基本不等式ppt课件
合集下载
2.2.1 基本不等式 课件(28张)

【定向训练】
已知a,b,c都是非负实数,试比较 a2+b2+ b2+c2+ c2+a2 与 2 (a+b+c)的大小. 【解析】因为a2+b2≥2ab,
所以2(a2+b2)≥a2+b2+2ab=(a+b)2,
所以 a2+b2(a+b2 ),
2
同理 b2+c2(b +c2),
2
c(2c++aa2), 2
xyz
【证明】因为x,y,z是互不相等的正数,且x+y+z=1,
所以 1-1=1-x= y+z 2 yz ,①
x
x
x
x
1-1=1-y=x+z 2 xz ,②
y
yy
y
1-1=1-z=x+y 2 xy ,③
z
zz
z
又x,y,z为互不相等的正数,由①×②×③,
得 ( 1-1)( 1-1)( 1-1>) 8.
【定向训练】
已知a,b,c为正数,
求证: b+c-a+c+a-b+a+b-c 3.
a
b
c
课堂素养达标
1.下列不等式中,正确的是
()
A.a+ 16 ≥8
B.a2+b2≥4ab
a
C. ab a+b
2
D.
x
2+
3 x2
2
3
【解析】选D.若a<0,则a+ 16 ≥8不成立,故A错;若a=1,b=1,a2+b2<4ab,故B错,
x
C.当x≥2时,x+ 1 的最小值为2
x
D.当0<x≤2时,x-
1
基本不等式又叫均值不等式精品PPT课件

x
y
y 2x 3 x y 3 2 2
当且仅当
y 2 x 即: y 2 x 时取“=”号 x y
1 x 2 2 2 y 2 2
即此时
y 2x 而 2 x y 1
ymin 3 2 2
正解二: 2x y 1
A、40 B、10
D)
C、4 D、2
1、应用均值不等式须注意以下三点:
(1)各项或各因式为正 (2)和或积为定值 (3)各项或各因式能取得相等的值,必要时作适当变形, 以满足上述前提,即“一正二定三等” 2、二元均值不等式具有将“和式”转化为“积式”和将“积 式”转 化为“和式”的放缩功能; 创设应用均值不等式的条件,合理拆分项或配凑因式是常 用的解题技巧,而拆与凑的成因在于使等号能够成立;
综上所述:当 x 0时,y min 2 当x 0时,y max 2
2 引例2:已知x 1, 求y x 的最小值 x 1 解法一: x 1 2 x x 1
2 y x 2 x 1
积不是 定值
解法二:
x 1, x 1 0 2 当且仅当x 时,y有最小值 x 1 此时x 2 x 2 0, 解得x 2, x 1(舍去) 2 2 4 2 1
1 xy 即 2 2 xy 2 2 1
错因:
过程中两次运用了
1 1 1 2 2 2 2 4 2 x y xy
1 1 即 的最小值为 4 x y
均值不等式中取“=”
号过渡,而这两次取
2
“=”号的条件是不同的,
故结果错。
1 1 正解一: 2x y 2x y x y
看谁最快
基本不等式课件(共43张PPT)

02
基本不等式的证明方法
综合法证明基本不等式
利用已知的基本不等式推导
01
通过已知的不等式关系,结合不等式的性质(如传递性、可加
性等),推导出目标不等式。
构造辅助函数
02
根据不等式的特点,构造一个辅助函数,通过对辅助函数的分
析来证明原不等式。
利用数学归纳法
03
对于涉及自然数n的不等式,可以考虑使用数学归纳法进行证明。
分析法证明基本不等式
寻找反例
通过寻找反例来证明某个不等式不成 立,从而推导出原不等式。
利数,可以利用中间值定理 来证明存在某个点使得函数值满足给 定的不等式。
通过分析不等式在极限情况下的性质, 来证明原不等式。
归纳法证明基本不等式
第一数学归纳法
通过对n=1和n=k+1时的情况进行归纳假设和推导,来证 明对于所有正整数n,原不等式都成立。
拓展公式及其应用
要点一
幂平均不等式
对于正实数$a, b$和实数$p, q$,且$p < q$,有 $left(frac{a^p + b^p}{2}right)^{1/p} leq left(frac{a^q + b^q}{2}right)^{1/q}$,用于比较不同幂次的平均值大小。
要点二
切比雪夫不等式
算术-几何平均不等式(AM-GM不等式):对于非负实数$a_1, a_2, ldots, a_n$,有 $frac{a_1 + a_2 + ldots + a_n}{n} geq sqrt[n]{a_1a_2ldots a_n}$,用于求解最值问题。
柯西-施瓦茨不等式(Cauchy-Schwarz不等式):对于任意实数序列${a_i}$和${b_i}$,有 $left(sum_{i=1}^{n}a_i^2right)left(sum_{i=1}^{n}b_i^2right) geq left(sum_{i=1}^{n}a_ib_iright)^2$,用于证明与内积有关的不等式问题。
基本不等式ppt课件

a b
12 3
1 4b 3a 1
+
8+ a + b ≥ 8+2
5a b(a+2b)=5
5
4b 3a
4b 3a 8+4 3
(当且仅当 a = b ,
·
=
5
a b
8+4 3
2 3
即 2b= 3a 时取等号),∴ + 的最小值为
.故选 B.
a b
5
22.(多选)(2021·湖南省长沙市长郡中学上学期适应性调查考试)小王从
n 4m 9
4m·n =2,
2
1
当且仅当 n=3,m=6时取等号.故选 C.
2
3
3.设 x>0,则函数 y=x+
-2的最小值为( A )
2x+1
A.0
1
B.2
解析
2≥2
C.1
3
D.2
1
2
3
由 于 x>0 , 则 y = x +
- = x+2 +
2
2x+1
1
x+ ·
2
m· n 4
二、高考小题
13.(2021·全国乙卷)下列函数中最小值为 4 的是( C )
A.y=x +2x+4
4
B.y=|sin x|+|sin x|
C.y=2 +2
4
D.y=ln x+
ln x
2
x
2-x
15.(2020·上海高考)下列不等式恒成立的是( B )
A.a2+b2≤2ab
C.a+b≥2 |ab|
命题中正确的是( AB )
A.若 P=1,则 S 有最小值 2
B.若 S+P=3,则 P 有最大值 1
12 3
1 4b 3a 1
+
8+ a + b ≥ 8+2
5a b(a+2b)=5
5
4b 3a
4b 3a 8+4 3
(当且仅当 a = b ,
·
=
5
a b
8+4 3
2 3
即 2b= 3a 时取等号),∴ + 的最小值为
.故选 B.
a b
5
22.(多选)(2021·湖南省长沙市长郡中学上学期适应性调查考试)小王从
n 4m 9
4m·n =2,
2
1
当且仅当 n=3,m=6时取等号.故选 C.
2
3
3.设 x>0,则函数 y=x+
-2的最小值为( A )
2x+1
A.0
1
B.2
解析
2≥2
C.1
3
D.2
1
2
3
由 于 x>0 , 则 y = x +
- = x+2 +
2
2x+1
1
x+ ·
2
m· n 4
二、高考小题
13.(2021·全国乙卷)下列函数中最小值为 4 的是( C )
A.y=x +2x+4
4
B.y=|sin x|+|sin x|
C.y=2 +2
4
D.y=ln x+
ln x
2
x
2-x
15.(2020·上海高考)下列不等式恒成立的是( B )
A.a2+b2≤2ab
C.a+b≥2 |ab|
命题中正确的是( AB )
A.若 P=1,则 S 有最小值 2
B.若 S+P=3,则 P 有最大值 1
不等式的基本性质PPT课件

事实上,如果a>b, c>0,因为ac-bc=c(ab)>0,所以ac>bc.
(7)将不等式6>-3和-4<-2的两边都乘-3,不等号的 方向是否改变?两边都除以-2呢?
6×3 < (-3)×3; (-4)×3 > (-2)×3; 6÷2 < (-3)÷2; (-4)÷2 > (-2)÷2.
(8)由(7)你发现了什么结论?能用不等式表示 出来吗?
a>b;甲的年龄大,a+c>b+c
(2)在数轴上,点A与点B分别对应实数a,b, 并且点A在点B的右边,请你用不等式表示a, b之间的大小关系.如果同时将点A,B向右(或 向左)沿x轴移动c个单位长度,得到点A′,B ′ (如图).你能用不等式表示点A′,B ′所对应 的数的大小关系吗?
a>b;a+c>b+c;a-c>b-c
判断下列式子是不是不等式:
(1)-3<0
是
(2)4x+3y>0 是
(3)x=3
不是
(4) x2+xy+y2 不是
(5)x+2>y+5 是
2 不等式的性质
等式具有那些性质? 不等式是否具有这些类似性质?
等式基本性质1:
等式的两边都加上(或减去)同一个整 式,等式仍旧成立
如果a=b,那么a±c=b±c
(3)由(1)(2),你发现了有关不等式的什 么结论呢?你能用不等式表示表示出来吗?
如果a>b,那么a±c>b±c.
也就是说,不等式的两边都加上(或减 去)同一数或同一个整式,不等号的方 向不变。
我们把这一性质作为不等式基本性质1.
(7)将不等式6>-3和-4<-2的两边都乘-3,不等号的 方向是否改变?两边都除以-2呢?
6×3 < (-3)×3; (-4)×3 > (-2)×3; 6÷2 < (-3)÷2; (-4)÷2 > (-2)÷2.
(8)由(7)你发现了什么结论?能用不等式表示 出来吗?
a>b;甲的年龄大,a+c>b+c
(2)在数轴上,点A与点B分别对应实数a,b, 并且点A在点B的右边,请你用不等式表示a, b之间的大小关系.如果同时将点A,B向右(或 向左)沿x轴移动c个单位长度,得到点A′,B ′ (如图).你能用不等式表示点A′,B ′所对应 的数的大小关系吗?
a>b;a+c>b+c;a-c>b-c
判断下列式子是不是不等式:
(1)-3<0
是
(2)4x+3y>0 是
(3)x=3
不是
(4) x2+xy+y2 不是
(5)x+2>y+5 是
2 不等式的性质
等式具有那些性质? 不等式是否具有这些类似性质?
等式基本性质1:
等式的两边都加上(或减去)同一个整 式,等式仍旧成立
如果a=b,那么a±c=b±c
(3)由(1)(2),你发现了有关不等式的什 么结论呢?你能用不等式表示表示出来吗?
如果a>b,那么a±c>b±c.
也就是说,不等式的两边都加上(或减 去)同一数或同一个整式,不等号的方 向不变。
我们把这一性质作为不等式基本性质1.
基本不等式及其应用ppt课件

【解析】 x+x-4 1=(x-1)+x-4 1+1≥ 2 x-1·x-4 1+1=5.(当且仅当 x=3 时取等号)
易错点睛:(1)忽略基本不等式成立的前提条件致误. (2)忽略“定值”致误.
课堂考点突破
——精析考题 提升能力
考点一 利用基本不等式求最值
角度 1:拼凑法求最值
2
【例 1】 (1)已知 0<x<1,则 x(4-3x)取得最大值时 x 的值为_3_______.
A.5
B.6
C.7
D.8
【解析】 因为每台机器生产的产品可获得的总利润 s(单位:万元)与机器运转时间
t(单位:年,t∈N*)的关系为 s=-t2+23t-64,所以年平均利润 y=st=-t-6t4+23=-
t+6t4+23≤-2 t·6t4+23=7,当且仅当 t=8 时等号成立,故要使年平均利润最大,则 每台机器运转的时间 t 为 8,故选 D.
即该厂家 2022 年的促销费用投入 3 万元时,厂家的利润最大,最大为 21 万元.
『变式训练』
4.某公司购买了一批机器投入生产,若每台机器生产的产品可获得的总利润 s(单位:
万元)与机器运转时间 t(单位:年,t∈N*)的关系为 s=-t2+23t-64,要使年平均利润最
大,则每台机器运转的时间 t 为( D )
【解析】 (1)因为函数 f(x)=4x3-ax2-2bx 在 x=1 处有极值,所以 f ′(1)=12-2a -2b=0,即 a+b=6,又 a>0,b>0,则4a+1b=16(a+b)·4a+1b=165+ab+4ab≥5+6 4=32 当且仅当ab=4ab,即a=2b=4时取“=”,故选 C.
【解析】 解法一(换元消元法): 由已知得 x+3y=9-xy, 因为 x>0,y>0,所以 x+3y≥2 3xy, 所以 3xy≤x+23y2,当且仅当 x=3y,即 x=3,y=1 时取等号,即(x+3y)2+12(x+3y) -108≥0. 令 x+3y=t,则 t>0 且 t2+12t-108≥0, 得 t≥6,即 x+3y 的最小值为 6.
易错点睛:(1)忽略基本不等式成立的前提条件致误. (2)忽略“定值”致误.
课堂考点突破
——精析考题 提升能力
考点一 利用基本不等式求最值
角度 1:拼凑法求最值
2
【例 1】 (1)已知 0<x<1,则 x(4-3x)取得最大值时 x 的值为_3_______.
A.5
B.6
C.7
D.8
【解析】 因为每台机器生产的产品可获得的总利润 s(单位:万元)与机器运转时间
t(单位:年,t∈N*)的关系为 s=-t2+23t-64,所以年平均利润 y=st=-t-6t4+23=-
t+6t4+23≤-2 t·6t4+23=7,当且仅当 t=8 时等号成立,故要使年平均利润最大,则 每台机器运转的时间 t 为 8,故选 D.
即该厂家 2022 年的促销费用投入 3 万元时,厂家的利润最大,最大为 21 万元.
『变式训练』
4.某公司购买了一批机器投入生产,若每台机器生产的产品可获得的总利润 s(单位:
万元)与机器运转时间 t(单位:年,t∈N*)的关系为 s=-t2+23t-64,要使年平均利润最
大,则每台机器运转的时间 t 为( D )
【解析】 (1)因为函数 f(x)=4x3-ax2-2bx 在 x=1 处有极值,所以 f ′(1)=12-2a -2b=0,即 a+b=6,又 a>0,b>0,则4a+1b=16(a+b)·4a+1b=165+ab+4ab≥5+6 4=32 当且仅当ab=4ab,即a=2b=4时取“=”,故选 C.
【解析】 解法一(换元消元法): 由已知得 x+3y=9-xy, 因为 x>0,y>0,所以 x+3y≥2 3xy, 所以 3xy≤x+23y2,当且仅当 x=3y,即 x=3,y=1 时取等号,即(x+3y)2+12(x+3y) -108≥0. 令 x+3y=t,则 t>0 且 t2+12t-108≥0, 得 t≥6,即 x+3y 的最小值为 6.
基本不等式ppt课件

a+b
当且仅当a
2
= b时,等号成立.
思考:如图,是圆的直径,点是上一点, = ,
D
= .过点作垂直于的弦,连接,.
a+b
ab
2
半径 = _______________,则
= _______________
与大小关系怎么样?
a+b
≥
(1)当积xy等于定值P时,
≥
2
证明:∵ x,y都是正数, ∴
1 2
时,积有最大值 .
4
xy.
p, ∴ x + y ≥ 2 p,
积定和最小
当且仅当x = y时,上式等号成立.
于是,当x = y时,和x + y有最小值2 p.
(2)当和x + y等于定值S时, xy ≤
S
,∴xy
2
当且仅当x = y,上式等号成立.
2
2
∴x +
4
]
2−x
4
,得x
2−x
4
的最大值为−2.
x−2
+ 2 ≤ −2 (2 − x)(
4
)
2−x
+ 2 = −2,
= 0或x = 4(舍去),即x = 0时等号成立.
练习巩固
练习2:已知0 < < 1,求 1 − 的最大值.
解:∵0 < < 1,∴ 1 − x > 0
∴ 1 − ≤
∴x +
4
x+4
− 4 ≥ 2 (x + 4) ∙
4
,即x
x+4
4
的最小值为0.
基本不等式(共43张)ppt课件

解法步骤与技巧
01
02
03
移项
将不等式两边的同类项进 行合并,并把未知数移到 不等式的一边,常数移到 另一边。
合并同类项
将移项后的不等式两边的 同类项进行合并。
系数化为1
将不等式两边的系数化为 1,得到不等式的解集。
解法步骤与技巧
注意不等号的方向
在解不等式时,要注意不等号的方向,特别是在乘以或除以一个负数时,不等 号的方向要发生变化。
基本不等式(共43张)ppt课件
目录
• 基本不等式概念及性质 • 一元一次不等式解法 • 一元二次不等式解法 • 绝对值不等式解法 • 分式不等式和无理不等式解法 • 基本不等式在几何中的应用 • 基本不等式在函数中的应用 • 总结回顾与拓展延伸
01
基本不等式概念及性质
不等式定义与分类
不等式定义
根);
04
05
当 $Delta < 0$ 时,方程无 实根,有两个共轭复根。
04
绝对值不等式解法
绝对值概念及性质
绝对值定义
对于任意实数$x$,其绝对值$|x|$定义为:若$x geq 0$,则$|x| = x$;若$x < 0$,则$|x| = -x$。
绝对值的性质
非负性、对称性、三角不等式。
绝对值不等式解法步骤
将不等式左边进行因式分解,找出不 等式的临界点。
无理不等式解法
第一步
确定无理不等式的定义域,即根 号内的表达式必须大于等于零。
第二步
通过平方消去根号,将无理不等式 转化为有理不等式。
第三步
利用有理不等式的解法,求解转化 后的不等式,得到原无理不等式的 解集。
综合应用举例
例1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E
则CD=_a_b ,
ab
CD小于或等于圆的半径
半径为_2_.
ab a b . 上述不等式当且仅当点C与圆心重合,即当
2
a=b时,等号成立.
几何意义:半径不小于半弦
填表比较:
适用范围
a2 b2≥2ab
a,b∈R
a b≥ ab 2
a>0,b>0
文字叙述
两数的平方和不 两个正数的算术平均数不 小于它们积的2倍 小于它们的几何平均数
S正方形ABCD > 4S直角三角形,
即a b 2ab. 2
2
有可能相等吗???又什 么时候取等于号呢?
D
D
a2 b2
b
G Fa
C
a
A
E
A E(FGH)
b
C
H
B
B
重要不等式: 一般地,对于任意实数a、b,我们有
a2 b2 2ab
当且仅当a=b时,等号成立。 0,b 0,且4a b 1,求ab的最大值。 (4)已知x 2,求x 4 的最小值。
x2 (5)已知x 0, y 0,且x y 1,求 4 9 的最小值。
xy
2020/7/12
课堂巩固
1.当x 0时,函数y=x 4的值域是____ x
2.当x<0时,函数y=x+ 4的值域是_____ x
ab
问:在结论成立的基础上,条件“a>0,b>0”可以变化吗?
变3:若 x 3 ,求 y x 1 的最小值. x3
2020/7/12
构造条件
三、应用 发现运算结构,应用不等式
ab a b(a 0,b 0) 2
ab
a
2
b
2
(a
0,
b
0)
例2、已知 0 x 1 ,求函数 y x(1 x) 的最大值.
基本不等式课件
第24届国际数学家大会 会标是根据中国古代 数学家赵爽的弦图设计的, 颜色的明暗使它看上去像 一个风车,代表中国人民 热情好客.
中国古代的数学家们不 仅很早就发现并应用勾股 定理,而且很早就尝试对 勾股定理作理论的证明。 最早对勾股定理进行证明 的,是三国时期吴国的数 学家赵爽。赵爽创制了一 幅“勾股圆方图”,用形 数结合得到方法,给出了 勾股定理的详细证明。
3、等号成立条件必须存在.
“一正二定三等”,这三个条件缺一不 可.
2020/7/12
应用基本不等式求最值的条件:
ab a b 2
( a>0,b>0)
一正
二定
三相等
a与b为正实数
2020/7/12
积定和最小 若等号成立,
和定积最大
a与b必须能 够相等
例1 (1)用篱笆围一个面积为100 m2的矩形菜 园,问这个矩形的长、宽各为多少时,所用篱 笆最短.最短的篱笆是多少?
证明:因为a2 + b2 - 2ab =(a - b)2 0, 所以a2 + b2 2ab.
一般地,对于任意实数a,b,我们有 a2 b2 2ab,
当且仅当a=b时,等号成立.
特别地,如果a > 0,b > 0, 我们用 a, b 分别代替
a,b, 可得 a b 2 ab.
ab a b (a 0,b 0). 2
变式:已知
0
x
1
,求函数
y
x(1
2 x ) 的最大值.
2
2020/7/12
均值定理:
已知x,y都是正数,(1)如果积xy是定值P,那么
当x=y时,和x+y有最小值 2 P ;(2)如果和x+y
是定值S,那么当x=y时,积xy有最大值 1 S 2.
条件说明:
4
1、函数式中各项必须都是正数.
2、函数式中含变数的各项的和或积必须都是常值(定值).
3.求证 x2 2 2 x2 1
4. 已知x>0,y>0,且2x+y=1,求 1 1 的最小值? xy
5.x 0, y 0且 1 9 1,求x y的最小值? xy
6.已知a 0,b 0, a b 1,求证(1 1 )(1 1) 9 ab
分析:设矩形菜园的长为x m,宽为y m, 面积确定,则xy=100,篱笆的长为2(x+y)m. 即求(x+y)的最小值.
解:设矩形菜园的长为x m,宽为y m,
则xy=100,篱笆的长为2(x+y)m.
因为 x y xy,所以x y 2 100. 2
2(x y) 40.
等号当且仅当x=y时成立,此时x=y=10. 因此,这个矩形的长、宽都为10 m时,所 用篱笆最短,最短篱笆是40 m.
矩形菜园的面积为xy
m2 .
因为
xy x y 18 9,得xy 81.
22
当且仅当x=y,即x=y=9时,等号成立.
因此,这个矩形的长、宽都为9 m时, 菜园的面积最大,最大面积是81 m2 .
例练2习.(1)若x 0,求f (x) 12 3x的最小值。 x
(2)若x 0,求f (x) 12 3x的最大值。 x
ab 2
叫做正数a,b的算术平均数,
ab 叫做正数a,b的几何平均数.
基本不等式
ab a b 2
(a 0,b 0)
可以叙述为:
两个正数的几何平均数不大于它们的算术平均数.
3、几何解释 D
A
a o• C b B
如图,AB是圆的直径,C 是AB上任一点, AC=a,CB=b,过点C作垂 直于AB的弦DE,连接 AD,BD,
“=”成立条件
a=b
a=b
注意从不同角度认识基本不等式
2020/7/12
二、应用 发现运算结构,应用不等式
ab a b(a 0,b 0)
a b 2 a(b a 0,b 0)
2
例1、若
x 0 ,求 y
x
1
的最小值.
x
变1:若 x 0,求 y 3x 12 的最小值
x
变2:若a 0, b 0,求 y b a 的最小值.
例1 (2)一段长为36 m的篱笆围成一个矩形菜 园,问这个矩形的长、宽各为多少时,菜园的面 积最大.最大面积是多少?
分析:设矩形菜园的长为x m,宽为y m, 周长确定,则2(x+y)=36,篱笆的面积为xy m2.即求xy的最大值.
解:设矩形菜园的长为x m,宽为y m,
则 2(x + y)= 36, x+ y=18,
2020/7/12
赵爽:弦图
探究点1 探究基本不等式 1.你能在这个图案中找出面积间的一些相等关系或 不等关系吗?
D
C GF HE A
B
D
设AE=a,BE=b,
GF
HE
A
a Z.x.x. K
b
a2 b2 B
C 则正方形ABCD的面积 是___a_2+_b_2__, 这4个直角三角形的面 积之和是___2_a_b____,