换热器原理

合集下载

换热器的工作原理

换热器的工作原理

换热器的工作原理换热器是一种用于传递热能的装置,它起到了加热、冷却、调节温度的作用。

换热器广泛应用于工业生产和日常生活中,如空调系统、锅炉、汽车发动机等。

下面将详细介绍换热器的工作原理。

1. 热交换换热器的主要工作原理是通过热交换实现热能的传递。

热交换是指在两个不同的流体之间,通过热传导、热辐射或者对流传热的方式,使热量从一个流体传递到另一个流体。

换热器内部通常分为两个流体通道,分别为热源流体和冷却介质,通过这两个通道的热交换,实现热能的传递。

2. 热源流体热源流体是指需要被加热或冷却的流体。

它可以是气体或液体,常见的有蒸汽、水、油等。

热源流体进入换热器后,通过换热器内的管路,与冷却介质进行热交换。

在这个过程中,热源流体的温度会发生相应的变化。

如果需要加热,则热源流体的温度会升高;如果需要冷却,则热源流体的温度会降低。

3. 冷却介质冷却介质用于吸收或排放热源流体传递出来的热量。

它可以是水、空气等,根据不同的应用场景选择不同的冷却介质。

通常,冷却介质在进入换热器之前,通过一系列的控制装置,如水泵、风机等,将其送入换热器内部进行热交换。

在与热源流体进行热交换的过程中,冷却介质的温度也会相应地升高或降低。

4. 热交换管热交换管是换热器内部用于传输热能的主要构件。

它通常由金属或合金材料制成,具有良好的导热性能。

热交换管的数量和排列方式会根据换热器的设计要求而有所不同。

通过热交换管,热源流体和冷却介质之间发生热交换。

其中,热源流体进入管道的一端,通过管壁与冷却介质进行热交换,最后从另一端出口离开。

5. 热损失和效率在热交换的过程中,由于热传导、对流和辐射等因素的存在,换热器会发生一定程度的热损失。

这些损失导致了换热器的热效率降低。

为了提高换热器的效率,可以采取一些措施,比如增加交换面积、改善流体的流动方式、选择合适的绝热材料等。

此外,定期对换热器进行清洗和维护也是保持其高效工作的重要措施。

总结起来,换热器通过热交换实现热能的传递。

换热器的工作原理

换热器的工作原理

换热器的工作原理换热器是一种用于传递热量的设备,广泛应用于各个领域,包括工业、建造、航空航天等。

它通过将热量从一个流体传递到另一个流体,实现能量的转移和利用。

换热器的工作原理基于热传导和对流传热的原理,下面将详细介绍换热器的工作原理。

1. 热传导热传导是换热器中热量传递的一种方式。

当两个接触的物体温度不同时,热量会从高温物体传导到低温物体,直到两者达到热平衡。

在换热器中,热量通过壁板或者管道的材料传导到另一侧的流体。

2. 对流传热对流传热是换热器中另一种重要的热传递方式。

当流体与固体表面接触时,流体味通过对流传热将热量传递给固体,或者从固体吸收热量。

对流传热可以分为自然对流和强制对流两种形式。

3. 换热器的组成换热器通常由两个主要部份组成:热源侧和热载体侧。

热源侧是指需要散热的流体,如燃气、水蒸气等;热载体侧是指需要吸收热量的流体,如空气、水等。

这两个流体通过换热器中的壁板或者管道进行热量传递。

4. 热交换表面换热器中的热交换表面是实现热量传递的关键部份。

它通常由金属材料制成,如铜、不锈钢等,具有良好的导热性能和耐腐蚀性。

热交换表面的形式多种多样,包括管壳式、板式、螺旋式等。

5. 热量传递过程换热器的工作过程可以简单地分为两个步骤:热量传递和流体流动。

首先,热源侧的流体通过热交换表面将热量传递给热载体侧的流体。

这个过程中,热源侧的流体温度降低,而热载体侧的流体温度升高。

然后,两个流体分别从换热器的两端流动,继续进行热量传递。

6. 换热器的效率换热器的效率是衡量其性能的重要指标之一。

换热器的效率可以通过热传导和对流传热的效率来评估。

热传导效率取决于换热器材料的导热性能和换热表面的设计,而对流传热效率则取决于流体的流速和流动方式。

7. 换热器的种类根据不同的应用需求,换热器可以分为多种类型,包括管壳式换热器、板式换热器、螺旋式换热器等。

每种类型的换热器都有其特定的优点和适合范围,可以根据具体的应用场景选择合适的换热器类型。

换热器工作原理

换热器工作原理

换热器工作原理引言概述:换热器是一种常见的热交换设备,用于实现不同流体之间的热量传递。

它在许多工业领域中广泛应用,如化工、石油、能源等。

本文将详细介绍换热器的工作原理,包括传热方式、传热机制、换热器的结构和工作过程。

一、传热方式1.1 对流传热对流传热是指通过流体的流动来传递热量的过程。

换热器中的流体可以是液体或气体,它们在换热器内部形成流动,通过对流传热来实现热量的传递。

对流传热的效果受到流体的流速、流体性质和换热器的结构等因素的影响。

1.2 辐射传热辐射传热是指通过电磁辐射来传递热量的过程。

换热器中的热源会发射热辐射,而受热体则吸收这些辐射,从而实现热量的传递。

辐射传热的效果受到热源和受热体的温度、表面特性以及换热器的结构等因素的影响。

1.3 导热传热导热传热是指通过固体材料的导热性来传递热量的过程。

换热器中的热量可以通过固体材料的导热性从一个位置传递到另一个位置。

导热传热的效果受到固体材料的导热系数、厚度和换热器的结构等因素的影响。

二、传热机制2.1 对流传热机制对流传热的机制主要包括传导、对流和辐射三种方式的综合作用。

传导是指热量在固体材料中通过分子间的碰撞传递的过程,对流是指热量通过流体的流动传递的过程,辐射是指热量通过电磁辐射传递的过程。

在换热器中,这三种传热机制同时存在,相互作用,共同实现热量的传递。

2.2 辐射传热机制辐射传热的机制是由热源发射的热辐射经过空间传播,被受热体吸收而转化为热量的过程。

辐射传热是一种无需介质参与的传热方式,它可以在真空中传热,因此在某些特殊情况下,如高温、高真空等条件下,辐射传热成为主要的传热机制。

2.3 导热传热机制导热传热的机制是由固体材料的导热性质决定的。

固体材料的导热系数越大,传热效果越好。

在换热器中,通过固体材料的导热性,热量可以从一个位置传递到另一个位置。

导热传热是一种高效的传热方式,常用于换热器的结构中。

三、换热器的结构3.1 管壳式换热器管壳式换热器是一种常见的换热器结构,它由一个外壳和内部的管束组成。

暖气换热器工作原理

暖气换热器工作原理

暖气换热器工作原理1.循环流动:暖气换热器通过循环泵将热水从锅炉或其他热源处抽取,然后通过管道输送到换热器内部。

换热器内部有一组密集排列的金属片或管道,使得水在其中流动,从而使热能可以顺利传递给空气。

2.辐射传热:暖气换热器内的金属片或管道被热水加热后,会向四周散发热能。

这种方式被称为辐射传热,通过辐射传热,暖气换热器可以将热能传递给周围的物体和空气。

3.对流传热:暖气换热器内的热水加热空气接触的同时,也会引起空气的对流运动。

当空气接触到热的金属片或管道时,会被加热并上升,然后向周围空间扩散。

同时,较冷的空气由于密度较大,会下沉并再次接触到金属片或管道,形成一个对流循环。

通过对流传热,暖气换热器可以将热能迅速传递给室内空气。

在这个过程中,暖气换热器起到一个传导热能的媒介的作用。

热水通过金属片或管道与室内空气进行热交换,从而使空气温度升高。

当空气吸收足够的热能后,它们会变得温暖,并被送到室内空间,起到供暖的作用。

1.温度调节:暖气换热器可以通过调整热源的温度来控制室内的供暖温度。

通过增加热源的温度,可以提高空气温度;通过降低热源的温度,可以使空气变得更凉爽。

2.热能损失:在热水从锅炉到换热器的过程中,由于管道的存在,会导致一定的热能损失。

此外,暖气换热器在传递热能时也会有一些热能的散失,进一步降低了热能的利用效率。

3.连通性:暖气换热器通常通过管道连接到一个统一的热源,如锅炉。

这种连通性使得多个暖气换热器可以同时工作,从而为整个室内空间提供供暖。

总体来说,暖气换热器通过循环泵将热水从热源传递到换热器内部,然后通过辐射和对流传热的方式将热能传递给室内空气。

这种工作原理使得暖气换热器成为一种常见的供暖设备,广泛应用于家庭和商业建筑中。

换热器工作原理

换热器工作原理

换热器工作原理换热器是一种常见的热交换设备,广泛应用于工业生产和日常生活中。

它能够有效地将热量从一个介质传递到另一个介质,实现能量的转移和利用。

本文将从五个大点来阐述换热器的工作原理。

引言概述:换热器是一种热交换设备,用于传递热量。

它通过两个流体之间的热量传递,实现能量的转移和利用。

换热器的工作原理涉及传热方式、传热表面、传热介质和流体流动方式等多个方面。

正文内容:1. 传热方式1.1 对流传热对流传热是指通过流体的对流传递热量。

换热器内的流体在传热过程中,通过对流将热量从一个介质传递到另一个介质。

对流传热的效果与流体的流速、流体的物理性质以及传热表面的特性等因素有关。

1.2 辐射传热辐射传热是指通过电磁辐射传递热量。

在换热器中,辐射传热主要是通过传热表面的辐射来实现的。

传热表面的温度差异会导致热辐射,从而实现热量的传递。

2. 传热表面2.1 管壳式换热器管壳式换热器是一种常见的换热器类型。

它由内外两个壳体组成,内壳体内部设置有一系列管子,通过管子内的流体进行热量传递。

2.2 板式换热器板式换热器是一种结构紧凑的换热器。

它由一系列平行的金属板组成,通过板与板之间的热传导来实现热量的传递。

2.3 管束式换热器管束式换热器是一种将多个管子束在一起的换热器。

通过管束内的流体和外部流体之间的热量传递,实现能量的转移。

3. 传热介质3.1 水水是一种常见的传热介质,具有良好的传热性能和流动性能。

在换热器中,水常被用作传热介质。

3.2 油油是一种常用的传热介质,具有较高的传热效率和热稳定性。

在高温条件下,油常被用作传热介质。

3.3 蒸汽蒸汽是一种高温高压的传热介质,具有较高的传热效率。

在一些工业生产过程中,蒸汽常被用作传热介质。

4. 流体流动方式4.1 平行流平行流是指两个流体在换热器中的流动方向相同。

在平行流的情况下,两个流体的温度差异较小,传热效果较好。

4.2 逆流逆流是指两个流体在换热器中的流动方向相反。

换热器的工作原理

换热器的工作原理

换热器的工作原理换热器是一种用于传递热量的设备,它在许多工业和家庭应用中起着至关重要的作用。

换热器的工作原理是通过热传导和对流来实现热量的传递和交换。

下面将详细介绍换热器的工作原理。

一、热传导热传导是指热量通过物质内部的分子碰撞传递的过程。

在换热器中,热量从高温区域传递到低温区域。

换热器通常由金属材料制成,如铜、铝或不锈钢,这些材料具有良好的热传导性能,能够有效地传递热量。

二、对流对流是指通过流体(如液体或气体)的流动来传递热量的过程。

在换热器中,热量通过流体的对流传递到另一侧。

换热器通常分为两个流体通道,分别为热源侧和冷却侧。

热源侧的流体通常是高温的,而冷却侧的流体通常是低温的。

热源侧的流体通过换热器时,会释放热量给冷却侧的流体,从而使两侧的温度差减小。

三、换热器的结构换热器通常由一系列平行的管道或片状结构组成。

这些管道或片状结构被称为换热面。

热源侧的流体通过换热面时,热量会通过热传导从流体传递到换热面上。

然后,冷却侧的流体通过换热面时,热量会通过对流从换热面传递给流体。

这样,热量就从热源侧传递到冷却侧,实现了热量的交换。

四、换热器的类型根据不同的应用需求,换热器可以分为多种类型。

以下是几种常见的换热器类型:1. 管壳式换热器:管壳式换热器由一个管束和一个外壳组成。

热源侧的流体通过管束,而冷却侧的流体通过外壳。

这种换热器适用于高温和高压的应用。

2. 板式换热器:板式换热器由一系列平行的金属板组成。

热源侧和冷却侧的流体分别通过板间隙,实现热量的传递。

板式换热器具有紧凑的结构和高效的换热性能。

3. 螺旋板式换热器:螺旋板式换热器由一系列螺旋形的金属板组成。

热源侧和冷却侧的流体分别通过螺旋通道,实现热量的传递。

螺旋板式换热器具有较高的换热效率和较小的压力损失。

4. 换热管束:换热管束由一系列平行排列的管道组成。

热源侧和冷却侧的流体分别通过管道,实现热量的传递。

换热管束适用于高温和高压的应用。

五、换热器的应用换热器广泛应用于各个领域,包括工业生产、能源系统、空调系统等。

换热器的工作原理

换热器的工作原理

换热器的工作原理引言概述:换热器是一种用于传递热量的设备,广泛应用于工业生产和日常生活中。

它的工作原理基于热量传导和对流,通过将热量从一个物质传递到另一个物质,实现热能的有效利用。

本文将详细介绍换热器的工作原理及其五个主要部分。

一、传热介质1.1 热源介质:换热器的热源介质通常是高温的流体或气体。

当热源介质通过换热器时,其热量会传递给换热器的工作介质。

1.2 工作介质:工作介质是换热器中的传热介质,可以是液体或气体。

当工作介质经过换热器时,它会吸收热源介质传递过来的热量。

1.3 冷却介质:冷却介质是换热器中的另一个传热介质,用于吸收工作介质释放的热量。

冷却介质可以是水、空气或其他液体。

二、传热方式2.1 对流传热:对流传热是换热器中最常见的传热方式。

当热源介质与工作介质接触时,热量通过对流传递,即热源介质的热量通过流体的流动传递给工作介质。

2.2 导热传热:导热传热是指热量通过固体传递的过程。

在换热器中,导热传热主要发生在换热器的壁体上,热源介质的热量通过壁体传递给工作介质。

2.3 辐射传热:辐射传热是指热量通过电磁辐射传递的过程。

在换热器中,辐射传热主要发生在换热器的壁体和介质之间,热量以电磁波的形式传递。

三、换热器的结构3.1 管式换热器:管式换热器是最常见的一种换热器类型。

它由一组管子组成,热源介质和工作介质分别流过管内和管外,通过管壁的导热传热实现热量的传递。

3.2 板式换热器:板式换热器由一组平行排列的金属板组成,热源介质和工作介质分别流过板间和板面,通过对流传热和导热传热实现热量的传递。

3.3 壳管式换热器:壳管式换热器由一个外壳和一组管束组成,热源介质和工作介质分别流过壳侧和管侧,通过对流传热和导热传热实现热量的传递。

四、换热器的性能参数4.1 热效率:热效率是换热器传递热量的效率,一般用换热器输出的热量与输入的热量之比来表示。

4.2 压降:压降是指流体在换热器中流动时产生的压力损失。

换热器的工作原理

换热器的工作原理

换热器的工作原理换热器是一种用于传递热量的设备,它的工作原理是利用流体之间的热交换实现热量的传递。

换热器广泛应用于工业生产、能源系统、空调系统等领域,起到了重要的热能转移作用。

换热器的工作原理可以简单描述为热量传导和对流传热的过程。

下面将详细介绍换热器的工作原理。

1. 热量传导:换热器中的热量传导是指热量通过固体壁板的传递。

换热器通常由两个流体流经相邻的金属壁板,热量从一个流体通过壁板传递给另一个流体。

这种热量传导是通过壁板的份子振动和碰撞实现的。

壁板通常是由导热性能较好的金属材料制成,如铜、铝、不锈钢等。

2. 对流传热:对流传热是指热量通过流体的传递。

换热器中的两个流体在壁板两侧形成为了对流层,热量通过对流层的传递完成热交换。

对流传热受到流体的流速、流体性质以及壁板的热传导性能等因素的影响。

换热器的工作原理可以分为两种类型:直接传热和间接传热。

1. 直接传热:直接传热是指两个流体直接接触并交换热量。

例如,水和蒸汽在换热器中直接接触并交换热量。

这种方式通常适合于两个流体之间温度差较小的情况。

直接传热的优点是传热效率高,但由于两个流体直接接触,可能存在污染、腐蚀等问题。

2. 间接传热:间接传热是指两个流体通过壁板进行热量传递,彼此之间不直接接触。

例如,热水通过管道流经换热器的壁板,与空气进行热量交换。

这种方式通常适合于两个流体之间温度差较大的情况。

间接传热的优点是能够避免两个流体之间的混合和污染。

换热器的性能评价指标主要包括传热系数、压降和换热面积。

1. 传热系数:传热系数是指单位面积上的热量传递量。

传热系数越大,换热器的传热效率越高。

传热系数受到流体性质、流速、壁板材料等因素的影响。

2. 压降:压降是指流体通过换热器时的压力损失。

压降越小,流体通过换热器的阻力越小,能耗也就越低。

压降受到流速、管道长度、管道直径等因素的影响。

3. 换热面积:换热面积是指用于热量传递的有效面积。

换热面积越大,热量传递的面积也就越大,传热效率也会提高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
出现沉积,沉淀物的 形成使金属板的壁厚显著增加, 而且沉淀物的导热性比金属板 抵的多。因此,沉淀物的形成 严重的降低了总的传热效率。 怎么判断换热器堵塞或有沉淀物 哪?


对象:大污垢(海藻、贻贝、腾、木屑、纤维) 微生物-粘物质(细菌、绕虫、原生物) 水垢(碳酸钙、硫酸钙、硅酸盐) 沉淀物(腐蚀产物、氧化铁腐、泥沙、 氧化铝、双原子有机物) 油类残留物(沥青和脂肪)
努力培养优秀品质
从来没有见过一个公平正直、 慷慨大方的人会没有吸引力,也 从来没有听说过哪个自私自利的 人能够赢得别人的尊重。人们与 生俱来就有一种倾向,就是鄙视 那些从不关心别人,无视他人利 益,只知为己获利的家伙。
我们车间换热器主要的污染对象水垢、沉 淀物、微生物。我们清洗一般用液碱和硝酸。 清洗方式有两种,一种是水循环清洗、一种是 拆洗我们一般采用水循环清洗。
使用过程中需要注意的问题
• • • • 放掉换液器内的空气 慢慢的开启阀门 停机时要缓慢关闭控制泵流速的阀门 质量低劣的冷却水对金属才料是有害的 如果停止运行需要很长一段时间的话应 放干所有的介质并冲洗干燥
连接条 槽孔
想一想:如果把换热器上 的沟槽去掉换成平板它的换热 效果能不能达到原来的要求? 为什么?
想一想;垫片对换 热效果的影响。
观察一下A、B板的 区别。
正常情况换热板以A、B、A的形 式排列,安装错误时就成了A、A、 B B、B、A A、或 、B、或 B等。 、A等。
大家都知道咱们家用的 锅…
换热示意图
当金属板组压紧时,板 角上的开孔形成连续的通道, 将介质(参与热交换过程的 介质)从进口处引流到金属 板组中,并分配到金属板间 的狭窄槽道中。见下图
A、B俩块金属班组成 一个槽道。A、B板是 什么样的?
换热器中只有一种金属板A 板,那么B板时怎么得到的哪?
开孔
将A型金属板颠倒过来,所 得到的将是B型金属板。

1、一个大垫片
2、二个环形垫片 3、连接条

一体化垫片可以分成下列三 部分:
垫片插角
大垫片包括了整个传热面积 和两个与之相连的圆角,而 环形垫片则对其余两个圆角 密封。这三部分由一些短条 连接为一体,它们不起密封 作用。只是为了连接,并且 起到增力和支撑的作用。
皮垫子的槽孔
槽孔的作用在 大垫片不能直接观 察到的位置出现破 裂时介质会从槽孔 流出便于我们及时 的发现问题及时的 处理。 这些是非常重 要的。如果堵了会 出现什么问题?
换热器原理
编辑:李争
换热器
板式换热器
列管加热器
(过去加热工段用,现在没有这方 面的资料)
板式换热器
---阿发拉阀 热传递:热从一种介质转移到另一种介质。
介质通过换热器时, 介质将其部分热量传递 到金属板上,而金属板 壁又将这部分热量传递 到另一侧的介质上。
换热器结构 示意图
换热器各部件
特殊金属板


• 密封的系统中流动的液体,由于突然减速而出 现短时间的压力高峰,并且以声波的速度样管 道迅速进行,这一种现象成为水锤。 • 因此,水锤通常与系统的停止运转有关。然而, 当启动一个阀门,且管道内无介质流动时,流 体会突然冲进某些限留设备,入细漏网,水表 或热交换器,引起流速突然降低,如果不是完 全停止的话,这也会出现水锤现象。 • 最不利的情况是由于流体突然停止而引起的冲 击压力,可能比系统中的正常压力高几倍。
拆卸、安装问题
夹紧镙栓加紧要 保证对角同时动作, 运动速度要相同。
在拆卸前要先 测量A的长度,安 装加紧后的长度要 等于A。
安装时注意问题
垫片是有反正的要正 确放置
仔细观察这 个位置
垫片槽内要保证干净 无杂物
安装过程中要注意 的问题
插角有规则 的排列
正确安装


点滴的积累便是财富
微不足道的琐事可能 是生活中的最重要的事情。 不积跬(kui)步,无以行 千里;不积小流,无以成 江海。忽视了点滴的积累 后果很严重。
换热器的核心部位是 金属板和垫片
金属片的厚度、表面积、材质、直接决定了 换热器的换热效果。当然它的效果也与换热介质 的温度流量有关,这属于外部条件。在我们车间 是通过控制换热介质的流量来控制被换热介质的 温度。 在使用选型时要考虑换热和被换热介质的温 度化学性质和标准要求。垫片是一个整体成形的, 其材质一般为合成橡胶是根据温度,化学环境以 及其它的条件综合考虑而选择的。
相关文档
最新文档