蜂鸣器驱动电路
无源蜂鸣器常规驱动电路设计

一种低成本无源蜂鸣器的设计在实际的应用中,虽然有源蜂鸣器控制简单,缺陷是成本比较高,在潮湿的环境用久了,容易损坏。
而无源蜂鸣器弥补了有源蜂鸣器缺点,但问题是无源蜂鸣器需要PWM驱动。
在系统的设计中,微控制器的PWM资源往往是比较紧张的,同时使用PWM驱动也加大了软件开发的难度。
接下来笔者将引领大家学习如何设计一个无需PWM也能驱动无源蜂鸣器的低成本电路。
1.1 无源蜂鸣器常规驱动电路图1 无源蜂鸣器常规驱动电路如图1所示,此图为无源蜂鸣器的常规驱动电路。
需要在输入端输入一定频率PWM的信号才能使蜂鸣器发声。
为了解放PWM资源,实现简单控制,必须如有源蜂鸣器一样提供一个振荡电路。
而有源蜂鸣器主要使用LC振荡,如果要实际搭建此电路,电感参数比较难控制,而且成本高。
此时,自然会想到简易的RC振荡,而由三极管构成的RC多谐振荡电路显然是一个不错的选择。
1.2 三极管多谐振荡电路图2 三极管多谐振荡电路三极管多谐振荡的通用电路如图2所示。
这个电路起振的原理主要是通过电阻与电容的充放电使三极管交替导通。
首先,在电路上电时,分别通过R1与R4对电容C1与C2进行充电。
由于三极管元件的参数不可能完全一致,可以假设三极管Q1首先饱和导通,由于电容两端的电压不能突变,Q2的B极此时变成负压,Q2截止,Vo端输出高电平;C1通过R2进行充电,当C2的电位使BE极正向偏置时,Q2导通,Vo端输出低电平;同理C2电容两端电压不能突变,Q1的B极电压变为负压,此时Q1截止。
这样循环往复,使在Vo端输,一定频率的方波信号。
如图3所示,笔者使用示波器截取了Q1与Q2的B极和E极的波形,可以发现与上面的分析是吻合的。
图3 多谐振荡电路充放电波形从以上的分析可以看出,Vo的输出信号频率受到R2与C1,R3与C2充放电速度的控制。
假设,以Q2的C极作为信号的输出,R2与C1的充电时间T1决定了输出信号高电平时间,而R3与C2的充电时间T2决定了信号输出低电平时间。
蜂鸣器的驱动电路设计及原理分析.pdf

蜂鸣器的驱动电路设计及原理分析
蜂鸣器的驱动电路设计及原理分析
以下介绍的几种蜂鸣器驱动电路是针对单片机I/O口的驱动电路,适用于现行的压电式蜂鸣器。
压电式蜂鸣器主要由多谐振荡器、压电蜂鸣片、阻抗匹配器及共鸣箱、外壳等组成。
当接通电源后(1.5~15V直流工作电压),多谐振荡器起振,输出1.5~2.5kH Z的音频信号,阻抗匹配器推动压电蜂鸣片发声。
一、以一个9012驱动P1.0口方波
测试程序:
二、双端口驱动
电路原理图
工作原理简介
BUZ1、BUZ2两端口均接单片机的I/O口或单片机的蜂鸣器驱动口。
BUZ1端口为“高频口”(相对BUZ2而言),其脉冲电压频率一般为几KHz,具体频率依蜂鸣器需发出的音乐声来调整;
BUZ2端口为“低频口”,其电压周期相对较长一些,一般为数十ms至数百ms。
工作时,两端口输出电压脉冲驱动三极管Q2和Q3,当BUZ2端口出现高电平时,
三极管Q3导通, +12V电压经Q4三极管给蜂鸣器提供工作电压,同时为电容E7充电; BUZ2端口电平变低时,Q3和Q4三极管均截止,+12V电压被隔离,此时
已充满电的电容E7放电,为蜂鸣器工作提供能量。
蜂鸣器的工作状态直接由三极管Q2决定,当BUZ1端口出现高电平时,三极管Q2导通,蜂鸣器工作,BUZ1
端口电平变低时,Q2三极管截止,蜂鸣器停止工作。
蜂鸣器的通电频率与内部的谐振频率(固定)相互作用就产生我们所需的音乐声。
——本站文章均来自本公司工程师整理或用户来稿或网络,如果我们转载的文章中有涉及或侵犯您的相关权益,请即时与我们取得联系。
邮件内容中请注明文章所在网址及文章标题,我们会即时处理或删除,感谢您的合作!。
四款蜂鸣器驱动电路原理图

四款蜂鸣器驱动电路原理图
本文主要讲了五款蜂鸣器驱动电路原理图,下面就来学习学习吧。
蜂鸣器驱动电路图一:
典型的蜂鸣器驱动电路,蜂鸣器驱动电路一般包含:一个三极管、一个蜂
鸣器、一个续流二极管、一个滤波电容。
1、蜂鸣器:发声元件,在其两端施加直流电压(有源蜂鸣器)或者方波(无源蜂鸣器)就可以发声,其主要参数是外形尺寸、发声方向、工作电压、工作频率、工作电流、驱动方式(直流方波)等。
这些都需要根据需要进行
选择。
2、续流二极管:蜂鸣器本质上是一个感性元件,其电流不能瞬变,因此必须有一个续流二极管提供续流。
否则,在蜂鸣器两端会产生几十伏的尖峰电压,可能损坏三极管,并干扰整个电路系统的其他部分。
3、滤波电容:作用是滤波,滤除蜂鸣器电流对其他部分的影响,也可以改善电源的交流阻抗,如果可能,最好是再并联一个220uF的电解电容。
4、三极管:起开关作用,其基极的高电平使三极管饱和导通,使蜂鸣器发声;而基极低电平则使三极管关闭,蜂鸣器停止发声。
蜂鸣器驱动电路图二:
根据下面四幅图分析可以看出图1和图3采用的是NPN型三极管驱动,而图2和图4采用的是PNP型三极管驱动。
若采用图1和图3的方法进行驱动,蜂鸣器工作电压只要不超过管子的极限参数即可随时取用。
像图1,采用这种方法驱动蜂鸣器,再用编程控制器的I/O口进行控制,蜂鸣器都能响;但相对于图3电路图而言,采用图1方式接,蜂鸣器没有图3。
有源蜂鸣器驱动电路制作方法

有源蜂鸣器驱动电路制作方法“哇塞,这是啥声音这么好听?”我好奇地问旁边的小伙伴。
小伙伴神秘兮兮地说:“嘿嘿,这是我用有源蜂鸣器做的小玩意儿发出来的声音。
”啥是有源蜂鸣器啊?我满脑袋问号。
小伙伴得意地说:“这你都不知道?有源蜂鸣器可厉害啦,能发出各种声音呢。
”
那有源蜂鸣器的驱动电路咋做呢?首先得准备好材料,像电池啦、电阻啦、三极管啦啥的。
这就跟搭积木似的,得先把零件找齐喽。
然后把这些零件按照一定的顺序连接起来。
电池的正负极可不能接错了,要不然可就完蛋啦。
三极管就像个小开关,控制着电流的通断。
电阻呢,就像个小卫士,保护着电路不会被烧坏。
有源蜂鸣器的驱动电路都能用在啥地方呢?比如说,可以做个小闹钟,每天早上叫你起床。
还可以做个报警器,有坏人来了就响起来。
这多酷啊!就像超级英雄有了自己的武器一样。
我记得有一次,我们参加科技小制作比赛。
有个同学就用有源蜂鸣器做了一个会唱歌的小机器人,可厉害啦。
那声音,老好听了。
大家都围着他的小机器人,羡慕得不得了。
所以说啊,有源蜂鸣器的驱动电路可好玩啦。
只要你有耐心,有创意,
就能做出很多好玩的东西。
咱可不能错过这么好玩的事儿,赶紧动手试试吧。
有源蜂鸣器驱动电路原理

有源蜂鸣器驱动电路原理一、蜂鸣器究竟是个啥?说到蜂鸣器,很多人首先会想到的就是那种“嗡嗡嗡”地响个不停的声音。
你要是打开一些电器,像是微波炉、空调,或者那些电子玩具,往往能听到那种让人又爱又恨的声音。
对了,这种声音就是蜂鸣器发出来的。
蜂鸣器分为两种,一种是有源的,另一种是无源的。
今天咱聊的就是有源蜂鸣器。
简单来说,有源蜂鸣器自带“动力”,它本身就可以发声,不需要你再外接什么音源或者复杂的驱动电路。
咱们先从最基础的搞起,什么是有源蜂鸣器。
顾名思义,这种蜂鸣器里头自带了一个小小的发声单元,通常是一个压电元件。
也就是说,只要给它一个合适的电压,它就会开始震动,进而发出声音来。
这就像你给了它“动力”,它便开启了“嗡嗡嗡”模式。
这个发出的声音是固定的,并不会像无源蜂鸣器那样需要外部信号来控制音调。
二、有源蜂鸣器如何工作?说到这里,可能有人会问了:“那有源蜂鸣器到底是怎么工作的呢?它的电路又是怎么控制的?”嗯,别急,我慢慢给你捋一捋。
你知道吗?有源蜂鸣器内部其实是有一个非常简单的小电路的。
你把电源一接上,它内部的电路就会立刻激活,然后让蜂鸣器开始工作。
你不需要再去调整什么电流、电压,只要电源给够了,它就能自动开始发声。
这就是“有源”的秘密。
有源蜂鸣器的驱动电路其实没什么复杂的地方。
我们常见的驱动电路通常是一个简单的开关电路,里面有个小晶体管或者集成电路(IC)来控制电流的开关。
你可以把它想象成一个小小的“守门员”,一旦电压合适,它就把电流打开,蜂鸣器立马响起来。
如果你想让它停止发声,就把电源切断,蜂鸣器自然就安静了下来。
最简单的驱动电路,实际上就只是一个开关电路,控制着电源的开和关,给蜂鸣器提供电压。
这种电路的优势在于,它非常简洁,结构简单,操作方便,几乎不需要太多的调试。
它像是一根“指挥棒”,一挥,蜂鸣器就开始发出清脆的声音来。
再简单不过了。
三、有源蜂鸣器驱动电路的设计要点有源蜂鸣器的驱动电路设计其实非常讲究。
蜂鸣器驱动电路

蜂鸣器驱动电路蜂鸣器是电路设计中常用的器件,广泛用于工业控制报警、机房监控、门禁控制、计算机等电子产品作预警发声器件,驱动电路也非常简单,然而很多人在设计时往往随意设计,导致实际电路中蜂鸣器不发声、轻微发声和乱发声的情况发生。
下面就 3.3V NPN 三极管驱动有源蜂鸣器设计,从实际产品中分析电路设计存在的问题,提出电路的改进方案,使读者能从小小的蜂鸣器电路中学会分析和改进电路的方法,从而设计出更优秀的产品,达到抛砖引玉的效果。
常见错误接法上图为典型的错误接法,当 BUZZER 端输入高电平时蜂鸣器不响或响声太小。
当 I/O 口为高电平时,基极电压为 3.3/4.7*3.3V≈2.3V,由于三极管的压降 0.6~0.7V,则三极管射极电压为2.3-0.7=1.6V,驱动电压太低导致蜂鸣器无法驱动或者响声很小。
上图为第二种典型的错误接法,由于上拉电阻R2,BUZZER 端在输出低电平时,由于电阻R1和R2的分压作用,三极管不能可靠关断。
上图为第三种错误接法,三极管的高电平门槛电压就只有 0.7V,即在 BUZZER 端输入压只要超过0.7V就有可能使三极管导通,显然0.7V的门槛电压对于数字电路来说太低了,电磁干扰的环境下,很容易造成蜂鸣器鸣叫。
上图为第四种错误接法,当CPU的GPIO管脚存在内部下拉时,由于 I/O 口存在输入阻抗,也可能导致三极管不能可靠关断,而且和图3一样BUZZER端输入电压只要超过0.7V就有可能使三极管导通。
以上几种用法我觉得也不能说是完全不行,对于器件的各种参数要求会比较局限,不利于器件选型,抗干扰性能也比较差。
NPN三极管控制有源蜂鸣器常规设计上图为通用有源蜂鸣器的驱动电路。
电阻R1为限流电阻,防止流过基极电流过大损坏三极管。
电阻R2有着重要的作用,第一个作用:R2 相当于基极的下拉电阻。
如果A端被悬空则由于R2的存在能够使三极管保持在可靠的关断状态,如果删除R2则当BUZZER输入端悬空时则易受到干扰而可能导致三极管状态发生意外翻转或进入不期望的放大状态,造成蜂鸣器意外发声。
蜂鸣器驱动电路图大全(五款蜂鸣器驱动电路原理图)

蜂鸣器驱动电路图大全(五款蜂鸣器驱动电路原理图)蜂鸣器驱动电路图一:典型的蜂鸣器驱动电路,蜂鸣器驱动电路一般包含:一个三极管、一个蜂鸣器、一个续流二极管、一个滤波电容。
1、蜂鸣器:发声元件,在其两端施加直流电压(有源蜂鸣器)或者方波(无源蜂鸣器)就可以发声,其主要参数是外形尺寸、发声方向、工作电压、工作频率、工作电流、驱动方式(直流方波)等。
这些都需要根据需要进行选择。
2、续流二极管:蜂鸣器本质上是一个感性元件,其电流不能瞬变,因此必须有一个续流二极管提供续流。
否则,在蜂鸣器两端会产生几十伏的尖峰电压,可能损坏三极管,并干扰整个电路系统的其他部分。
3、滤波电容:作用是滤波,滤除蜂鸣器电流对其他部分的影响,也可以改善电源的交流阻抗,如果可能,最好是再并联一个220uF的电解电容。
4、三极管:起开关作用,其基极的高电平使三极管饱和导通,使蜂鸣器发声;而基极低电平则使三极管关闭,蜂鸣器停止发声。
蜂鸣器驱动电路图二:根据下面四幅图分析可以看出图1和图3采用的是NPN型三极管驱动,而图2和图4采用的是PNP型三极管驱动。
若采用图1和图3的方法进行驱动,蜂鸣器工作电压只要不超过管子的极限参数即可随时取用。
像图1,采用这种方法驱动蜂鸣器,再用编程控制器的I/O口进行控制,蜂鸣器都能响;但相对于图3电路图而言,采用图1方式接,蜂鸣器没有图3响。
如图3,采用这种方法驱动蜂鸣器,只能使用P/O口(P/0由于内部没有上拉电阻,所以要在电路板上外接1K 的上拉电阻,而其他I/O口内部都有上拉电阻)控制,蜂鸣器才会响,而且声音要比图1大;若采用其他I/O口,虽然蜂鸣器两侧电压能达到4V左右,但是电流却只有1~2mA,根本无法驱动蜂鸣器发声。
这个原因在于,当采用其他I/O(内部有上拉电阻)控制时,通过测该口的电平会发现是低电平,可由电路可以分析出,蜂鸣器驱动是应该以高电平驱动的,出现这种原因很大的可能是B极拉低了电平值,导致电路根本无法正常工作。
蜂鸣器驱动电路图解

蜂鸣器驱动电路图解蜂鸣器是一种一体化结构的电子讯响器,采用直流电压供电,广泛应用于计算机、打印机、复印机、报警器、电子玩具、汽车电子设备、电话机、定时器等电子产品中作发声器件。
蜂鸣器主要分为压电式蜂鸣器和电磁式蜂鸣器两种类型。
蜂鸣器在电路中用字母“H”或“HA”(旧标准用“FM”、“ZZG”、“LB”、“JD”等)表示。
上面是从周立功的iMX283开发板上载下的电路,既可以是有源也可以是无源蜂鸣器。
来分析下:计算下各处的电流(S9013的β=120,设蜂鸣器电流15mA):输入为高电平的门槛电压计算为:R1起到了提供啊门槛电压的作用。
有源蜂鸣器和无源蜂鸣器的驱动电路区别主要在于无源蜂鸣器本质上是一个感性元件,其电流不能瞬变,因此必须有一个续流二极管D1提供续流。
否则,在蜂鸣器两端会有反向感应电动势,产生几十伏的尖峰电压,可能损坏驱动三极管,并干扰整个电路系统的其它部分。
而如果电路中工作电压较大,要使用耐压值较大的二极管,而如果电路工作频率高,则要选用高速的二极管设计这种电路的基本路子是:确定负载(蜂鸣器10mA~80mA)电流和输入门槛电压。
依据1中的方法计算获得R1与R2的值。
有源蜂鸣器工作原理有源蜂鸣器是靠压电效应的原理来发声的,压电材料,一般常见的是各种压电陶瓷。
这种材料的特别之处在于,当电压作用于压电材料时,就会随电压和频率的变化产生机械变形。
另一方面,当振动压电陶瓷时,则会产生电荷。
就是说这种材料能把机械变形和电荷相互转化,压电式蜂鸣器里面的起振片,就是一种压电陶瓷。
如上所述,要让它振动,除了压电陶瓷本身,还需要适当大小和频率变化的电压作用于压电陶瓷。
有源蜂鸣器内部带有多谐振荡器,可以产生1.5—2.5kHZ 的电压信号。
由此有源蜂鸣器才能发声。
有源蜂鸣器广泛应用于电话、手机、电脑、空调、冰箱、微波炉/计算机、打印机、复印机、报警器、电子玩具、汽车电子设备、电话机、定时器等电子产品中作发声器件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简易自控电路大全(1)在简易自动控制电路中,将介绍一些模拟实验电路,利用一些物理现象产生的力、热、声、光、电信号,实现自动控制,以达到某种控制效果。
磁控和热控电路在磁力自动控制电路中,传感元件是干簧管,当磁铁靠近时,常开触点闭合而接通传感电路,完成位置传感作用。
能不能用干簧管开关直接控制电动机的转与停呢?玩具电动机是常用的动力装置,它能够把电能转换为机械能,可用于小电风扇转动、小离心水泵抽水等执行功能。
通常玩具直流电动机工作电压低,虽然在1.5~3V就可以启动,但起动电流较大(1~2安培),如果用触点负荷仅为几十毫安的干簧管进行开关控制,将大大缩短其使用寿命。
因此,在自动控制电路中,常使用电子开关来控制电动机的工作状态。
三极管电子开关电路见图1 。
由开关三极管VT,玩具电动机M,控制开关S,基极限流电阻器R和电源GB组成。
VT采用NPN型小功率硅管8050,其集电极最大允许电流ICM可达1.5A,以满足电动机起动电流的要求。
M选用工作电压为3V的小型直流电动机,对应电源GB亦为3V 。
VT基极限流电阻器R如何确定呢?根据三极管的电流分配作用,在基极输入一个较弱的电流IB,就可以控制集电极电流IC有较强的变化。
假设VT电流放大系数hfe≈250,电动机起动时的集电极电流IC=1.5A,经过计算,为使三极管饱和导通所需的基极电流IB≥(1500mA/250)×2=12mA。
在图1电路中,电动机空载时运转电流约为500mA,此时电源(用两节5号电池供电)电压降至2.4V,VT基极-发射极之间电压VBE≈0.9V。
根据欧姆定律,VT基极限流电阻器的电阻值R=(2.4-0.9)V/12mA≈0.13kΩ。
考虑到VT在IC 较大时,hfe要减小,电阻值R还要小一些,实取100Ω。
为使电动机更可靠地启动,R甚至可减少到51Ω。
在调试电路时,接通控制开关S,电动机应能自行启动,测量VT集电极—发射极之间电压VCE≤0.35V,说明三极管已饱和导通,三极管开关电路工作正常,否则会使VT过热而损坏。
自动灭火的热量自动控制电路见图2。
该电路是将图1中的控制开关S换成双金属复片开关ST,就成为热控电路了。
当蜡烛火焰烧烤到双金属复片时,复片趋于伸直状态,使得开关ST接通,电动机启动,带动小风扇叶片旋转,对准蜡烛吹风,自动将火焰熄灭;当双金属片冷却后,开关断开,小电风扇自动停转,完成了自动灭火的程序。
自动停车的磁力自动控制电路见图3。
开启电源开关S,玩具车启动,行驶到接进磁铁时,安装在VT基极与发射极之间的干簧管SQ闭合,将基极偏置电流短路,VT截止,电动机停止转动,保护了电动机及避免大电流放电。
光电控制电路在光电自动控制电路中,可以选用光敏电阻器做为光电传感元件。
能否将光敏电阻器直接接入图1控制开关S的位置呢?通常光敏电阻器,例如MG45有光照射时的亮阻2~10kΩ,远大于偏置电阻器R的电阻值,显然不能产生维持VT饱和导通所需强度的基极电流。
因此,需要先用一支三极管进行电流放大,再驱动开关三极管工作。
光电自动控制电路见图4。
VT1和VT2接成类似复合管电路形式,VT1的发射极电流也是VT2的基极电流,R2既是VT1的负载电阻器又是VT2的基极限流电阻器。
因此,当VT1基极输入微弱的电流(0.1mA),可以控制末级VT2较强电流——驱动电动机运转电流(500mA)的变化。
VT1选用小功率NPN型硅管9013,h fe≈200。
同前计算方法,维持两管同时饱和导通时VT1基极偏置电阻器R1约为3.3kΩ,减去光敏电阻器RG亮阻2kΩ,限流电阻器R1实取1kΩ。
光敏传感器也可以采用光敏二极管,使用时要注意极性,光敏二极管的负极接供电电源正极。
光敏二极管对控制光线有方向性选择,且灵敏度较高,也不会产生强光照射后的疲劳现象。
水位控制电路最简单的水位传感元件是采用两个电极,当水面淹没电极时,利用不纯净水的导电性使电极之间导通,但导通电阻值较大,约50kΩ,不能代替光敏电阻器直接驱动如图4所示的光控电路,需要灵敏更高的控制电路。
水位自动控制电路如图5所示。
它是在图4电路的基础上,增加了一级前置放大管VT1,在其基极输入很微弱的电流(10μA)就可以使VT1~3皆饱和导通。
控制开关S可以用大头针做成两个电极,当其被水淹没而导电时,小电动机会自行运转。
C1为旁路电容器,防止感应交流电对控制电路的干扰。
VT1选用低噪音、高增益的小功率NPN硅管9014。
根据上述电路水位控制的功能,能否设计成一个感知下雨自动关窗、自动收晾晒衣服绳索的自动控制器。
下偏置水自动控制电路见图6 。
图中,将两个电极改接在VT1下偏置,R1仍为上偏置电阻器。
当杯内水面低于两个电极时,相当于下偏置开路,R1产生的偏置电流使电动机起动。
当水位上升到淹没电极时,两个电极之间被水导通,将R1产生的偏置电流旁路一部分,使VT1~3截止,电动机停转,与图5控制效果恰好相反。
简易自控电路大全(2)自动报警电路在简易自动报警器中,常常采用蜂鸣器发声或发光二极管发光产生示警信号。
由于小型蜂鸣器驱动电流不大,简化了电路设计。
驱动蜂鸣器的三极管开关电路见图7。
HA为声响指示器,采用低电压(3V)蜂鸣器,其工作电流仅需十几个毫安。
VT选用9013,h fe≈200,偏置电阻器R为15kΩ,VT的基极电流IB约0.1mA,集电极电流IC约为10mA,此时VT已经饱和导通,其集电极—发射极之间电压V CE仅为0.05V 。
将图7电路中的控制开关S换成干簧管开关,就改造成磁控声响电路。
将图7电路中的R 减小到10kΩ,控制开关S换成光敏电阻器或光敏二极管,就成为光控声响电路。
这些电路有什么作用呢?是否可以做为保险柜防盗报警,在打开柜门时,由于磁铁离开干簧管或者保险柜外光线照射而报警。
必要时可以将磁控元件、光敏元件接到下偏置,以满足反相的控制效果。
湿度音响自动报警电路见图8。
它同图4光控电路相似,由两级三极管组成,只是元器件参数不同。
湿度报警电路需要使用对潮湿敏感的元件,可以在绝缘体上固定两个电极,当绝缘体吸水潮湿后,绝缘性能受到破坏而使电极间“漏电”,报警器示警。
如果在蜂鸣器两端并联上由发光二极管和限流电阻器串联而成的光指示信号器件,就成为湿度讯响报警电路。
当其检测到潮湿信号时,自动发出灯光和音响示警信号。
这个电路能否做为下雨、下雾或者婴儿尿布尿湿告知器。
如果怕吵醒婴儿,可以去掉蜂鸣器而只保留光指示部分。
继电器自控电路上述电路有一个共同的特点,利用三极管开关直接驱动负载——玩具电动机、讯响器等,使得自控电路执行机构的选择受到牵制,继电器电路就可以解决上述问题。
继电器电路见图9 。
继电器K选用JRC—21F等超小型弱功率电磁继电器,线圈电压选6V,消耗功率0.36W。
由于继电器线圈工作电流60mA,比玩具电动机工作电流小,比蜂鸣器、发光二极管工作电流大,因此设计电路时各元件参数介于两者之间,图中参数供参考。
在图9继电器电路中,F为衔铁,D为常闭触点,E为常开触点。
当控制开关S闭合时,继电器吸合,常开触点F-E接通,发光二极管VD1点亮,R2为限流电阻器。
图9控制开关S换成干簧管开关、双金属复片开关,就可以进行磁控和热控自动控制了。
继电器触点可以根据需要选用常开或常闭触点。
由于继电器触点与传感控制电路隔离,选用JRX型继电器,其触点可以接220V交流电,直接驱动交流电用电器。
这些简单的自动控制器有什么用途呢?比如,利用荧(日)光灯中启辉器中的双金属复片,改制成可控温度传感器,制作成简易电子恒温箱、酸奶器,甚至炕头孵化鸡蛋的过热、过冷报警器等。
简易自控电路大全(3)继电器自动控制电路如图10~12所示。
其中,图10为继电器光控电路,图11为继电器湿度控制电路,图12为继电器压力控制电路。
在图12中,BZ为压电陶瓷片,此时做为压力传感器,敲击时能够产生正、负尖顶脉冲电信号,加到控制电路输入端,二极管VD1为负尖顶脉冲电流提供通路。
电阻器R1和电容器C1组成充放电电路,以增加正向脉冲宽度,延长继电器吸合的时间。
实验时,对压电陶瓷片突然施加或减少压力时,继电器都会吸合、发光二极管点亮一次。
如果将图12改装成声控电路,还需要把压电陶瓷片声音传感器产生微弱的电信号进行放大,才能够驱动继电器电路工作。
小水塔自动供水电路通常利用水塔向用户自来水龙头供水,而水塔则需要利用水泵向贮水箱不断补充水,水多了会溢出,少了供水又会中断,这就需要水位自动控制装置。
小水塔水位自动控制电路见图13。
它由水位传感电极、控制电路、电动机(小离心水泵用)和电源等组成。
控制电路由VT1、VT2和继电器K等组成。
当水箱缺水时,水面低于B点,水位传感电极A—B、B—C之间由于没有被水淹没而开路,VT1、VT2截止,继电器呈释放状态,继电器衔铁F与常闭触点D接触,接通水泵电源GB2,小离心水泵电动机启动,向贮水箱供水。
当水位上升至A点,水位传感电极A—B之间被水淹没,产生偏置电流使得VT1、VT2导通,继电器吸合,常闭触点断开,小离心水泵停止供水。
此时,继电器衔铁F与常开触点E相触,电源通过继电器接通的常开触点F-E以及C—B之间能微弱导电的水,继续产生维持VT1、VT2导通所需的偏置电流,继电器吸合。
自控电路直到水位降至B点以下时,C—B之间开路,VT1、VT2截止,继电器释放,常闭触点接通,小离心水泵开始供水。
如此周而复始,完成水位自动控制作用。
小水塔水位自控电路线路板见图14、15(焊接面),尺寸45×33mm。
线路板可以用刀刻除敷铜板上双线之间的铜箔。
电子式水开报讯器这种新型的水开报讯器,它和其他形式的水开报讯器有所不同,其特点是测量准确,适用不同海拔高度的地区,报警声音响亮,且制作简单,静态功耗甚微,非常实用。
工作原理所谓水开就是水在一定温度时沸腾汽化,水的表面和内部发生大量的水蒸气,同时温度不再上升,这一温度称为沸点。
水的沸点在1个标准大气压下是100℃。
但沸点又与外界的压强有关,压强减小,沸点会明显降低,在地球上的某些地方,水的沸点会因大气压低而远低于100℃。
常见的电子式水开报讯器,是利用双金属片感温元件来测量水的温度,它有缺点,一是不能准确测量水的沸点;二是没有考虑大气压强的影响。
这里介绍的电子水开报讯器是利用水开时的水蒸气作为探测信号,并且气压低同样也能探测到,这与直接测量100℃的温度不同。
在这里顺便提一下,市场上已有水开哨声报讯器,但有其缺点,如壶水全灌满时,不会发声。
图1是笔者设计的电子水开报讯器电路。
IC是一块“叮咚”声音乐集成电路,在其触发端IN通过不太大的电阻(经本人测量,100kΩ以内即可),与电源正极V+相连时,会在输出端OUT输出音乐信号,此信号经三极管BG放大后推动扬声器Y发出响亮的“叮咚”音乐声。