《数据的表示和分析》单元检测(1)

合集下载

【单元卷】浙教版八年级数学下册:第3章 数据分析初步 单元质量检测卷(一)含答案与解析

【单元卷】浙教版八年级数学下册:第3章 数据分析初步 单元质量检测卷(一)含答案与解析

浙教版八年级数学下册单元质量检测卷(一)第3章数据分析初步姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,考试时间90分钟,试题共27题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.为了增强学生对新型冠状病毒的认识与防控能力,某学校组织了“抗击疫情,我们在行动”学生手抄报比赛活动.其中八年级五个班收集的作品数量(单位:幅)分别为:42,48,45,46,49,则这组数据的平均数是()A.44幅B.45幅C.46幅D.47幅2.某企业复工之后,举行了一个简单的技工比赛,参赛的五名选手在单位时间内加工零件的合格率分别为:94.3%,96.1%,94.3%,91.7%,93.5%.关于这组数据,下列说法正确的是()A.平均数是93.96% B.方差是0C.中位数是93.5% D.众数是94.3%3.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为:S甲2=0.48,S乙2=0.52,S丙2=0.56,S丁2=0.58,则成绩最稳定的是()A.甲B.乙C.丙D.丁4.一组数据6,7,9,9,9,0,3,若去掉一个数据9,则下列统计量不发生变化的是()A.平均数B.众数C.中位数D.方差5.某校为了解学生的课外阅读情况,随机抽取了一个班的学生,对他们一周的课外阅读时间进行了统计,统计数据如下表,则该班学生一周课外阅读时间的中位数和众数分别是()读书时间6小时及以下7小时8小时9小时10小时及以上学生人数 6 11 8 8 7A.8,7 B.8,8 C.8.5,8 D.8.5,76.某校射击队从甲、乙、丙、丁四人中选拔一人参加市运会射击比赛.在选拔赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:甲乙丙丁平均数/环9.7 9.5 9.5 9.7方差/环2 5.1 4.7 4.5 4.5 请你根据表中数据选一人参加比赛,最合适的人选是()A.甲B.乙C.丙D.丁7.下列说法正确的是()A.为了解长沙市中学生的睡眠情况,应该采用全面调查的方式B.一组数据1,5,3,2,3,4,8的众数和中位数都是3C.某种彩票的中奖机会是1%,则买100张这种彩票一定会中奖D.若甲组数据的方差s甲2=0.1,乙组数据的方差s乙2=0.2,则乙组数据比甲组数据稳定8.为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是()①每人乘坐地铁的月均花费最集中的区域在80~100元范围内;②每人乘坐地铁的月均花费的平均数范围是40~60元范围内;③每人乘坐地铁的月均花费的中位数在60~100元范围内;④乘坐地铁的月均花费达到80元以上的人可以享受折扣.A.①②④B.①③④C.③④D.①②9.众志成城,抗击疫情,救助重灾区.某校某小组7名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):100,45,100,40,100,60,155.下面有四个推断:①这7名同学所捐的零花钱的平均数是150;②这7名同学所捐的零花钱的中位数是100;③这7名同学所捐的零花钱的众数是100;④由这7名同学所捐的零花钱的中位数是100,可以推断该校全体同学所捐的零花钱的中位数也一定是100.所有合理推断的序号是()A.①③B.②③C.②④D.②③④10.对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用max{a,b,c}表示这三个数中最大的数,例如:M;max{﹣1,2,3}=3,max若M{4,x2,x+2}=max{4,x2,x+2};则x的值为()A.2或B.2或﹣3 C.2 D.﹣3二、填空题(本大题共8小题,每小题4分,共32分.不需写出解答过程,请把答案直接填写在横线上)11.若一组数据1,3,x,5,4,6的平均数是4,则这组数据的中位数是.12.数学期末总评成绩是将平时、期中和期末的成绩按3:3:4计算,若小红平时、期中和期末的成绩分别是90分、80分、100分,则小红一学期的数学期末总评成绩是分.13.男子跳高的10名运动员成绩如表所示:成绩/m 1.50 1.60 1.65 1.70人数 2 4 2 2根据表中信息可以获知这些运动员的平均成绩为m.14.在一场比赛中,甲、乙两名射击手的5次射击成绩统计如图所示,分别记甲、乙两人这场比赛成绩的方差为S甲2,S乙2,则S甲2S乙2(填“>”或“<”).15.某次射击练习,甲、乙二人各射靶5次,命中的环数如表,通过计算可知==7,S=0.8,S=2,所以射击成绩比较稳定的是.甲射靶环数7 8 6 8 6乙射靶环数9 5 6 7 816.为迎接五月份全县中考九年级体育测试,小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据唯一众数是13,平均数是12,那么这组数据的方差是.17.我国是世界上严重缺水的国家之一.为了倡导“节约用水从我做起”,小刚在他所在班的50名同学中,随机调查了10名同学家庭中一年的月均用水量(单位:t),并将调查结果绘成了如下的条形统计图,则这10个样本数据的平均数是,众数是,中位数是.18.某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{1,2,9}==4,min{1,2,﹣3}=﹣3,min{3,1,1}=1.请结合上述材料,解决下列问题:(1)M{(﹣2)2,22,﹣22}=;(2)若min{3﹣2x,1+3x,﹣5}=﹣5,则x的取值范围为.三、解答题(本大题共7小题,共58分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.为了增强学生的防疫意识,某校团委组织了一次“防疫知识”考试,考题共10题.考试结束后,学校团委随机抽查了20名考生的考卷,对考生的答题情况进行分析统计,发现所抽查的考卷中答对题量最少为7题,并绘制成如图所示的不完整的条形统计图,回答下列问题:(1)这20名考生每人答对题数的众数:,中位数:;(2)通过计算补全条形统计图.20.某校开展爱“我容城,创卫同行”的活动,倡议学生利用双休日在浜江公园参加评选活动,为了了解同学们劳动时间,学校随机调查了部分同学劳动的时间,并用得到的数据绘制了不完整的统计图,根据图中信息解答下列问题:(1)将条形统计图补充完整;(2)抽查的学生劳动时间的众数为中位数为.(3)已知全校学生人数为1200人,请估算该校学生参加义务劳动2小时的有多少人?21.某校七年级甲班、乙班举行一分钟投篮比赛,每班派10名学生参赛,在规定时间内进球数不少于8个为优秀学生.比赛数据的统计图表如下(数据不完整):甲班乙班1分钟投篮测试成绩统计表甲班乙班平均数 6.5 a中位数b 6方差 3.45 4.65优秀率30% c根据以上信息,解答下列问题:(1)直接写出a,b,c的值.(2)你认为哪个班的比赛成绩要好一些?请简要说明理由.22.为增强学生垃圾分类意识,推动垃圾分类进校园.某初中学校组织全校1200名学生参加了“垃圾分类知识竞赛”,为了解学生的答题情况,学校考虑采用简单随机抽样的方法抽取部分学生的成绩进行调查分析.(1)学校设计了以下三种抽样调查方案:方案一:从初一、初二、初三年级中指定部分学生成绩作为样本进行调查分析;方案二:从初一、初二年级中随机抽取部分男生成绩及在初三年级中随机抽取部分女生成绩进行调查分析;方案三:从三个年级全体学生中随机抽取部分学生成绩进行调查分析.其中抽取的样本具有代表性的方案是.(填“方案一”、“方案二”或“方案三”)(2)学校根据样本数据,绘制成下表(90分及以上为“优秀”,60分及以上为“及格”):样本容量平均分及格率优秀率最高分最低分100 93.5 100% 70% 100 80分数段统计(学生成绩记为x)分数段0≤x<80 80≤x<85 85≤x<90 90≤x<95 95≤x≤100频数0 5 25 30 40 请结合表中信息解答下列问题:①估计该校1200名学生竞赛成绩的中位数落在哪个分数段内;②估计该校1200名学生中达到“优秀”的学生总人数.23.某次数学测验中,一道题满分3分,老师评分只给整数,即得分只能为0分,1分,2分,3分.李老师为了了解学生得分情况和试题的难易情况,对初三(1)班所有学生的试题进行了分析整理,并绘制了两幅尚不完整的统计图,如图所示.小知识难度系数的计算公式为:L=,其中L为难度系数,X为样本平均数,W为试题满分值.《考试说明》指出:L在0.7以上的题为容易题;在0.4﹣0.7之间的题为中档题;L在0.2﹣0.4之间的题为较难题.解答下列问题:(1)m=,n=,并补全条形统计图;(2)在初三(1)班随机抽取一名学生的成绩,求抽中的成绩为得分众数的概率;(3)根据右侧“小知识”,通过计算判断这道题对于该班级来说,属于哪一类难度的试题?24.2019年9月,在祖国母亲70华诞即将来临之际,某校团委组织全校2000名学生参加“中国共产党党史”知识大赛.大赛结束后,为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩(成绩x取整数,最低分50分,满分100分)作为样本进行统计,制成如图不完整的统计图和如下不完整的频数分布表:频数分布表成绩x(分)频数(人)50≤x<60 1060≤x<70 3070≤x<80 4080≤x<90 n90≤x≤100 50根据所给信息,解答下列问题:(1)n=;(2)补全频数分布直方图;(3)这200名学生成绩的中位数落在哪个分数段?(4)若成绩在80分或80分以上为“优”,请你估计该校参加本次比赛的2000名学生中成绩为“优”的学生有多少人?25.我乡某校举行全体学生“定点投篮”比赛,每位学生投40个,随机抽取了部分学生的投篮结果,并绘制成如下统计图表.组别投进个数人数A0≤x<8 10B8≤x<16 15C16≤x<24 30D24≤x<32 mE32≤x<40 n根据以上信息完成下列问题.①本次抽取的学生人数为多少?②统计表中的m=.③扇形统计图中E组所占的百分比;④补全频数分布直方图.⑤扇形统计图中“C组”所对应的圆心角的度数.⑥本次比赛中投篮个数的中位数落在哪一组.⑦已知该校共有900名学生,如投进个数少于24个定为不合格,请你估计该校本次投篮比赛不合格的学生人数.参考答案与解析一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.为了增强学生对新型冠状病毒的认识与防控能力,某学校组织了“抗击疫情,我们在行动”学生手抄报比赛活动.其中八年级五个班收集的作品数量(单位:幅)分别为:42,48,45,46,49,则这组数据的平均数是()A.44幅B.45幅C.46幅D.47幅【答案】C【分析】根据平均数的定义列式计算即可.【解答】解:(42+48+45+46+49)÷5=46(幅).即这组数据的平均数是46幅.故选:C.【知识点】算术平均数2.某企业复工之后,举行了一个简单的技工比赛,参赛的五名选手在单位时间内加工零件的合格率分别为:94.3%,96.1%,94.3%,91.7%,93.5%.关于这组数据,下列说法正确的是()A.平均数是93.96% B.方差是0C.中位数是93.5% D.众数是94.3%【答案】D【分析】求出该组数据的平均数、中位数、众数、方差,再进行判断即可.【解答】解:平均数为:(94.3%+96.1%+94.3%+91.7%+93.5%)=93.98%.因此选项A不符合题意;这组数据有波动,因此方差不为0,因此选项B不符合题意;这组数据的中位数是94.3%,因此选项C不符合题意;这组数据出现次数最多的数是94.3%,所以众数是94.3%,因此选项D符合题意;故选:D.【知识点】算术平均数、中位数、众数、方差3.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为:S甲2=0.48,S乙2=0.52,S丙2=0.56,S丁2=0.58,则成绩最稳定的是()A.甲B.乙C.丙D.丁【答案】A【分析】直接利用方差的意义求解可得答案.【解答】解:∵S甲2=0.48,S乙2=0.52,S丙2=0.56,S丁2=0.58,∴S甲2<S乙2<S丙2<S丁2,∴成绩最稳定的是甲,故选:A.【知识点】算术平均数、方差4.一组数据6,7,9,9,9,0,3,若去掉一个数据9,则下列统计量不发生变化的是()A.平均数B.众数C.中位数D.方差【答案】B【分析】根据众数,中位数,平均数,方差的定义判断即可.【解答】解:∵数据6,7,9,9,9,0,3中,9出现了3次,∴这组数据的众数为9,去了一个9后,这组数据中,9出现了2次,众数仍然是9,∴众数没有变化,平均数,中位数,方差都发生了变化,故选:B.【知识点】算术平均数、统计量的选择、众数、中位数、方差5.某校为了解学生的课外阅读情况,随机抽取了一个班的学生,对他们一周的课外阅读时间进行了统计,统计数据如下表,则该班学生一周课外阅读时间的中位数和众数分别是()读书时间6小时及以下7小时8小时9小时10小时及以上学生人数 6 11 8 8 7A.8,7 B.8,8 C.8.5,8 D.8.5,7【答案】A【分析】根据中位数、众数的意义即可求出答案.【解答】解:学生一周课外阅读时间的出现次数最多的是7小时,因此众数是7;将40名学生的读书时间从小到大排列后处在中间位置的两个数都是8小时,因此中位数是8,故选:A.【知识点】众数、中位数6.某校射击队从甲、乙、丙、丁四人中选拔一人参加市运会射击比赛.在选拔赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:甲乙丙丁平均数/环9.7 9.5 9.5 9.7方差/环2 5.1 4.7 4.5 4.5 请你根据表中数据选一人参加比赛,最合适的人选是()A.甲B.乙C.丙D.丁【答案】D【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2=5.1,S乙2=4.7,S丙2=4.5,S丁2=4.5,∴S甲2>S乙2>S2丁=S2丙,∵丁的平均数大,∴最合适的人选是丁.故选:D.【知识点】方差、算术平均数7.下列说法正确的是()A.为了解长沙市中学生的睡眠情况,应该采用全面调查的方式B.一组数据1,5,3,2,3,4,8的众数和中位数都是3C.某种彩票的中奖机会是1%,则买100张这种彩票一定会中奖D.若甲组数据的方差s甲2=0.1,乙组数据的方差s乙2=0.2,则乙组数据比甲组数据稳定【答案】B【分析】利用概率的意义,全面调查与抽样调查,中位数,众数,以及方差的定义判断即可.【解答】解:A、为了解长沙市中学生的睡眠情况,应该采用抽样调查的方式,不符合题意;B、一组数据1,5,3,2,3,4,8的众数和中位数都是3,符合题意;C、某种彩票的中奖机会是1%,则买100张这种彩票可能会中奖,不符合题意;D、若甲组数据的方差s甲2=0.1,乙组数据的方差s乙2=0.2,则甲组数据比乙组数据稳定,不符合题意;故选:B.【知识点】概率的意义、方差、全面调查与抽样调查、众数、中位数8.为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是()①每人乘坐地铁的月均花费最集中的区域在80~100元范围内;②每人乘坐地铁的月均花费的平均数范围是40~60元范围内;③每人乘坐地铁的月均花费的中位数在60~100元范围内;④乘坐地铁的月均花费达到80元以上的人可以享受折扣.A.①②④B.①③④C.③④D.①②【答案】C【分析】根据频数分布直方图中的数据,求得众数,平均数,中位数,即可得出结论.【解答】解:①根据频数分布直方图,可得众数为60﹣80元范围,故每人乘坐地铁的月均花费最集中的区域在60﹣80元范围内,故①错误;②每人乘坐地铁的月均花费的平均数==87.6元,故每人乘坐地铁的月均花费不在40~60元范围内,故②错误;③每人乘坐地铁的月均花费的中位数约为80元,在60~100元范围内,故③正确;④为了让市民享受到更多的优惠,若使50%左右的人获得折扣优惠,则乘坐地铁的月均花费达到80元以上的人可以享受折扣,故④正确.故选:C.【知识点】加权平均数、中位数、频数(率)分布直方图9.众志成城,抗击疫情,救助重灾区.某校某小组7名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):100,45,100,40,100,60,155.下面有四个推断:①这7名同学所捐的零花钱的平均数是150;②这7名同学所捐的零花钱的中位数是100;③这7名同学所捐的零花钱的众数是100;④由这7名同学所捐的零花钱的中位数是100,可以推断该校全体同学所捐的零花钱的中位数也一定是100.所有合理推断的序号是()A.①③B.②③C.②④D.②③④【答案】B【分析】平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:①这7名同学所捐的零花钱的平均数是,错误;②这7名同学所捐的零花钱的中位数是100,正确;③这7名同学所捐的零花钱的众数是100,正确;④由这7名同学所捐的零花钱的中位数是100,不能推断该校全体同学所捐的零花钱的中位数一定是100,错误;故选:B.【知识点】众数、算术平均数、中位数10.对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用max{a,b,c}表示这三个数中最大的数,例如:M;max{﹣1,2,3}=3,max若M{4,x2,x+2}=max{4,x2,x+2};则x的值为()A.2或B.2或﹣3 C.2 D.﹣3【答案】C【分析】本题直接按照定义计算应该可以求得结果,但是计算较为麻烦,故从选择题的角度出发,可以采用代值验证,并结合排除法来求解.【解答】解:观察选项,发现3个有2,故先令x=2,则M{4,x2,x+2}==4,max{4,x2,x+2}=max{4,4,4}=4故x=2符合题意,排除D;令x=,则M{4,x2,x+2}==<4故x=不符合题意,排除A;令x=﹣3,则M{4,x2,x+2}==4,max{4,x2,x+2}=max{4,9,﹣1}=94<9,故x=﹣3不符合题意,排除B;综上,故选:C.【知识点】算术平均数二、填空题(本大题共8小题,每小题4分,共32分.不需写出解答过程,请把答案直接填写在横线上)11.若一组数据1,3,x,5,4,6的平均数是4,则这组数据的中位数是.【答案】4.5【分析】将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:×(1+3+x+5+4+6)=4,x=5,将这组数据按小到大排列:1,3,4,5,5,6,故中位数=4.5,故答案为4.5.【知识点】中位数、算术平均数12.数学期末总评成绩是将平时、期中和期末的成绩按3:3:4计算,若小红平时、期中和期末的成绩分别是90分、80分、100分,则小红一学期的数学期末总评成绩是分.【答案】91【分析】利用加权平均数的定义列式计算即可.【解答】解:根据题意得:小红一学期的数学期末总评成绩是=91(分),故答案为:91.【知识点】加权平均数13.男子跳高的10名运动员成绩如表所示:成绩/m 1.50 1.60 1.65 1.70人数 2 4 2 2根据表中信息可以获知这些运动员的平均成绩为m.【答案】1.61【分析】直接利用加权平均数的定义列式计算可得.【解答】解:这些运动员的平均成绩为=1.61(m),故答案为:1.61.【知识点】加权平均数14.在一场比赛中,甲、乙两名射击手的5次射击成绩统计如图所示,分别记甲、乙两人这场比赛成绩的方差为S甲2,S乙2,则S甲2S乙2(填“>”或“<”).【答案】<【分析】根据方差的意义,直观判断即可,【解答】解:从统计图中可以直观得出,射击手甲的成绩比较稳定,离散程度较小,而射击手乙的成绩离散程度较大,不稳定,所有甲的方差小于乙的方差,故答案为:<.【知识点】方差、折线统计图15.某次射击练习,甲、乙二人各射靶5次,命中的环数如表,通过计算可知==7,S=0.8,S=2,所以射击成绩比较稳定的是.甲射靶环数7 8 6 8 6乙射靶环数9 5 6 7 8【答案】甲【分析】根据方差的意义即可得出答案.【解答】解:∵S甲2<S乙2,∴本题中成绩比较稳定的是甲.故答案为:甲.【知识点】方差、算术平均数16.为迎接五月份全县中考九年级体育测试,小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据唯一众数是13,平均数是12,那么这组数据的方差是.【分析】根据已知条件得到被墨汁覆盖的三个数为:10,13,13,根据方差公式即可得到结论.【解答】解:∵平均数是12,∴这组数据的和=12×7=84,∴被墨汁覆盖三天的数的和=84﹣(11+12+13+12)=36,∵这组数据唯一众数是13,∴被墨汁覆盖的三个数为:10,13,13,∴S2=[(11﹣12)2+(12﹣12)2+(10﹣12)2+(13﹣12)2+(13﹣12)2+(13﹣12)2+(12﹣12)2]=,故答案为:.【知识点】算术平均数、方差、众数17.我国是世界上严重缺水的国家之一.为了倡导“节约用水从我做起”,小刚在他所在班的50名同学中,随机调查了10名同学家庭中一年的月均用水量(单位:t),并将调查结果绘成了如下的条形统计图,则这10个样本数据的平均数是,众数是,中位数是.【答案】【第1空】6.8【第2空】6.5【第3空】6.5【分析】根据条形统计图,即可知道每一名同学家庭中一年的月均用水量.再根据加权平均数的计算方法、中位数和众数的概念进行求解;【解答】解:观察条形图,可知这组样本数据的平均数是:=6.8,即这组样本数据的平均数为6.8(t).在这组样本数据中,6.5出现了4次,出现的次数最多,这组数据的众数是6.5(t).将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是6.5,有=6.5,即这组数据的中位数是6.5(t).故答案为:6.8,6.5,6.5.【知识点】众数、中位数、加权平均数、条形统计图18.某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{1,2,9}==4,min{1,2,﹣3}=﹣3,min{3,1,1}=1.请结合上述材料,解决下列问题:(1)M{(﹣2)2,22,﹣22}=;(2)若min{3﹣2x,1+3x,﹣5}=﹣5,则x的取值范围为.【分析】(1)根据平均数的定义计算即可.(2)根据题意列出一元一次不等式组解决问题即可.【解答】解:(1)M{(﹣2)2,22,﹣22}==;(2)∵min{3﹣2x,1+3x,﹣5}=﹣5,∴,解得﹣2≤x≤4.故x的取值范围为﹣2≤x≤4.故答案为:;﹣2≤x≤4.【知识点】解一元一次不等式组、实数大小比较、算术平均数三、解答题(本大题共7小题,共58分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.为了增强学生的防疫意识,某校团委组织了一次“防疫知识”考试,考题共10题.考试结束后,学校团委随机抽查了20名考生的考卷,对考生的答题情况进行分析统计,发现所抽查的考卷中答对题量最少为7题,并绘制成如图所示的不完整的条形统计图,回答下列问题:(1)这20名考生每人答对题数的众数:,中位数:;(2)通过计算补全条形统计图.【答案】【第1空】8【第2空】8【分析】(1)根据中位数、众数的意义,找出出现次数最多的数,即为众数;排序后处在中间位置的两个数的平均数是中位数.【解答】解:(1)“答对10道题”的人数为20﹣4﹣8﹣6=2(人),答对8道题出现的次数最多,因此答对题目的众数是8;将20名学生的成绩从小到大排列后,处在第10、11位的两个数都是8,因此中位数是8,故答案为:8,8;(2)“答对10道题”的人数为2人,补全统计图如图所示:【知识点】条形统计图、众数、中位数20.某校开展爱“我容城,创卫同行”的活动,倡议学生利用双休日在浜江公园参加评选活动,为了了解同学们劳动时间,学校随机调查了部分同学劳动的时间,并用得到的数据绘制了不完整的统计图,根据图中信息解答下列问题:(1)将条形统计图补充完整;(2)抽查的学生劳动时间的众数为中位数为.(3)已知全校学生人数为1200人,请估算该校学生参加义务劳动2小时的有多少人?【答案】【第1空】1.5【第2空】1.5【分析】(1)根据学生劳动“1小时”的人数除以占的百分比,求出总人数,再用总人数减去学生劳动“0.5小时”、“1小时”、“2小时”的人数,得出学生劳动“1.5小时”的人数,从而补全条形图;(2)根据统计图中的数据确定出学生劳动时间的众数与中位数即可;(3)总人数乘以样本中参加义务劳动2小时的百分比即可得.【解答】解:(1)根据题意得:30÷30%=100(人),∴学生劳动时间为“1.5小时”的人数为100﹣(12+30+18)=40(人),补全统计图,如图所示:(2)根据题意得:抽查的学生劳动时间的众数为1.5小时、中位数为1.5小时,故答案为:1.5,1.5;(3)1200×=216,答:估算该校学生参加义务劳动2小时的有216人.【知识点】中位数、全面调查与抽样调查、众数、条形统计图、用样本估计总体。

2020-2021学年北师大版小学四年级数学下册《第六章 数据的表示和分析》单元测试题(有答案)

2020-2021学年北师大版小学四年级数学下册《第六章 数据的表示和分析》单元测试题(有答案)

2020-2021学年北师大版小学四年级数学下册《第六章数据的表示和分析》单元测试题一.选择题(共8小题)1.如图,()可以表示下面哪种情况的统计.A.4个学生期末数学考试成绩B.四年级喜欢各项运动的男女生人数C.小明1﹣﹣8岁的身高D.蛋糕店的草莓蛋糕和芒果蛋糕最近5天的销售情况2.如图是小明每天上学走的路程统计图,那么他从家到学校需要走()千米.A.5B.2.5C.103.下面说法中错误的是()A.在研究平均数问题时可以用移多补少的方法B.我们在研究小数的意义时运用了数形结合的思想方法C.28+374+26 此题进行简便运算,我们头脑里可以想a﹣b﹣c=a﹣(b+c)这一运算律4.游泳池平均水深130厘米,小红身高1.35米,她在游泳池里一定不会有危险.这句话对吗?()A.对B.不对C.不知道5.淘气从家去书城,中途休息了几分钟,到书城买完书后直接回家.下面正确描述淘气这一过程的图象是()A.B.C.D.6.下面三幅图是4名学生一分钟内投篮投进个数情况统计图,图()中虚线所指的位置表示平均每人投进的个数.A.B.C.7.淘气家的热水器中有60L水,晚上,爸爸先洗了10min澡,用了一半的水.5min后,淘气也去洗澡,他洗了15min,把热水器中的水刚好用完了.下面能描述热水器中水的体积随时间变化的情况的是()A.B.C.D.8.下面是育英小学和西门小学四、五、六年级学生回收电池统计图.根据统计情况估计一下,哪个学校的学生回收的电池更多?()A.西门小学B.育英小学C.两个学校一样多二.填空题(共8小题)9.下面是某学校五(1)班学生拥有课外读物情况,五(1)班共有学生人,平均每人拥有课外读物本.性别人数平均每人拥有课外读物/本男生1625女生243010.刘小兵折的纸飞机前4次飞行的距离如表:第1次第2次第3次第4次飞行距离/米18122117(1)这架纸飞机前4次飞行的平均距离是米.(2)如果再飞一次,并使平均飞行距离达到18米,第5次飞行的距离至少要达到米.11.看图回答问题.如图是小军从家去图书馆借书的行程图.①小军家到图书馆距离千米.②小军在图书馆待了分钟.③小军去的途中停了分钟.④小军去的时候平均每小时行千米.12.如图是打国际长途电话所需付的电话费与通话时间之间的关系图.(1)打2分钟需要元电话费,3分钟以上每分钟元.(2)打6分钟需要元,10.4元打了分钟.13.五(1)一班有男生20人,平均身高158cm;有女生16人,平均身高140cm,全班学生的平均身高是cm.14.在一幅条形统计图中,用3.5厘米长的直条表示21人,用厘米的直条表示42人.15.如图是希望小学四年级一周内向“我爱祖国”主题活动投稿情况统计图.请根据条形图回答问题.(1)每格代表篇.(2)这一周内,周投稿篇数最多,周投稿篇数最少.(3)周四比周二多投稿篇.(4)这一周一共投稿篇.16.一个长方体容器(如图1)现在以每分钟25升的速度向这个容器注水,容器的底面有一块隔板(垂直于底面,不考虑厚度),将容器隔为A,B部分,B部分的底有一个洞,水按每分钟10升的速度往下漏.(如图2)表示从注水开始A部分水的高度变化情况,观察并思考回答下面的问题:(1)隔板的高度是分米.(2)注水36分钟共漏出水升.(3)如果不让B部分的洞漏水,只要分就能使水箱A部分的水位到达5分米.三.判断题(共5小题)17.四一班的数学平均分是92分,四一班没有不及格的.(判断对错)18.在一幅条形统计图中,用2厘米长的直条表示600吨,那么表示1800吨的直条应画6厘米..(判断对错)19.折线统计图便于直观了解数据的大小及不同数据的差异.(判断对错)20.游泳池平均水深110厘米,小强身高130厘米,下水游泳一定没有危险。

八年级数学上册试题 第6章 数据的分析 单元培优卷 (含详解)

八年级数学上册试题 第6章   数据的分析   单元培优卷  (含详解)

第6章《 数据的分析》(单元培优卷)一、单选题(本大题共10小题,每小题3分,共30分)1.某单位定期对员工的专业知识、工作业绩、出勤情况三个方面进行考核(考核的满分均为100分),三个方面的重要性之比依次为3:5:2.小王经过考核后所得的分数依次为90、88、83分,那么小王的最后得分是( )A .87B .87.5C .87.6D .882.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x ;去掉一个最低分,平均分为y ;同时去掉一个最高分和一个最低分,平均分为z ,则( )A .y >z >xB .x >z >yC .y >x >zD .z >y >x3.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是( )A .21,21B .21,21.5C .21,22D .22,224.下列数据:,则这组数据的众数和极差是( )A .B .C .D .5.小明、小聪参加了100m 跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如图两个统计图.75,80,85,85,8585,1085,580,8580,10根据图中信息,有下面四个推断:①这5期的集训共有56天;②小明5次测试的平均成绩是11.68秒;③从集训时间看,集训时间不是越多越好,集训时间过长,可能造成劳累,导致成绩下滑;④从测试成绩看,两人的最好成绩都是在第4期出现,建议集训时间定为14天.所有合理推断的序号是( )A .①③B .②④C .②③D .①④6.一组数据的方差可以用式子表示,则式子中的数字50所表示的意义是( )A .这组数据的个数B .这组数据的平均数C .这组数据的众数D .这组数据的中位数7.一组数据的方差为,将这组数据中每个数据都除以3,所得新数据的方差是( )A .B .3C .D .98.已知a 、b 均为正整数,则数据a 、b 、10、11、11、12的众数和中位数可能分别是( )A .10、10B .11、11C .10、11.5D .12、10.59.小明统计了某校八年级(3)班五位同学每周课外阅读的平均时间,其中四位同学每周课外阅读时间分别是小时、小时、小时、小时,第五位同学每周的课外阅读时间既是这五位同学每周课外阅读时间的中位数,又是众数,则第五位同学每周课外阅读时间是( )A .小时B .小时C .或小时D .或或小时10.有5个正整数,,,,.某数学兴趣小组的同学对5个正整数作规律探索,找出同时满足以下3个条件的数.①,,是三个连续偶数,②,是两个连续奇数,③.该小组成员分别得到一个结论:甲:取,5个正整数不满足上述3个条件()()()()22221231025050505010x x x x s-+-+-++-=2s 213s2s 219s2s 58104585858101a 2a 3a 4a 5a 1a 2a 3a ()123a a a <<4a 5a ()45a a <12345aa a a a ++=+26a =乙:取,5个正整数满足上述3个条件丙:当满足“是4的倍数”时,5个正整数满足上述3个条件丁:5个正整数,,,,满足上述3个条件,则(为正整数)戊:5个正整数满足上述3个条件,则,,的平均数与,的平均数之和是(为正整数)以上结论正确的个数有( )个.A .2B .3C .4D .5二、填空题(本大题共8小题,每小题4分,共32分)11.下表是某学习小组一次数学测验的成绩统计表:分数708090100人数13x1已知该小组本次数学测验的平均分是85分,则x =_____.12.春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为__.13.某人学习小组在寒假期间进行线上测试,其成绩(分)分别为:,方差为.后来老师发现每人都少加了分,每人补加分后,这人新成绩的方差__________.14.数据,,,的平均数是4,方差是3,则数据,,,的平均数和方差分别是_____________.15.我们把三个数的中位数记作,直线与函数的图象有且只有2个交点,则的取值为212a =2a 2a 1a 2a 3a 4a 5a 5a =k k 1a 2a 3a 4a 5a 10p p 586,88,90,92,9428.0s =2252s =新1x 2x 3x 4x 011x +21x +31x +41x +,,a b c ,,Z a b c 1(0)2y kx k =+>21,1,1y Z x x x =-+-+k___________________16.已知一组数据a1,a2,a3,……,an的方差为3,则另一组数a1+1,a2+1,a3+1,……,an+1的方差为 _____.17.已知 5 个数据:8,8,x,10,10.如果这组数据的某个众数与平均数相等,那么这组数据的中位数是__________.18.某单位设有6个部门,共153人,如下表:部门部门1部门2部门3部门4部门5部门6人数261622324314参与了“学党史,名师德、促提升”建党100周年,“党史百题周周答活动”,一共10道题,每小题10分,满分100分;在某一周的前三天,由于特殊原因,有一个部门还没有参与答题,其余五个部门全部完成了答题,完成情况如下表:分数1009080706050及以下比例521110综上所述,未能及时参与答题的部门可能是_______.三、解答题(本大题共6小题,共58分)19.(8分)某一食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:这批样品的平均质量比标准质量多还是少?多或少几克,若每袋的标准质量为450克,则抽样检测的总质量是多少?20.(8分)个体户王某经营一家饭馆,下面是饭馆所有工作人员在某个月份的工资;王某3000元,厨师甲450元,厨师乙400元,杂工320元,招待甲350元,招待乙320元,会计410元.计算工作人员的平均工资;计算出的平均工资能否反映帮工人员这个月收入的一般水平?去掉王某的工资后,再计算平均工资;后一个平均工资能代表一般帮工人员的收入吗?根据以上计算,从统计的观点看,你对的结果有什么看法?21.(10分)某餐厅共有10名员工,所有员工工资的情况如下表:请解答下列问题:(1)、餐厅所有员工的平均工资是多少? (2)、所有员工工资的中位数是多少?(3)、用平均数还是中位数描述该餐厅员工工资的一般水平比较恰当? (4)、去掉经理和厨师甲的工资后,其他员工的平均工资是多少?它是否能反映餐厅员工工资的一般水平?()1()2()3()4()5()()3422.(10分)某市民用水拟实行阶梯水价,每人每月用水量中不超过w 吨的部分按4元/吨收费,超出w 吨的部分按10元/吨收费,该市随机调查居民,获得了他们3月份的每人用水量数据,绘制出如图不完整的两张统计图表:请根据以下图表提供的信息,解答下列问题:表1组别月用水量x 吨/人频数频率第一组1000.1第二组n第三组2000.2第四组m 0.25第五组1500.15第六组500.050.51x <≤1 1.5x <≤1.52x <≤2 2.5x <≤2.53x <≤3 3.5x <≤第七组500.05第八组500.05合计1(1) 观察表1可知这次抽样调查的中位数落在第_______组,表1中m 的值为_________,n 的值为_______;表2扇形统计图中“用水量”部分的的圆心角为___________.(2) 如果w 为整数,那么根据此次调查,为使80%以上居民在3月份的每人用水价格为4元/吨,w 至少定为多少吨?(3) 利用(2)的结论和表1中的数据,假设表1中同组中的每个数据用该组区间的右端点值代替,估计该市居民3月份的人均水费.23.(10分)某商店3,4月份销售同一品牌各种规格空调的情况如表所示:3.54x <≤4 4.5x <≤ 2.5 3.5x <≤1匹 1.2匹 1.5匹2匹3月1220844月1630148根据表中数据,解答下列问题:(1)该商店3,4月份平均每月销售空调______台.(2)该商店售出的各种规格的空调中,中位数与众数的大小关系如何?(3)在研究6月份进货时,你认为哪种空调应多进,哪种空调应少进?24.(12分)甲、乙两名队员参加射击训练,每次射击的环数均为整数.其成绩分别被制成如下统计图表(乙队员射击训练成绩统计图部分被污染):平均成绩/环中位数/环众数/环方差/环2甲7712乙78根据以上信息,解决下列问题:(1)求出的值;(2)直接写出乙队员第7次的射击环数及的值,并求出的值;(3)若要选派其中一名参赛,你认为应选哪名队员?请说明你的理由.参考答案一、单选题abca b c1.C【分析】将三个方面考核后所得的分数分别乘上它们的权重,再相加,即可得到最后得分.解:小王的最后得分为:90×+88×+83×=27+44+16.6=87.6(分),故选C .2.A【分析】根据题意,可以判断x 、y 、z 的大小关系,从而可以解答本题.解:由题意可得,去掉一个最低分,平均分为y 最大,去掉一个最高分,平均分为x 最小,其次就是同时去掉一个最高分和一个最低分,平均分为z即y >z >x ,故选:A .3.C解:这组数据中,21出现了10次,出现次数最多,所以众数为21,第15个数和第16个数都是22,所以中位数是22.故选C.4.A解:【分析】根据众数和极差的定义分别进行求解即可得.解:数据85出现了3次,出现次数最多,所以众数是85,最大值是85,最小值是75,所以极差=85-75=10,故选A.5.A【分析】根据条形统计图将每期的天数相加即可得到这5期的集训共有多少天;根据折线统计图可以求得小明5次测试的平均成绩;根据图中的信息和题意可知,平均成绩最好是在第1期.解:对于①:这5期的集训共有5+7+10+14+20=56(天),故正确;对于②:小明5次测试的平均成绩是:(11.83+11.72+11.52+11.58+11.65)÷5=11.66(秒),故错误;对于③:从集训时间看,集训时间不是越多越好,集训时间过长,可能造成3352++5352++2352++劳累,导致成绩下滑,故正确;对于④:从测试成绩看,两人的最好的平均成绩是在第1期出现,建议集训时间定为5天.故错误;故选:A .6.B【分析】根据方差公式的特点进行解答即可.解:方差的定义:一般地设n 个数据,x 1,x 2,…xn 的平均数为,则方差S 2[(x 1)2+(x 2)2+…+(xn )2],所以50是这组数据的平均数.故答案选:B 7.C【分析】本题主要考查的是方差的求法.解答此类问题,通常用x 1,x 2,…,x n 表示出已知数据的平均数与方差,再根据题意用x 1,x 2,…,x n 表示出新数据的平均数与方差,寻找新数据的平均数与原来数据平均数之间的关系.解:设原数据为x 1,x 2,…,x n ,其平均数为,方差为s 2.根据题意,得新数据为,,…,,其平均数为.根据方差的定义可知,新数据的方差为.故选C.8.B【分析】根据众数和中位数的定义即可解答.解:分情况讨论:①当a=b=10时,这组数据的众数是10,则其中位数是10.5②当a=b=12时,这组数据的众数是12,其中位数是11.5③当a=b=11时,这组数据的众数是11,其中位数是11④当a ≠b ≠11时,这组数据的众数是11,其中位数要分类讨论,无法确定故选B9.Cx 1n =x -x -x -x 113x 213x 13n x 13x ()()(222222212121111111111])33333399n n x x x x x x x x x x x x s n n ⎡⎛⎫⎛⎫⎛⎫⎡⎤-+-++-=⨯-+-++-=⎢ ⎪ ⎪ ⎪⎦⎣⎝⎭⎝⎭⎝⎭⎢⎣【分析】利用众数及中位数的定义解答即可.解:当第五位同学的课外阅读时间为4小时时,此时五个数据为4,4,5,8,10,众数为4,中位数为5,不合题意;当第五位同学的课外阅读时间为5小时时,此时五个数据为4,5,5,8,10,众数为5,中位数为5,符合题意;当第五位同学的课外阅读时间为8小时时,此时五个数据为4,5,8,8,10,众数为8,中位数为8,符合题意;当第五位同学的课外阅读时间为10小时时,此时五个数据为4,5,8,10,10,众数为10,中位数为8,不合题意;故第五位同学的每周课外阅读时间为5或8小时.故答案为C .10.B【分析】甲:根据条件求出,从而求出即可判断甲;乙:同甲判断方法即可;丙:设(n 是正整数),则,,同理求得,即可判断丙;丁:设(m 是正整数),则,,同理求得,即可判断丁;戊:设(k 是正整数),则,,由条件③得,由此求出、、的平均数与与的平均数之和为,即可判断戊.解:甲:若,则,,由条件②得,由条件③得,解得,∵是奇数,∴甲结论正确;乙:若,则,,由条件②得,由条件③得,解得,∵是奇数,∴乙结论正确;丙:若是4的倍数,设(n 是正整数),则,,由条件②得,由条件③得,14a =38a =48a =24a n =142a n =-342a n =+461a n =-12a m =222a m =+324a m =+534a m =+12a k =222a k =+324a k =+4566a a k +=+1a 2a 3a 4a 5a ()5551k k +=+26a =14a =38a =542a a =+4518a a +=48a =4a 212a =110a =314a =542a a =+4536a a +=417a =4a 2a 24a n =142a n =-342a n =+542a a =+4512a a n +=解得,∵是奇数,∴丙结论正确;丁:设(m 是正整数),则,,由条件②得,由条件③得,解得,∵当m 为偶数时,也为偶数不符合题意,∴丁结论错误;戊: 设(k 是正整数),则,,由条件③得,∴、、的平均数为,与的平均数为,∴、、的平均数与与的平均数之和为,∵是正整数,∴一定是5的倍数,但不一定是10的倍数,∴戊错误,故选B .二、填空题11.3【分析】利用加权平均数的计算公式列出方程求解即可.解:由题意,得70+80×3+90x+100=85×(1+3+x+1),解得x =3.故答案为3.12.23.4解:【分析】将折线统计图中的数据按从小到大进行排序,然后根据中位数的定义即可确定.解:从图中看出,五天的游客数量从小到大依次为21.9,22.4,23.4,24.9,25.4,则中位数应为23.4,故答案为23.4.461a n =-4a 12a m =222a m =+324a m =+542a a =+4566a a m +=+534a m =+534a m =+12a k =222a k =+324a k =+4566a a k +=+1a 2a 3a 22224223k k k k ++++=+4a 5a 33k +1a 2a 3a 4a 5a ()5551k k +=+k ()51k +13.8.0【分析】根据一组数据中的每一个数据都加上同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.解:∵一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,方差不变,∴所得到的一组新数据的方差为S 新2=8.0;故答案为:8.0.14.41,3解:试题分析:根据题意可知原数组的平均数为,方差为=3,然后由题意可得新数据的平均数为,可求得方程为.故答案为:41,3.15.<k ≤1或k =【分析】根据题意画出函数的图象,要使直线与函数的图象有且只有2个交点,只需直线经过(2,3)和经过(-1,0)之间,以此进行分析即可.解:函数的图象如图所示,∵直线与函数的图象有且只有2个交点,当直线经过点(2,3)时,则3=2k+,解得:k=,1234414x x x x x +++==()()()()22222123414s x x x x x x x x ⎡⎤=-+-+-+-⎣⎦1234+1+1+1+1414x x x x x +++==2=3s 125421,1,1y Z x x x =-+-+1(0)2y kx k =+>21,1,1y Z x x x =-+-+21,1,1y Z x x x =-+-+1(0)2y kx k =+>21,1,1y Z x x x =-+-+1(0)2y kx k =+>1254当直线经过点(-1,0)时,解得:k=,当k=1时,平行于y=x+1,与函数的图象也有且仅有两个交点;∴直线与函数的图象有且只有2个交点,则k 的取值为:<k ≤1或k =.故答案为:<k ≤1或k =.16.3【分析】设数据a 1,a 2,a 3,……,an 的平均数为,则可求得a 1+1,a 2+1,a 3+1,……,an+1的平均数,根据数据a 1,a 2,a 3,……,an 的方差为3,即可求得另一组数据a 1+1,a 2+1,a 3+1,……,an+1的方程.解:设数据a 1,a 2,a 3,……,an 的平均数为,即,则此组数据的方差为; ∵a 1+1,a 2+1,a 3+1,……,an+1的平均数为:,所以此数据的方差为:故答案为:3.17.8 或 10【分析】根据这组数据的某个众数与平均数相等,得出平均数等于8或10,求出x 从而得出中位数,即是所求答案.解:设众数是8,则由 ,解得:x=4,故中位数是8;1(0)2y kx k =+>1221,1,1y Z x x x =-+-+1(0)2y kx k =+>21,1,1y Z x x x =-+-+12541254x x 1231()n a a a a x n++++= 22221231()()+()++(3n a x a x a x a x n ⎡⎤-+---=⎣⎦…12312311(1111)()11n n a a a a a a a a x n n++++++++=+++++=+ 22221231(11)(11)+(11)++(11)n a x a x a x a x n ⎡⎤+--++--+--+--⎣⎦…22221231()()+()++()n a x a x a x a x n ⎡⎤=-+---⎣⎦ (3)=3685x +=设众数是10,则由,解得:x=14,故中位数是10.故答案为8或10.18.5【分析】各分数人数比为5:2:1:1:1,可以求出100分占总人数,90分占总人数,80、70、60分占总人数的,即各分数人数为整数,总参与人数应该为10的倍数,6个部门总共有153人,即未参加部分人数个位数有3,即可求得结果.解:各分数人数比为5:2:1:1:1,即100分占总参与人数的,90分占总参与人数的,80、70、60分占总参与人数的,各分数人数为整数,即×总参与人数=整数,∴总参与人数是10的倍数,6个部门有153人,即26+16+22+32+43+14=153人,则未参与部门人数个位一定为3,∴未参与答题的部门可能是5.故答案为:5.三、解答题19.解:与标准质量的差值的和为-5×1+(-2)×4+0×3+1×4+3×5+6×3=24,其平均数为24÷20=1.2,即这批样品的平均质量比标准质量多,多1.2克.则抽样检测的总质量是(450+1.2)×20=9024(克).36105x +=121511051521112=++++21521115=++++115211110=++++11020.解:根据题意得:元,答:工作人员的平均工资是750元;因为工作人员的工资都低于平均水平,所以不能反映工作人员这个月的月收入的一般水平.根据题意得:元,答:去掉王某的工资后,他们的平均工资是375元;由于该平均数接近于工作人员的月工资收入,故能代表一般工作人员的收入;从本题的计算中可以看出,个别特殊值对平均数具有很大的影响.21.(1)平均工资为(20000+7000+4000+2500+2200+1800×3+1200×2)=4350元;(2)工资的中位数为=2000元;(3)由(1)可知,用中位数描述该餐厅员工工资的一般水平比较恰当;(4)去掉店长和厨师甲的工资后,其他员工的平均工资是2062.5元,和(2)的结果相比较,能反映餐厅员工工资的一般水平.22.解:(1)n=1-(0.1+0.2+0.25+0.15+0.05+0.05+0.05)=0.15,(人),(人),(人),∵100+150+200=450<500,100+150+200+250=700>501,∴第500与第501个数在第四组,中位数落在第四组;故答案为,四;0.15;250;72°;()1()30004504003203503204107750(++++++÷=)()2()3()4504003203503204106375(+++++÷=)()4()5110220018002+1000.11000÷=10000.25250m =⨯=150+50360=721000︒︒⨯10000.15=150⨯(2)∵0.1+0.15+0.2+0.25+0.15=0.85=85%>80%,∴为使80%以上居民在3月份的每人用水价格为4元/吨,w 至少定为3吨;(3)(元).答:估计该市居民3月份的人均水费为8.8元.23.解:(1)56(台),所以该商店3,4月份平均每月销售空调56台.(2)从总体上看,由于1.2匹售出50台,售出台数大于其他三种规格的售出台数,故其众数是1.2匹.将这112个数据由小到大排列,得中位数是1.2匹,所以中位数与众数相等.(3)由(2)可知l.2匹空调的销售量最多,所以l.2匹空调应多进;由题表可知2匹空调的销售量最少,所以2匹空调应少进.24.解:(1)甲的平均成绩a =(环);(2)∵已知的环数分别是: 3、4、6、7、8、8、9、10,平均数是7,可知剩余两次的成绩和为:70-55=15(环),根据统计图可知不可能是9和6,只能是7和8,所以乙队员第7次的射击环数是7环或8环;把乙的成绩从小到大排列:3、4、6、7、7、8、8、8、9、10,∴乙射击成绩的中位数b ==7.5(环),其方差c =×[(3﹣7)2+(4﹣7)2+(6﹣7)2+2×(7﹣7)2+3×(8﹣7)2+(9﹣7)2+(10﹣7)2]=×(16+9+1+3+4+9)=4.2;()()11002200 2.52503300 1.515040.51 1.5501010008.8⎡⎤⨯+⨯+⨯+⨯+⨯⨯+++⨯⨯÷=⎣⎦1220841630148562x +++++++==5162748291712421⨯+⨯+⨯+⨯+⨯=++++782+110110(3)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看乙的成绩比甲的成绩稳定;综合以上各因素,若选派一名队员参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.。

苏科版八年级数学下册第7章《数据的收集、整理、描述》单元检测 有答案

苏科版八年级数学下册第7章《数据的收集、整理、描述》单元检测 有答案

苏科版八年级数学下册第7章《数据的收集、整理、描述》单元检测一.选择题(共10小题,每小题3分,共30分)1.下列采用的调查方式中,合适的是()A.了解某市居民日平均用电量情况,采用全面调查方式B.了解某公园全年的游客流量情况,采用抽样调查方式C.了解某校七年级一班学生的课外阅读量情况,采用抽样调查方式D.了解某种汽车撞击时气囊的打开情况,采用全面调查方式2.为了解500人身高情况,从中抽取50人进行身高统计分析.样本是() A.500人B.所抽50人C.500人身高D.所抽50人身高3.在一个不透明的口袋中,装有若干个红球和3个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的频率是0.2,则估计盒子中红球的个数大约是()A.20个B.16个C.15个D.12个4.某校为丰富学生的课余生活成立了兴趣小组,学生会对全校400名学生各自最喜欢的兴趣小组进行问卷调查后(每人选一种),绘制成如图所示的扇形统计图,选择球类的人数为()A.40人B.60人C.80人D.100人5.如图是某校七年级学生到校方式的统计图,由图可得出乘公共交通的人数占七年级学生总人数的()A.30%B.40%C.50%D.60%6.要反映花都区六月上旬每天的最高气温的变化趋势,最宜采用( ) A .折线图B .条形图C .扇形图D .直方图7.一组数据共100个,分为6组,第1~4组的频数分别为10,14,16,20,第5组的频率为0.20,则第6组的频数为( ) A .20 B .22C .24D .308.已知数据:117,21π-,0.其中无理数出现的频率为( ) A .0.2B .0.4C .0.6D .0.89.学校七年级学生做校服,校服分小号、中号、大号、特大号四种,随抽取若干名学生调查身高得如下统计分布表:145155x < 155165x < 165175x <175185x < 求(a = ),(b = ) A .45,0.3B .25,0.3C .45,0.03D .35,0.310.某公路上的测速仪,在某一时间段内测得30辆汽车的速度(单位:/)km h ,其最大值和最小值分别是80,56.为了制作频数直方图,以5为组距,这样,可以把数据分成( ) A .4组B .5组C .6组D .10组二.填空题(共8小题,每小题3分,共24分)11.新冠肺炎疫情爆发后,学生上学检测体温采用的调查方式是 .(填“普查”或“抽样调查” )12.为了了解我校七年级850名学生的数学成绩,从中抽取了90名学生数学成绩进行统计分析,这个问题中的样本容量是 .13.在一个有15万人的小镇,随机调查了1000人,其中200人会在日常生活中进行垃圾分类,那么该镇在日常生活中会进行垃圾分类的人数大约为 人.14.疫情期间,张老师为了了解本班学生居家学习期间每天体育锻炼的情况.张老师随机抽查了本班20名学生,统计数据如表所示:若这20名学生每天体育锻炼时间的平均数为m小时,则m的值为.15.有效的垃圾分类,可以减少污染、保护地球上的资源.为了更好地开展垃圾分类工作,某社区居委会对本社区居民掌握垃圾分类知识的情况进行调查.从中随机抽取部分居民进行垃圾分类知识测试,并把测试成绩分为A,B,C,D四个等次,绘制成如图所示的两幅不完整的统计图.下面有四个推断:①本次的调查方式是抽样调查,样本容量是40;②扇形统计图中,表示C等次的扇形的圆心角的度数为72︒;③测试成绩为D等次的居民人数占参测总人数的10%;④测试成绩为A或B等次的居民人数共30人.所有合理推断的序号是.16.按A,B,C,D四个等级统计某校九(1)班共50名学生的体育测试成绩,百分率分别为25%,50%,20%,5%,明明想让别人通过统计图很快地了解不同等级学生的数量,宜选用统计图描述.17.将某班男生的身高分成了三组,情况如表所示,则表中b的值是.18.如图是某景点6月份内1~10日每天的最高温度折线统计图,由图信息可知该景点这10天中,︒出现的频率是.气温26C三.解答题(共6小题,满分46分,19、21、23、24每小题8分,20、22每小题6分) 19.(1)为了了解一批圆珠笔的使用寿命,你认为采用 调查比较合适.(2)为了了解实验中学七年级学生的身高情况,从中抽取了85名学生的身高进行分析,在这个问题中,总体是 ;个体是 ;样本是 ;样本容量是 .(3)为了了解学生对某学校伙食的满意程度,小红访问了50名女生;小聪访问了50名男生;小明访问了24名男生和24名女生,其中七年级、八年级和九年级的男生和女生各8名.你认为小红、小聪、小明三人的不同抽样方法哪一种最好?为什么?20.某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:(1)求x 的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?21.某校七、八、九年级共有1000名学生.学校统计了各年级学生的人数,绘制了图①、图②两幅不完整的统计图.(1)将图①的条形统计图补充完整.(2)图②中,表示七年级学生人数的扇形的圆心角度数为 ︒.(3)学校数学兴趣小组调查了各年级男生的人数,绘制了如图③所示的各年级男生人数占比的折线统计图(年级男生人数占比100%)=⨯该年级男生人数该年级总人数.请结合相关信息,绘制一幅适当的统计图,表示各年级男生及女生的人数,并在图中标明相应的数据.22.在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m ,规定:当10m 时为A 级,当510m <时为B 级,当05m <时为C 级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:11 10 6 15 9 16 13 12 0 8 2 8 10 17 6 13 7 5 7 3 12 10 7 11 3 6 8 14 15 12 (1)求样本数据中为A 级的频率;(2)试估计1000个18~35岁的青年人中“日均发微博条数”为A 级的人数.23.某校开展了“放飞梦想”征文比赛,要求参赛学生每人交一件作品.现将参赛作品的成绩(单位:分)进行统计如下: 90100s8090s <80s <请根据上表提供的信息,解答下列问题:(1)彤彤的成绩为84分,她的成绩属于 等级; (2)表中y 的值为 ; (3)若200d =,则a = .24.某学校跳绳活动月即将开始,其中有一项为跳绳比赛,体育组为了了解七年级学生的训练情况,随机抽取了七年级部分学生进行1分钟跳绳测试,并将这些学生的测试成绩(即1分钟的个数,且这些测试成绩都在60~180范围内)分段后给出相应等级,具体为:测试成绩在60~90范围内的记为D级,90~120范围内的记为C级,120~150范围内的记为B级,150~180范围内的记为A级.现将数据整理绘制成如下两幅不完整的统计图,其中在扇形统计图中A级对应的圆心角为90 ,请根据图中的信息解答下列问题:(1)在扇形统计图中,求A级所占百分比;(2)在这次测试中,求一共抽取学生的人数,并补全频数分布直方图;(3)在(2)中的基础上,在扇形统计图中,求D级对应的圆心角的度数.苏科版八年级数学下册第7章《数据的收集、整理、描述》单元检测参考简答一.选择题(共10小题)1.B.2.D.3.D.4.D.5.B.6.A.7.A.8.B.9.A.10.B.二.填空题(共8小题)11.普查.12.90.13.30000.14. 1.3.15.①②④.16.条形.17.30%.18.0.3.三.解答题(共6小题)19.(1)为了了解一批圆珠笔的使用寿命,你认为采用调查比较合适.(2)为了了解实验中学七年级学生的身高情况,从中抽取了85名学生的身高进行分析,在这个问题中,总体是;个体是;样本是;样本容量是.(3)为了了解学生对某学校伙食的满意程度,小红访问了50名女生;小聪访问了50名男生;小明访问了24名男生和24名女生,其中七年级、八年级和九年级的男生和女生各8名.你认为小红、小聪、小明三人的不同抽样方法哪一种最好?为什么?【解】:(1)为了了解一批圆珠笔的使用寿命,你认为采用抽样调查比较合适.故答案为:抽样;(2)为了了解实验中学七年级学生的身高情况,从中抽取了85名学生的身高进行分析,在这个问题中,总体是实验中学七年级学生的身高情况;个体是实验中学七年级学生每个人的身高;样本是从中抽取的85名学生的身高情况;样本容量是85.故答案为:实验中学七年级学生的身高情况,实验中学七年级学生每个人的身高,从中抽取的85名学生的身高情况,85;(3)小明的抽样方法最好,因为抽样的样本更具有代表性.20.某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:(1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?【解】:(1)120(247218)6x =-++=; (2)2472180********+⨯=(人), 答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.21.某校七、八、九年级共有1000名学生.学校统计了各年级学生的人数,绘制了图①、图②两幅不完整的统计图.(1)将图①的条形统计图补充完整.(2)图②中,表示七年级学生人数的扇形的圆心角度数为 144 ︒.(3)学校数学兴趣小组调查了各年级男生的人数,绘制了如图③所示的各年级男生人数占比的折线统计图(年级男生人数占比100%)=⨯该年级男生人数该年级总人数.请结合相关信息,绘制一幅适当的统计图,表示各年级男生及女生的人数,并在图中标明相应的数据.【解】:(1)八年级人数:100025%250⨯=(人),七年级人数:1000250350400--=(人), 补全条形统计图如图所示:(2)4003601441000︒⨯=︒. 故答案为:144; (3)七年级:男生40060%240⨯=人,女生400(160%)160⨯-=人, 八年级:男生25050%125⨯=人,女生250(150%)125⨯-=人,九年级:男生35060%210⨯=人,女生350(160%)140⨯-=人, 用条形统计图表示如下:22.在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m ,规定:当10m 时为A 级,当510m <时为B 级,当05m <时为C 级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下: 11 10 6 15 9 16 13 12 0 8 2 8 10 17 6 13 7 5 7 3 12 10 7 11 3 6 8 14 15 12 (1)求样本数据中为A 级的频率;(2)试估计1000个18~35岁的青年人中“日均发微博条数”为A 级的人数.【解】:(1)10m 的人数有15人, 则频率151302==; (2)110005002⨯=(人), 即1000个18~35岁的青年人中“日均发微博条数”为A 级的人数为500人.23.某校开展了“放飞梦想”征文比赛,要求参赛学生每人交一件作品.现将参赛作品的成绩(单位:分)进行统计如下:90100s 8090s <80s <请根据上表提供的信息,解答下列问题:(1)彤彤的成绩为84分,她的成绩属于等级;(2)表中y的值为;(3)若200d=,则a=.【解】:(1)根据各个等级所对应的成绩范围可知,彤彤的成绩为84分,在8090s<组内,应属于B等级,故答案为:B;(2)10.080.220.70y=--=,故答案为:0.70;(3)2000.0816a=⨯=,故答案为:16.24.某学校跳绳活动月即将开始,其中有一项为跳绳比赛,体育组为了了解七年级学生的训练情况,随机抽取了七年级部分学生进行1分钟跳绳测试,并将这些学生的测试成绩(即1分钟的个数,且这些测试成绩都在60~180范围内)分段后给出相应等级,具体为:测试成绩在60~90范围内的记为D级,90~120范围内的记为C级,120~150范围内的记为B级,150~180范围内的记为A级.现将数据整理绘制成如下两幅不完整的统计图,其中在扇形统计图中A级对应的圆心角为90︒,请根据图中的信息解答下列问题:(1)在扇形统计图中,求A级所占百分比;(2)在这次测试中,求一共抽取学生的人数,并补全频数分布直方图;(3)在(2)中的基础上,在扇形统计图中,求D级对应的圆心角的度数.【解】:(1)A级所在扇形的圆心角的度数为90︒,A∴级所占百分比为90100%25% 360⨯=;(2)A级有25人,占25%,∴抽查的总人数为2525%100÷=(人),D∴级有10020402515---=(人),补全的频数分布图如右图所示;(3)D级的圆心角为:1536054 100⨯︒=︒,即D级对应的圆心角的度数为54︒.11。

北师大版三年级数学下册第七单元《数据的整理和表示》检测卷(含答案)

北师大版三年级数学下册第七单元《数据的整理和表示》检测卷(含答案)

北师大版三年级数学下册第七单元《数据的整理和表示》检测卷考试时间:90分钟满分:100分一、单选题(每小题2分,共12分)1.下表是笑笑所在班学生的体重情况。

(单位:千克)结合上面的统计表,下列选项中体重段人数最多的是()。

A. 31—35B. 36—40C. 41—45D. 46—502.小莉对小学生最喜爱的体育运动进行调查,用()来整理数据不合适。

A. 统计表B. 条形统计图C. 折线统计图D. 扇形统计图3.下表是三(1)班学生选举班长时的统计情况,()是有可能当上班长。

A. 淘气B. 笑笑C. 奇思4.大林调查了3个同学本学期读课外书的情况,结果如下(一个“√”表示1本):哪个同学本学期读课外书的本数最多?()。

A. 张星B. 李力C. 马冬5.四年级同学想帮助学校图书室解决“买什么书”的问题,你认为他们最需要收集的信息是()。

A. 调查同学们看书的地点B. 调查同学们喜欢看什么书C. 调查同学们看书用的时间D. 调查同学们每周看几本书6.淘气练书法的时候不小心把表格弄脏了,请你帮他算一下故事书有()本。

本A. 292B. 293C. 392二、判断题(每小题2分,共8分)()7.用“正”字来记录数据,一个“正”字表示5个数据。

()8.运用分组整理数据的办法,可以了解一组数据的分布情况。

()9.要想知道“全班同学中哪个月出生的人数最多”,可以先分组收集数据,再汇总统计结果。

()10.在评选班长时,张华有“”票,李明有“”票,应该选李明为班长。

三、填空题(每空1分,共27分)11.下面是四(1)班男生1分钟跳绳成绩统计表,跳绳在135个以上的等第为优秀,125~135个之间的等第为良好,56~124个之间的等第为合格,56个以下为等第不合格。

小军和小强的跳绳成绩在全班男生排名分别排第10和第16,小军的跳绳成绩等第是________,小强的跳绳成绩等第是________。

12.下面是小明对晚间广场上爷爷奶奶们的活动进行的统计。

2019版北师大版数学五年级下册第八单元《数据的表示和分析》单元测试卷(I)卷

2019版北师大版数学五年级下册第八单元《数据的表示和分析》单元测试卷(I)卷

2019版北师大版数学五年级下册第八单元《数据的表示和分析》单元测试卷(I)卷姓名:________ 班级:________ 成绩:________小朋友,带上你一段时间的学习成果,一起来做个自我检测吧,相信你一定是最棒的!一、选择题1 . 小明调查了一些同学最喜欢的运动项目是什么,他把收集的数据记录在如图表内.如果用蓝条表示男生,红条表示女生.如图中()是小明调查的结果.A.B.C.2 . 气象员要把成都市2017年5月份、2018年5月份每天气温的变化情况绘制成统计图进行对比分析,绘制()比较合适.A.条形统计图B.折线统计图C.复式条形统计图D.复式折线统计图3 . 有A,B两个国家,A国的人口增长率为2.5%,B国的人口增长率为﹣1.5%。

如图所示,图比较正确地反映了着两国的人口变化情况。

A.B.二、填空题4 . 笑笑4门功课的总分是360分,则平均分是(________)。

5 . 如图是小强和小刚两位同学参加800米赛跑的折线统计图。

(1)前400米,跑得快一些的是(_________),比赛途中在(_________)米处两人并列.(2)跑完800米,先到达终点的是(_________),比另一位同学少用了(_________)秒.(3)小刚前2分钟平均每分钟跑(_________)米.6 . 下面是六(1)班第一组9名同学身高情况统计表:姓名李华丁怡古丽王田张军孙小明吐尔逊高卫迪力身高(m) 1.62 1.60 1.58 1.62 1.60 1.52 1.65 1.481.55这9名同学的平均身高是米,有名同学的身高高于这个平均身高,有%的同学身高低于这个平均身高.(百分号前的数保留一位小数).7 . 下面是小红在校园歌手大赛中6位评委为她打的分.9.3 ;9.4;10;6.1;9.2;9.3去掉一个最高分和最低分,小红的平均分是(__________)分.8 . 条形统计图的特点是________.9 . 在一次投篮训练中,8名同学投中的个数如下:10个、5个、4个、6个、10个、9个、7个、10个这组数据的平均数是,众数是,中位数是.三、解答题10 . 六、下表是一至五年级宇航身高与全市男生平均身高的记录表。

2021学年北师大版五年级数学下册《第8章数据的表示和分析》单元测试题(有答案)

2021学年北师大版五年级数学下册《第8章数据的表示和分析》单元测试题(有答案)

2021学年北师大版小学五年级数学下册单元测试题《第8章数据的表示和分析》一.选择题(共8小题)1.小松所在班级的数学平均成绩是92分,小林所在班级的平均成绩是93分,小松和小林二人成绩比()A.小松高B.小林高C.无法确定2.在55、60、60、60、60、65、70、80这组数中,它们的平均数是()A.60B.63.75C.65D.703.期末考试中,张明语文、数学、英语三科的平均分是92分,其中语文是89分,数学是93分,他的英语成绩是()分.A.94B.92C.954.从如图的统计图中可知道,甲车间2018年平均每季度的产值是()万元.A.37.5B.55C.91.55.对复式折线统计图的优点描述最准确的是()A.能看出数量的多少B.可以看出数量的增减变化C.折线较多,很美观D.不仅能看出数量的多少和增减变化的情况,而且方便对两组相关数据进行比较6.下列说法错误的是()A.复式折线统计图便于对两组相关数据进行比较B.复式折线统计图是用两条不同的折线表示数据C.在同一折线统计图中,用2厘米表示100人,那么350人应用8厘米表示7.如图所示的统计图表示斑马和长颈鹿的奔跑情况,下面说法不正确的是()A.长颈鹿20分钟跑了16千米B.长颈鹿比斑马跑得快C.斑马跑12千米用了10分钟8.A、B、C、D、E五个人在一次满分为100分的考试中,得分都是大于91的整数。

如果A、B、C的平均分为95分,B、C、D的平均分为94分,A是第一名,E是第三名得96分。

则D的得分是()A.96分B.98分C.97分D.99分二.填空题(共8小题)9.淘气期末考试考了语文、数学、英语三门科目,平均分92分.如果不算数学,平均分89分,数学考了分.10.实验小学五年级同学的五名男生的身高分别是126cm,138cm,140cm,139cm,137cm,这5名男生的平均身高为cm.11.东东的身高是146厘米,明明和红红的身高都是140厘米,他们的平均身高是.12.某车站甲、乙两车从A地开往B地行驶路程统计图.(1)甲车平均每小时行千米,乙车平均每小时行千米.(2)11:00时候,车更接近B地.13.如图是食品厂2017年上半年和2018年上半年生产饮料的统计图.(1)2018年月的产量和2017年同期的产量相等.(2)2018年月的产量比2017年同期的增加最多.(3)2018年月的产量和月的产量相等.14.如图是李明和张红从学校回家的行程情况.根据统计图回答问题:(1)先从学校回家,先到家.(2)从图中知道,李明在路上逗留分钟.(3)张红从学校回家的平均速度是每分钟米.15.在全县“书香寒假•一道共读”活动中,评委给奇奇的打分分别是:95,89,91,95,90,88,89请你计算出奇奇的合理分数是,你的方法的理由是.16.看图填空.观察图,使用电话投票的方式,的票数最多,是票,使用网络投票的方式,的票数最少,是票.三.判断题(共5小题)17.复式条形统计图是由两个或两个以上的单式条形统计图整合而成.(判断对错)18.三个连续自然数的平均数是52,那么这三个数分别是51、52、53.(判断对错)19.小强身高是1.50米,他走过平均水深1.30米的小河,一定没有危险.(判断对错)20.任意两个折线统计图都可以合成一个复式折线统计图.(判断对错)21.小明班数学月考平均94分,他的成绩不是低于94分,就是高于94分。

【小学】2021北师大版五年级下数学《第八章 数据的表示和分析》单元测试题有答案

【小学】2021北师大版五年级下数学《第八章 数据的表示和分析》单元测试题有答案

2021-2021学年北师大版小学五年级数学下册《第八章数据的表示和分析》单元测试题一.选择题(共8小题)1.小新本学期数学三次测验的分数从低到高排列是92分,a分,96分,他的平均分可能是()A.91分B.94分C.97分2.红红在期试中,语文、英语平均90分,数学95分,总分是()A.185分B.270 分C.275 分3.游泳池平均水深130厘米,小红身高米,她在游泳池里一定不会有危险.这句话对吗?()A.对B.不对C.不知道4.如图表示游隼和雨燕飞行的情况.从图象上看,()飞行的速度慢.A.游隼B.雨燕C.无法确定5.如图所示的图象表示斑马和长颈鹿的奔跑情况,下面的说法不符合这个图象的是()A.斑马奔跑的路程与奔跑的时间成比例B.长颈鹿25分钟跑了2021C.长颈鹿比斑马跑得快D.斑马跑12千米用了10分钟6.“龟兔赛跑”:领先的兔子看破着缓缓爬行的乌龟,骄傲起来,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点….用S1、S2分别表示乌龟和兔子所行的路程,下面图()与故事情节相吻合.A.B.C.D.7.从如图的统计图中可知道,甲车间2021年平均每季度的产值是()万元.A.B.55C.8.小东学游泳,第一次游了25米,第二次游的比这两次的平均数多8米,第二次游了()米.A.58B.41C.66D.34二.填空题(共8小题)9.淘气期末考试考了语文、数学、英语三门科目,平均分92分.如果不算数学,平均分89分,数学考了分.10.小军在三次测验中的得分分别是83分、93分、88分,他三次测验的平均分是分。

11.下面是某学校五(1)班学生拥有课外读物情况,五(1)班共有学生人,平均每人拥有课外读物本.性别人数平均每人拥有课外读物/本男生1625女生243012.如图是两架飞机模型在一次飞行中飞行时间和高度的记录.(1)甲飞机飞行了秒,乙飞机飞行了秒,从第秒到第秒,甲飞机飞行的高度没有变.(2)从图上看,起飞后第10秒甲飞机的高度是米,第秒两架飞机处于同一高度.13.如图,A、B两市2021年上半年的降水量情况统计图,根据统计图回答问题.(1)月两市的降水量最接近;月两市的降水量相差最大.(2)A市2月降水量是B市2月降水量的%;B市4月降水量比A市少%.(百分号前保留整数)(3)A市的月平均降水量是mm.14.如图是某超市第一分店、第二分店上半年营业额情况统计图.(1)第分店营业额更高.(2)月份至月份第一分店营业额下降得最快.(3)月份两个店营业额比较接近;月份相差较远.(4)月份到月份两店的营业额都是增长的.15.甲乙丙三个数字,甲乙两数平均数是3,乙丙两数平均数是,甲丙两数平均数是,甲数是,乙数是,丙数是.16.下面是四(1)班同学参加“学生体质健康标准”测试中,立定跳远测试成绩统计图.(1)男生在等级的人数最多,女生在等级的人数最多.(2)等级为良好的同学是及格的同学的倍.(3)等级为优秀的同学是不及格的同学的倍.(4)四(1)班一共有人.(5)四(1)班男生与女生相差人.三.判断题(共5小题)17.任意两个条形统计图都可以合成一个纵向复式条形统计图..(判断对错)18.几个数的平均数是2021几个数中最小的不会小于10.(判断对错)19.四一班的数学平均分是92分,四一班没有不及格的.(判断对错)2021式条形统计图不仅反映数量的变化趋势,而且便于对两组数据的变化趋势进行比较.(判断对错)21.一次数学测试,一班的平均成绩是92分,二班的平均成绩是89分,则一班的每个人的成绩一定比二班好.(判断对错)四.应用题(共4小题)22.今年李伯伯家的苹果喜获丰收,2021苹果树的总产量是960千克,14棵小苹果树的总产量是644千克,今年平均每棵大苹果树比小苹果树多收多少千克?23.阳阳从家去学校的速度是每分钟50m,从学校回家的速度是每分钟40m,那么阳阳往返学校和家一次的平均速度是多少?24.2021年新冠肺炎期间,学校爱心社团4个小组向严重地区捐款,每组捐款金额如下:小组一组二组三组四组金额(元)91学校爱心社团平均每组捐款多少元?25.王林和马军参加1000米的长跑比赛,下图中的两条折线分别表示两人在途中的情况,看图回答问题.(1)跑完1000米,马军用了分钟,(填姓名)比赛赢了.(2)起跑后的第1分钟,速度快一些.第分钟,两人跑的路程相同,是米.(3)王林的平均速度是米/分.五.操作题(共2小题)26.如图是某便利店两种品牌的纯牛奶1﹣6月销售情况统计表.月份123456销量甲2021535405055乙1518202161210请制成复式折线统计图,并回答问题:(1)你了解到哪些信息?(2)如果你是便利店经理,下月你准备怎样进货?为什么?27.画线表示平均数所在的位置.六.解答题(共2小题)28.下面是第27届奥运会亚洲获得奖牌数前两名国家的奖牌情况统计图,请根据统计图回答问题.(1)队、韩国队获得奖牌总数各是多少枚?(2)两个国家获得的哪一种奖牌数量相差最大?差多少?(3)你还获得了哪些信息?(4)2021年奥运会在巴西里约热内卢举行,你想对代表团的运动员说点什么?29.(1)这是式统计图,图中的1小格代表毫米.(2)部在月份降水量最高.(3)你还能提出哪些数学问题?参考答案与试题解析一.选择题(共8小题)1.解:92<a<96,91小于92,97大于96,所以可能是选项B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数据的表示和分析》单元检测(1)一、填一填。

(第1题18分,第2题12分,共30分)1.仔细观察统计图,再回答问题。

(1)全年级男生人数最多的是()班,女生人数最多的是()班。

(2)全年级男生总数是()人,女生总数是()入。

(3)全年级男生总数占全年级总人数的()()(4)五年级一班学生人数占全年级总人数的()()(5)五年级三班比五年级四班多()人,五年级三班的人数比五年级四班多()()(6)五年级二班男生人数比女生人数少()()2.下面是明明和亮亮跳远成绩统计图。

(1)明明和亮亮第一次跳远的成绩相差()米。

(2)明明第二次跳远成绩是亮亮的()()(3)他们第()次的成绩相差最多。

(4)亮亮的成绩整体上呈现()的趋势。

(5)亮亮的平均成绩是()米。

(6)明明和亮亮两个人跳远的平均成绩中,()的成绩好。

二、判一判。

(对的画“√”,错的画“×”)(每题2分,共10分)1.复式条形统计图、复式折线统计图都必须有图例。

()2.绘制统计图时,起始格可以表示较大的单位量,用折线表示。

()3.复式统计图可以清楚地看出数量的多少,还可以看出两个数量的对比情况。

()4.在一次投篮比赛中,行行2次投的平均个数是25,要使3次投的平均个数是26,第3次需投27个。

()5.小亮和爷爷、奶奶三人的平均年龄比爷爷和奶奶两人的平均年龄少很多。

()三、选一选。

(将正确答案的序号填在括号里)(每题2分,共10分)。

1.要反映五、六年级学生开展“心连心,手拉手”活动,为希望小学捐书的情况,选用()统计图比较合适。

①单式条形②单式折线③复式条形④复式折线2.为了表示两座城市近阶段物价上涨的变化情况,应选用()统计图比较合适。

①单式条形②单式折线③复式条形④复式折线3.平均数容易受()的影响。

①极端数据②数据数量③近似数4.丽丽将4盒水彩笔包成一包。

她想出了6种方案,第()种包装最节省包装纸。

5.小嵩和小高骑自行车从学校沿着一条路到20千米外的七星湖公园。

已知小嵩比小高先出发,他俩所行路程和时间的关系如图所示。

下面说法正确的是()。

①他们都骑行了20千米②两人同时到达七星湖公园③小嵩在中途停留了1时④相遇后,小嵩的速度比小高慢四、动手操作。

(共29分)1.学校长跑队准备利用“六一”儿童节举办一次长跑接力活动,在整条长跑路线上设立了5 个接力点。

(1)长跑队设计了一幅宣传画,在画中标出了长跑的路线。

请你帮助他们在路线上表示出5 个接力点的大致位置。

(3分)(2)你认为这5个接力点设计的位置合理吗?(2分)将下面的立体图形和它的展开图连起来。

(4分)3.城东小学和城西小学迸行4次田径对抗赛,得分情况如左下表。

根据统计表完成右面的条形统计图。

(8分)4.下表是2017年上半年甲、乙两城市月平均降水量统计表。

(单位:mm)(12分)根据统计表完成下面的折线统计图。

五、解决问题。

(共21分).1.下面记录的是五年级二班男生的一次跳远成绩。

(单位:米)五年级男生跳远的达标成绩是3米,五年级二班男生的平均成绩符合要求吗?如果不符合要求,那么能不能说男生跳远达标成绩制定得偏高呢?(7分)2.明生小学举行广播操比赛,8位评委给五年级一班学生的广播操表演打分如下:请采用一种方法给出五年级一班合理的分数,并说出你的理由。

(7分)3.淘气练习掷铅球,掷了5次。

若去掉一个最好成绩和一个最差成绩,则平均成绩为9.73米。

若去掉一个最好成绩,则平均成绩为9.5米;若去掉一个最差成绩,则平均成绩为9.77米。

淘气的最好成绩和最差成绩分别是多少?(7分)参考答案一、1.(1)三三(2)6780(3)6714734(4)147(5)16815(6)7222.(1)0.1(2)1415(3)5(4)上升(5)3.04(6)亮亮二、1.√2.√3.√4.×5.√三、1.③2.④3.①4.①5.①四、略五、1.不符合要求,五年级二班男生的平均成绩约是2.99米不能2.去掉一个最高分和一个最低分理由:去掉了极端数据,算出的平均分比较公平合理。

(8+7 +8.5+7.2+7.6+7.3)÷6=7.6(分)3.最差成绩:9.5×4-9.73×3=8.81(米)最好成绩:9.77×4-9.73×3=9.89(米)《数据的表示和分析》单元检测(2)一、填空。

(每空1分,共22分)1.看图回答问题。

(1)这是一张()统计图,纵轴表示(),横轴表示()。

(2)从整体上看,两个班的学生喜欢吃()的人数最多。

(3)两个班中喜欢吃肉食类的人数是喜欢吃蔬菜类人数的()。

()(4)两个班中喜欢吃蔬菜类的学生一共有()人。

(5)(1)班和(2)班中喜欢吃鱼虾类的学生相差()人。

2.下图是张华家和李娜家2016年用电量情况统计图。

(1)这是一张()统计图,纵轴上每一格表示()千瓦时。

(2)张华家用电最多的是在()月,李娜家用电最多的是在()月,用电最多的月份两家相差()千瓦时。

(3)两家用电同样多的是在()月和()月。

(4)6月两家用电相差()千瓦时,10月两家用电相差()千瓦时。

(5)张华家平均每月用电()千瓦时。

(得数保留两位小数)(6)李娜家平均每月用电()千瓦时。

(得数保留两位小数)3.下图是四家家电商场2016年电视机、电冰箱的营业额情况统计图。

(1)()家电商场的营业总额最高,是()万元。

(2)四家家电商场电视机的营业总额是()万元。

(3)2016年兴华家电商场电冰箱的营业额比苏宁家电商场电冰箱的营业额少()。

()二、判断。

(每题3分,共12分)1.要反映两个地区一年内月平均气温的变化情况,应选用复式条形统计图。

()2.学校要统计每个年级男、女生的人数情况,应选用复式折线统计图。

()3.去掉一个最高分和一个最低分来计算平均分对选手来说比较公平。

()4.小明的爸爸和妈妈两人的平均体重通常要比小明一家三口的平均体重高很多。

(小明是儿童)()三、选择。

(每题3分,共12分)1.某电视机厂为了清楚地表示出2011~2016年甲、乙两个分厂工业产值的增减变化情况,选择()统计图比较合适。

①复式条形②复式折线③单式条形④单式折线2.小松要统计每次数学和语文的测试成绩,看看是否进步,选择()统计图比较合适。

①复式条形②复式折线③单式条形④单式折线3.为了清楚地反映少年宫各个兴趣小组男、女生的人数情况,选择()统计图比较合适。

①复式条形②复式折线③单式条形④单式折线4.一个小组的6名同学用同一把米尺测量课桌的高度,记录如下表。

估计这个课桌的高度大约是()。

①73cm②55cm③66cm四、按要求画出统计图,并回答问题。

(共25分)1.东城小学和西城小学的田径队进行了四次田径对抗赛,得分情况如下表。

(单位:分)(1)根据表中的数据,完成下面的条形统计图。

(4分)(2)你对这两个田径队如何评价?(3分)2.两家超市2011~2016年营业额情况统计如下表。

(1)根据表中的数据,完成下面的折线统计图。

(6分)(2)哪一年两家超市的营业额相差最大?哪一年两家超市的营业额相同?(4分)(3)你觉得哪一家超市营业状况比较好?(3分)3.某商场2016年销售取暖器和微风吊扇的情况如下图。

(1)填出图中取暖器和微风吊扇的图例,并说明理由。

(3分)(2)估计一下,第四季度销售取暖器和微风吊扇的数量,并在图中用直条表示出来。

(2分)五、解决问题。

(共29分)1.一个小组的8名学生用同一把弹簧秤称了同一袋面粉的质量,记录如下。

(单位:千克)先估计这袋面粉的质量,再算一算。

(4分)2.根据图中的信息,回答问题。

已知三名学生的期中测试数学平均成绩为92分,语文平均成绩为97分,表示李仁成绩的直条被墨水污染了,请你帮他算出语文和数学的成绩。

(4分)3.学校举行朗诵比赛,七位老师给两名选手的打分情况如下表。

(单位:分)请你采用一种方法给出这两名选手合理的分数,比一比谁的得分更高?并说出你的方法合理的理由。

(4分)4.王莉和张菊两人进行1000米长跑比赛。

下图中的两条折线分别表示两人长跑过程中的情况,看图回答问题。

(1)跑完1000米王莉用了多少分?张菊用了多少分?(4分)(2)在起跑后的1分内,谁跑得快一些?(4分)(3)起跑后的第几分,两人跑的路程同样多?是多少米?(4分)(4)王莉的平均速度是多少?(5分)参考答案一、1.(1)复式条形人数类别(2)鱼虾类(3)17(4)14(5)292.(1)复式折线10(2)81220(3)111(4)3020(5)59.17(6)39.1713.(1)苏宁70(2)104(3)2二、1.×2.×3.√4.√三、1.②2.②3.①4.③四、1.略2.(1)略(2)2016年2013年(3)百信超市3.(1)取暖器微风吊扇理由:因为第三季度是一年中温度最高的时候,应该是微风吊扇销售多,所以空白的直条表示微风吊扇,斜线的直条表示取暖器(言之有理即可)。

(2)略五、1.估计:2千克2.075千克2.语文:93分数学:93分3.采用去掉一个最高分和一个最低分,再求平均分的方法2号选手的得分更高理由略4.(1)4分5分(2)张菊(3)第3分800(4)250米/分。

相关文档
最新文档