2.2 基本不等式ppt课件
合集下载
人教A版必修第一册2.2基本不等式课件

【预习自测】
通过以上结论可以得出,利用基本不等式求最值要注意哪几个方面? 【提示】利用基本不等式求最值,必须按照“一正,二定,三相等” 的原则,即: (1)一正:符合基本不等式a+2 b≥ ab成立的前提条件,a>0,b>0; (2)二定:化不等式的一边为定值; (3)三相等:必须存在取“=”号的条件,即“=”号成立. 以上三点缺一不可.
易错警示 忽视基本不等式成立的前提“正数”
求 y=x+1x的取值范围.
错解:因为 y=x+1x≥2 {y|y≥2}.
x·1x =2,所以 y=x+1x 的取值范围为
易错防范:没有考虑为负数的情形.防范措施是运用基本不等式解
题切记“一正二定三相等”.
正解:由题意,y=x+1x有意义时 x 的取值范围为{x|x≠0}. 当 x>0 时,y=x+1x≥2 x·1x=2,当 x=1 时取等号; 当 x<0 时,y=x+1x=--x+-1x≤-2 -x·-1x=-2,当 x=- 1 时取等号. 综上,y=x+1x的取值范围是{y|y≤-2 或 y≥2}.
2.(1)已知 x>0,y>0,1x+9y=1,则 x+y 的最小值为________. (2)(2021 年唐山模拟)若正数 x,y 满足 4x2+9y2+3xy=30,则 xy 的 最大值是________.
【答案】(1)16 (2)2
【解析】(1)因为1x+9y=1,所以 x+y=(x+y)·1x+9y=1+9yx+yx+9=
ab c.
上 述 三 个 不 等 式 两 边 均 为 正 , 分 别 相 乘 , 得 1a-1 1b-1 1c-1
≥2
bc 2 a·
ac 2 b·
cab=8,当且仅当
a=b=c=13时,等号成立.
2.2.1 基本不等式 课件(28张)

【定向训练】
已知a,b,c都是非负实数,试比较 a2+b2+ b2+c2+ c2+a2 与 2 (a+b+c)的大小. 【解析】因为a2+b2≥2ab,
所以2(a2+b2)≥a2+b2+2ab=(a+b)2,
所以 a2+b2(a+b2 ),
2
同理 b2+c2(b +c2),
2
c(2c++aa2), 2
xyz
【证明】因为x,y,z是互不相等的正数,且x+y+z=1,
所以 1-1=1-x= y+z 2 yz ,①
x
x
x
x
1-1=1-y=x+z 2 xz ,②
y
yy
y
1-1=1-z=x+y 2 xy ,③
z
zz
z
又x,y,z为互不相等的正数,由①×②×③,
得 ( 1-1)( 1-1)( 1-1>) 8.
【定向训练】
已知a,b,c为正数,
求证: b+c-a+c+a-b+a+b-c 3.
a
b
c
课堂素养达标
1.下列不等式中,正确的是
()
A.a+ 16 ≥8
B.a2+b2≥4ab
a
C. ab a+b
2
D.
x
2+
3 x2
2
3
【解析】选D.若a<0,则a+ 16 ≥8不成立,故A错;若a=1,b=1,a2+b2<4ab,故B错,
x
C.当x≥2时,x+ 1 的最小值为2
x
D.当0<x≤2时,x-
1
2.2基本不等式(两个课时)课件(人教版)

的性质可得出结论.
【详解】 x
0 ,y 0 ,z 0 ,
由基本不等式可得 x y 2 xy ,y z 2 yz ,z x 2 zx ,
由不等式的性质可得 x y y z z x 2 xy 2 yz 2 zx 8xyz ,
条件:“一正二定三相等”,属于基础题.
章节:
第二章一元二次函数、方程和不等式
标题:2.2基本不等式
第2课时
1.基本不等式的应用
课堂例题
例3 (1)用篱笆围一个面积为1002 的矩形菜园,当这个矩形的边长为多
少时,所用篱笆最短?最短篱笆的长度是多少?
(2)用一段长为36的篱笆围成一个矩形菜园,当这个矩形的边长为多少
析问题解决问题的能力.
2.通过创设具体情景,启动观察、分析、归纳、总结、抽
象概括等思维活动,培养学生的思维能力,体会数学概念
的学习方法,通过运用多媒体的教学手段,引领学生主动
探索基本不等式性质,体验成功的乐趣.
3.通过问题情境的设置,使学生认识到数学是从实际中来,
培养学生用数学的眼光看世界,通过数学思维认知世界,
天平右盘中,再取出一些黄金放在天平左盘中使天平平衡;最后将两次称得的黄金交给顾客.
项或配凑,在拆项与配凑的过程中,首先要考虑基本不等式使用的条件,
其次要明确基本不等式具有将“和式”转化为“积式”或者将“积式”
转化为“和式”的功能.
基本不等式:
+
∀ > 0, > 0, ≤
2
当且仅当=时,等号成立.
课本P46 练习
ab
1.已知 a 、 bR ,求证: ab
1 2 ( x 1)
【详解】 x
0 ,y 0 ,z 0 ,
由基本不等式可得 x y 2 xy ,y z 2 yz ,z x 2 zx ,
由不等式的性质可得 x y y z z x 2 xy 2 yz 2 zx 8xyz ,
条件:“一正二定三相等”,属于基础题.
章节:
第二章一元二次函数、方程和不等式
标题:2.2基本不等式
第2课时
1.基本不等式的应用
课堂例题
例3 (1)用篱笆围一个面积为1002 的矩形菜园,当这个矩形的边长为多
少时,所用篱笆最短?最短篱笆的长度是多少?
(2)用一段长为36的篱笆围成一个矩形菜园,当这个矩形的边长为多少
析问题解决问题的能力.
2.通过创设具体情景,启动观察、分析、归纳、总结、抽
象概括等思维活动,培养学生的思维能力,体会数学概念
的学习方法,通过运用多媒体的教学手段,引领学生主动
探索基本不等式性质,体验成功的乐趣.
3.通过问题情境的设置,使学生认识到数学是从实际中来,
培养学生用数学的眼光看世界,通过数学思维认知世界,
天平右盘中,再取出一些黄金放在天平左盘中使天平平衡;最后将两次称得的黄金交给顾客.
项或配凑,在拆项与配凑的过程中,首先要考虑基本不等式使用的条件,
其次要明确基本不等式具有将“和式”转化为“积式”或者将“积式”
转化为“和式”的功能.
基本不等式:
+
∀ > 0, > 0, ≤
2
当且仅当=时,等号成立.
课本P46 练习
ab
1.已知 a 、 bR ,求证: ab
1 2 ( x 1)
《基本不等式》一元二次函数、方程和不等式PPT教学课件(第一课时基本不等式)

1.下列不等式中,正确的是( )
A.a+4a≥4
B.a2+b2≥4ab
C. ab≥a+2 b
D.x2+x32≥2 3
解析:选 D.a<0,则 a+4a≥4 不成立,故 A 错;a=1,b=1,
a2+b2<4ab,故 B 错,a=4,b=16,则 ab<a+2 b,故 C 错;
由基本不等式可知 D 项正确.
2.2 基本不等式
第1课时 基本不等式
第二章 一元二次函数、方程和不等式
考点
学习目标
基本不等式
理解基本不等式的内容及 导出过程
利用基本不等式 能够运用基本不等式求函
求最值
数或代数式的最值
核心素养 逻辑推理 数学运算
第二章 一元二次函数、方程和不等式
问题导学 预习教材 P44-P46,并思考以下问题: 1.基本不等式的内容是什么? 2.基本不等式成立的条件是什么? 3.利用基本不等式求最值时,应注意哪些问题?
栏目 导引
第二章 一元二次函数、方程和不等式
■名师点拨 利用基本不等式求最值,必须按照“一正,二定,三相等”的 原则,即: ①一正:符合基本不等式a+2 b≥ ab成立的前提条件,a>0,b >0; ②二定:化不等式的一边为定值; ③三相等:必须存在取“=”号的条件,即“=”号成立. 以上三点缺一不可.
第二章 一元二次函数、方程和不等式
所以 y=x+x-4 2=x-2+x-4 2+2
≥2 (x-2)·x-4 2+2=6,
当且仅当 x-2=x-4 2, 即 x=4 时,等号成立.
所以 y=x+x-4 2的最小值为 6.
栏目 导引
第二章 一元二次函数、方程和不等式
(2)因为 0<x<12, 所以 1-2x>0, 所以 y=12x(1-2x)=14×2x×(1-2x)≤142x+12-2x2=14×14= 116, 当且仅当 2x=1-2x, 即当 x=14时,ymax=116.
2.2基本不等式(第二课时)课件(人教版)

x 3
x2 x 2
[变式2]若x 0, 则
的最小值是_______ .
x 1
2
x2 x 2
x ( x 1) 2
2
解:
x
x 1
x 1
x 1
( x 1)
2
1 2 2 1
x 1
2
,
x 1
即x 2 1时等号成立 .
当且仅当 x 1
2m
8n
2m
1
1
=8+ +
+ 1,当且仅当 =
,即 m = , n = 时,等号成立,
m
n
m
n
2
4
4
n+2
所以 +
的最小值为17.
m
n
典型例题:常数代换法求最值
例6
若x, y 0且4 x y xy,
16
(1) xy的最小值是_______
9
(2) x y的最小值是______
.
析 : (1)4 x y 2 4 xy , 即xy 4 xy , xy 16.
证明 ∵ > , > , > ,且 + + = ,
∴ +
=+
+
=+
=
++
+
++
+ + + +
x2 x 2
[变式2]若x 0, 则
的最小值是_______ .
x 1
2
x2 x 2
x ( x 1) 2
2
解:
x
x 1
x 1
x 1
( x 1)
2
1 2 2 1
x 1
2
,
x 1
即x 2 1时等号成立 .
当且仅当 x 1
2m
8n
2m
1
1
=8+ +
+ 1,当且仅当 =
,即 m = , n = 时,等号成立,
m
n
m
n
2
4
4
n+2
所以 +
的最小值为17.
m
n
典型例题:常数代换法求最值
例6
若x, y 0且4 x y xy,
16
(1) xy的最小值是_______
9
(2) x y的最小值是______
.
析 : (1)4 x y 2 4 xy , 即xy 4 xy , xy 16.
证明 ∵ > , > , > ,且 + + = ,
∴ +
=+
+
=+
=
++
+
++
+ + + +
2.2 基本不等式(课件)

数学 必修 第一册 A
返回导航
第二章 一元二次函数、方程和不等式
方法二:由2x+3y=2 得,3x+2y=2xy, ∵x>0,y>0,∴3x+2y≥2 6xy,等号在 3x=2y 时成立,
∴2xy≥2 6xy,∴xy≥6.
3x=2y 由2x+3y=2
,得yx==32 .
∴xy 的最小值为 6.
数学 必修 第一册 A
数学 必修 第一册 A
返回导航
第二章 一元二次函数、方程和不等式
探究二 利用基本不等式求最值
已知 x>0,y>0,且1x+9y=1,求 x+y 的最小值. 解 方法一:(1 的代换)∵1x+9y=1,∴x+y=(x+y)·1x+9y=10+yx+9yx. ∵x>0,y>0,∴yx+9yx≥2 yx·9yx=6. 当且仅当yx=9yx,即 y=3x 时,取等号. 又1x+9y=1,∴x=4,y=12,∴x+y≥16. ∴当 x=4,y=12 时,x+y 取最小值 16.
数学 必修 第一册 A
返回导航
第二章 一元二次函数、方程和不等式
知识点2 应用基本不等式求最值
已知x,y都是正数,则 (1)如果积xy等于定值P,那么当____x_=__y_____时,和x+y有最小值__2___P_____. (2) 如 果 和 x + y 等 于 定 值 S , 那 么 当 ___x_=__y______ 时 , 积 xy 有 最 大 值 ___14_S_2_______. [微思考] 利用基本不等式求最值时应注意哪几个条件?若求和(积)的最值时,一般要确 定哪个量为定值? 提示:三个条件是:一正,二定,三相等.求和的最小值,要确定积为定值; 求积的最大值,要确定和为定值.
数学 必修 第一册 A
人教版高中数学A版必修一2.2 基本不等式课件

提示:①AB 表示圆的直径;②������+2������表示线段 OD;③ ������������对应线段 CD; ④圆的半径大于或等于 CD,即������+2������ ≥ ������������.基本不等式的几何意义是 “半径不小于半弦”.
一二
课前篇 自主预习
2.填空
我们称不等式 ������������ ≤ ������+2������为基本不等式,其中 a>0,b>0,当且仅当 a=b 时,等号成立.
∴xy≤4,当且仅当 x=y=2 时,等号成立, ∴xy 的最大值为 4.
答案:(1)4 (2)4
课前篇 自主预习
探究一
探究二
探究三 随堂演练
基本不等式的理解
例1下列命题正确的是( )
A.若 x≠0,则 x+4������≥4
B.若 a,b∈R,且 ab>0,则������������ + ������������≥2
课堂篇 探究学习
探究一
探究二
探究三 随堂演练
变式训练2(1)已知a,b,c,d都是正数,求证:(ab+cd)(ac+bd)≥4abcd.
(2)已知 a>0,b>0,且 a+b=2,求证:1������ + 1������≥2. 证明(1)因为 a,b,c,d 都是正数,所以
ab+cd≥2 ������������������������,ac+bd≥2 ������������������������,
C.
������2 + 2 +
1 的最小值为
������2+2
2
一二
课前篇 自主预习
2.填空
我们称不等式 ������������ ≤ ������+2������为基本不等式,其中 a>0,b>0,当且仅当 a=b 时,等号成立.
∴xy≤4,当且仅当 x=y=2 时,等号成立, ∴xy 的最大值为 4.
答案:(1)4 (2)4
课前篇 自主预习
探究一
探究二
探究三 随堂演练
基本不等式的理解
例1下列命题正确的是( )
A.若 x≠0,则 x+4������≥4
B.若 a,b∈R,且 ab>0,则������������ + ������������≥2
课堂篇 探究学习
探究一
探究二
探究三 随堂演练
变式训练2(1)已知a,b,c,d都是正数,求证:(ab+cd)(ac+bd)≥4abcd.
(2)已知 a>0,b>0,且 a+b=2,求证:1������ + 1������≥2. 证明(1)因为 a,b,c,d 都是正数,所以
ab+cd≥2 ������������������������,ac+bd≥2 ������������������������,
C.
������2 + 2 +
1 的最小值为
������2+2
2
2.2基本不等式(第1课时)课件(人教版)

立.当且仅当 = 时,等号成立.把这个过程倒过来,就是证明的过程.
新知:基本不等式的理解
1、对公式
+
≥
+
及
≥ 的理解.
(1)成立的条件是不同的:前者只要求, 都是实数,而后者要求, 都是正数;
(2)取等号“=” 的条件在形式上是相同的,都是“当且仅当 = 时取等号”.
2 + 2 ⩾ 2 ,③
①+②+③得;
2 2 + 2 2 + 2 2 ⩾ 2 + 2 + 2 .
∴ 2 + 2 + 2 ⩾ + +
(当且仅当 = = 等号成立).
典型例题
题型三:利用基本不等式证明不等式
【对点训练6】利用基本不等式证明:已知 , , 都是正数,求证: + + + ≥ 8
A . 因 为 , 为 正实 数, 所以 +
≥2
C . 因 为 < 0, 所以 4 + ≥ 2
4
⋅ =4
D . 因 为 , ∈ R , < 0,所 以 +
⋅
=−
)
B . 因 为 > 3, 所以 4 + ≥ 2
=2
−
+ −
【解析】∵ , , 都是正数,
∴ + ≥ 2 > 0 (当且仅当 = 时取等号);
+ ≥ 2 > 0 (当且仅当 = 时取等号);