计
本文档旨在介绍《机械原理大作业凸轮设计》的背景和目的。
凸轮设计在机械工程中具有重要
性和挑战,因此本文档将探讨凸轮设计的原理和
方法,并提供相应的示例和解释。
本文档包括以下内容:
凸轮设计的背景和意义
凸轮设计的原理和方法
凸轮设计的实例和案例分析
结论和建议
每一部分将详细阐述相关的知识和技术,旨在帮助读者理解和
应用凸轮设计的原理及方法。
请继续阅读以下各章节,以便全面了解凸轮设计的重要性和实
践应用。
凸轮的定义和作用
凸轮是一种机械元件,具有特殊形状的轮缘。
它主要用于传递运动和改变运动方向。
凸轮通常与其他机械部件,如凸轮轴和凸轮销,一起使用,以实现特定的工作任务。
凸轮的重要性和应用
凸轮在机械原理中具有重要的作用。
它被广泛应用于不同的机械系统中。
首先,凸轮在传输运动方面非常重要。
通过凸轮的特殊形状,它可以转换来自动力源的旋转运动为直线或曲线的机械运动。
这使得凸轮能够将动力传递给其他部件,实现机械装置的工作。
其次,凸轮还能够改变运动方向。
通过将凸轮与其他机械部件连接,如齿轮或连杆,可以改变运动的方向和速度。
这使得凸轮在不同机械系统中能够实现不同的功能,例如提供机械装置的正向和反向运动。
最后,凸轮还可以用于执行特定的运动模式。
通过调整凸轮的形状和轮缘的位置,可以实现不同的运动曲线和运动模式。
这为机械系统的设计师提供了更大的灵活性,以满足特定的工作要求。
总之,凸轮在机械原理中起着关键的作用。
它通过传输运动和改变运动方向,为不同机械系统的功能实现提供支持。
凸轮的设计和应用需要充分考虑机械装置的工作需求和运动特性,以确保凸轮的有效性和可靠性。
本文介绍凸轮设计的基本原则,包括凸轮外形的选择和凸轮参数的确定。
我们将讨论凸轮的轮廓曲线以及与其相关的几何特征。
此外,我们还将介绍凸轮的运动学和动力学分析,以及对凸轮进行性能评估和优化的方法。
本文以一个具体案例为例,详细介绍凸轮设计的过程。
通过该案例研究,读者可以了解凸轮设计的步骤和方法,以及可能遇到的问题和解决方案。
在凸轮设计的初步阶段,首先需要明确设计的目标和需求。
例如,根据机械设备的要求,确定凸轮的工作周期、角速度和运动轨迹等参数。
然后,根据这些参数,可以使用几何法或图形法
来进行凸轮的初步设计,确定凸轮的基本形状和尺寸。
凸轮曲线的选择和优化是凸轮设计的关键步骤之一。
凸轮曲线的选择要考虑机械系统的运动要求和性能需求。
在考虑运动要求时,需要确定凸轮曲线的类型,如简易凸轮、螺旋凸轮或滑轮凸轮等。
在考虑性能需求时,需要优化凸轮曲线的形状,以使得机械系统的运动更加平稳、精确和高效。
在凸轮设计的过程中,还需要确定凸轮的一些重要参数。
这些参数包括凸轮的基圆半径、凸轮顶点半径、凸轮顶点角度等。
这些参数的确定需要考虑机械系统的运动要求和性能需求,以及凸轮的制造和安装的可行性。
最后,凸轮设计还需要进行动力学分析,以评估凸轮系统的性能和稳定性。
动力学分析可以使用数值模拟方法或实验方法来进行。
通过动力学分析,可以预测凸轮系统的运动轨迹、力学特性和运动响应,以及凸轮与其他机械元件之间的相互作用。
通过以上案例研究,我们展示了凸轮设计的步骤和方法,并讨论了设计中可能遇到的问题和解决方案。
凸轮设计是机械原理中的重要内容,对于机械系统的运动控制和性能提升具有关键作用。
希望本文对读者在凸轮设计方面提供帮助和指导。
本文档讨论了凸轮设计在机械原理中的重要性,并提出了可能的未来研究方向。
凸轮是机械系统中常用的机械元件,广泛应用于各种机械装置和机械运动控制系统中。
凸轮设计的合理性和优化对机械系统的性能和运动特性有着重要的影响。
通过合理设计凸轮的形状、凸轮的旋转周期和凸轮与其他运动部件的互动关系,可以实现精确的运动控制和动力传输。
凸
轮设计不仅关系到机械装置的性能和效率,还直接影响到机械系统的可靠性和使用寿命。
未来的研究可以包括以下方向:
凸轮形状优化:进一步研究和优化凸轮的形状,提高凸轮的效率和精确度。
可以采用先进的数值模拟和优化算法,结合机器研究和人工智能技术,实现凸轮形状的自动化设计和优化。
凸轮与其他机械元件的互动研究:深入研究凸轮与其他机械元件(如摆杆、传动装置等)的互动关系,探索凸轮在不同机械系统中的应用和优化方法。
凸轮材料和制造技术研究:研究凸轮材料的性能和制造技术,提高凸轮的耐磨性、抗腐蚀性和使用寿命。
总结而言,凸轮设计在机械原理中起着重要的作用,对机械系统的运动控制和性能有着重要的影响。
通过进一步研究和优化凸轮设计,可以不断提高机械系统的性能和可靠性,并推动机械工程领域的发展。
总结而言,凸轮设计在机械原理中起着重要的作用,对机械系统的运动控制和性能有着重要的影响。
通过进一步研究和优化凸轮设计,可以不断提高机械系统的性能和可靠性,并推动机械工程领域的发展。