基本不等式 (共37张PPT)
合集下载
基本不等式 完整版课件

• 不等式的证明技巧—字母轮换不 等式的证法
求证:a4+b4+c4≥a2b2+b2c2+c2a2≥
abc(a+b+c).
• [分析] 本题中的表达式具有轮换对称关系,将表达式中字母轮换
a→b→c→a后表达式不变,这类问题证明一般变为几个表达式(通常几
个字母就需几个表达式)迭加(乘),从而获解.
[证明] 先证 a4+b4+c4≥a2b2+b2c2+c2a2, ∵a2+b2≥2ab(a,b∈R), ∴a4+b4≥2a2b2,b4+c4≥2b2c2,c4+a4≥2c2a2, ∴2(a4+b4+c4)≥2a2b2+2b2c2+2c2a2, ∴a4+b4+c2≥a2b2+b2c2+c2a2,
又∵ba+ab≥2,ac+ac≥2,bc+bc≥2,
当且仅当ba=ab,ac=ac,bc=bc,即 a=b=c=13时,等号成立,
∴1a+1b+1c≥3+2+2+2=9.
[方法总结] 在对代数式进行变换时,并不是只能将代数 式中的“元”消去,也可利用整体代换将某些“常数”消去.
已知 a、b、c∈(0,+∞),且 a+b+c=1, 求证:(1a-1)(1b-1)(1c-1)≥8.
• [答案] 一正 二定 三相等
• 1.由基本不等式导出的几个结论
(1)反向不等式:a+b≤ 2a2+b2(a、b∈R+),由 a2+ b2≥2ab,两边同加上 a2+b2 得 2(a2+b2)≥(a+b)2 开方即得.
(2)ab≤(a+2 b)2,(a、b∈R+),由a+2 b≥ ab两边平方即得. (3)一个重要不等式链:b≥a>0 时,b≥ a2+2 b2≥a+2 b ≥ ab≥a2+abb=1a+2 1b≥a.
• 综合法证明不等式
已知 a、b、c、d 都是实数,且 a2+b2=1,c2 +d2=1,求证:|ac+bd|≤1.
2019-2020学年新人教B版必修一 基本不等式及其应用 课件(65张)

123456
2 题型分类 深度剖析
PART TWO
多维探究
题型一 利用基本不等式求最值
命题点1 配凑法 2
例1 (1)已知0<x<1,则x(4-3x)取得最大值时x的值为_3__. 解析 x(4-3x)=13·(3x)(4-3x)
≤13·3x+24-3x2=43, 当且仅当 3x=4-3x,即 x=23时,取等号.
2x+y2+x-2y2
解析 由已知可得
15
=1,
∴2x+1 y2+x-42y2=2x+y21+5x-2y2×2x+1 y2+x-42y2
=1155+2x-x+2yy22+4x2-x+2yy22≥115(5+4)=53, 当且仅当|x-2y|= 2|2x+y|时取等号.
定积最大)
【概念方法微思考】
1.若两个正数的和为定值,则这两个正数的积一定有最大值吗? 提示 不一定.若这两个正数能相等,则这两个数的积一定有最大值;若这两 个正数不相等,则这两个正数的积无最大值. 2.函数 y=x+1x的最小值是 2 吗? 提示 不是.因为函数 y=x+1x的定义域是{x|x≠0},当 x<0 时,y<0,所以函 数 y=x+1x无最小值.
例 6 已知不等式(x+y)1x+ay≥9 对任意正实数 x,y 恒成立,则正实数 a 的最 小值为_4__.
解析 已知不等式(x+y)1x+ay≥9 对任意正实数 x,y 恒成立, 只要求(x+y)1x+ay的最小值大于或等于 9, ∵1+a+yx+ayx≥a+2 a+1, 当且仅当 y= ax 时,等号成立, ∴a+2 a+1≥9, ∴ a≥2 或 a≤-4(舍去),∴a≥4, 即正实数a的最小值为4.
123456
5.若函数 f(x)=x+x-1 2(x>2)在 x=a 处取最小值,则 a=_3__.
2 题型分类 深度剖析
PART TWO
多维探究
题型一 利用基本不等式求最值
命题点1 配凑法 2
例1 (1)已知0<x<1,则x(4-3x)取得最大值时x的值为_3__. 解析 x(4-3x)=13·(3x)(4-3x)
≤13·3x+24-3x2=43, 当且仅当 3x=4-3x,即 x=23时,取等号.
2x+y2+x-2y2
解析 由已知可得
15
=1,
∴2x+1 y2+x-42y2=2x+y21+5x-2y2×2x+1 y2+x-42y2
=1155+2x-x+2yy22+4x2-x+2yy22≥115(5+4)=53, 当且仅当|x-2y|= 2|2x+y|时取等号.
定积最大)
【概念方法微思考】
1.若两个正数的和为定值,则这两个正数的积一定有最大值吗? 提示 不一定.若这两个正数能相等,则这两个数的积一定有最大值;若这两 个正数不相等,则这两个正数的积无最大值. 2.函数 y=x+1x的最小值是 2 吗? 提示 不是.因为函数 y=x+1x的定义域是{x|x≠0},当 x<0 时,y<0,所以函 数 y=x+1x无最小值.
例 6 已知不等式(x+y)1x+ay≥9 对任意正实数 x,y 恒成立,则正实数 a 的最 小值为_4__.
解析 已知不等式(x+y)1x+ay≥9 对任意正实数 x,y 恒成立, 只要求(x+y)1x+ay的最小值大于或等于 9, ∵1+a+yx+ayx≥a+2 a+1, 当且仅当 y= ax 时,等号成立, ∴a+2 a+1≥9, ∴ a≥2 或 a≤-4(舍去),∴a≥4, 即正实数a的最小值为4.
123456
5.若函数 f(x)=x+x-1 2(x>2)在 x=a 处取最小值,则 a=_3__.
基本不等式课件(共43张PPT)

02
基本不等式的证明方法
综合法证明基本不等式
利用已知的基本不等式推导
01
通过已知的不等式关系,结合不等式的性质(如传递性、可加
性等),推导出目标不等式。
构造辅助函数
02
根据不等式的特点,构造一个辅助函数,通过对辅助函数的分
析来证明原不等式。
利用数学归纳法
03
对于涉及自然数n的不等式,可以考虑使用数学归纳法进行证明。
分析法证明基本不等式
寻找反例
通过寻找反例来证明某个不等式不成 立,从而推导出原不等式。
利数,可以利用中间值定理 来证明存在某个点使得函数值满足给 定的不等式。
通过分析不等式在极限情况下的性质, 来证明原不等式。
归纳法证明基本不等式
第一数学归纳法
通过对n=1和n=k+1时的情况进行归纳假设和推导,来证 明对于所有正整数n,原不等式都成立。
拓展公式及其应用
要点一
幂平均不等式
对于正实数$a, b$和实数$p, q$,且$p < q$,有 $left(frac{a^p + b^p}{2}right)^{1/p} leq left(frac{a^q + b^q}{2}right)^{1/q}$,用于比较不同幂次的平均值大小。
要点二
切比雪夫不等式
算术-几何平均不等式(AM-GM不等式):对于非负实数$a_1, a_2, ldots, a_n$,有 $frac{a_1 + a_2 + ldots + a_n}{n} geq sqrt[n]{a_1a_2ldots a_n}$,用于求解最值问题。
柯西-施瓦茨不等式(Cauchy-Schwarz不等式):对于任意实数序列${a_i}$和${b_i}$,有 $left(sum_{i=1}^{n}a_i^2right)left(sum_{i=1}^{n}b_i^2right) geq left(sum_{i=1}^{n}a_ib_iright)^2$,用于证明与内积有关的不等式问题。
基本不等式ppt课件

对于任意实数a和b,$(a-b)^2 \geq 0$,即 $a^2 - 2ab + b^2 \geq 0$。
利用均值不等式证明
对于任意实数a和b,$a^2 + b^2 \geq 2ab$,即$(a-b)^2 \geq 0$。
利用导数证明
对于任意实数a和b,设f(x) = x^2 - 2x(a+b) + (a+b)^2,则f'(x) = 2x - 2(a+b) = 2(x-ab),当x≥a+b时,f'(x) ≥0;当x ≤ a+b时, f'(x) ≤0。故f(x)在区间[a+b, +\infty)上单调 递增,在区间(-\infty, a+b]上单调递减。于 是有f(x) ≥ f(a+b) = a^2 - 2ab + b^2 ≥0 。
02
基本不等式的应用
几何意义
直线和圆
利用基本不等式可以判断直线和圆的 位置关系,以及求解圆中弦长等几何 问题。
面积和体积
利用基本不等式可以求解一些涉及面 积和体积的问题,例如在给定周长的 条件下,求矩形或立方体的最大面积 或体积等。
代数意义
方程
利用基本不等式可以求解一些涉及方程的问题,例如利用基本不等式求根,判 断方程解的个数等。
证明方法
利用代数公式和实数的性质进行 证明。
基本不等式的性质
非负性
对于任意实数a和b,总有$(a-b)^2 \geq 0$,即$a^2 - 2ab + b^2 \geq 0$。
等号成立条件
当且仅当a=b时,基本不等式取等号。
传递性
若a≥b,c≥d,则ac≥bd。
基本不等式的证明
利用均值不等式证明
对于任意实数a和b,$a^2 + b^2 \geq 2ab$,即$(a-b)^2 \geq 0$。
利用导数证明
对于任意实数a和b,设f(x) = x^2 - 2x(a+b) + (a+b)^2,则f'(x) = 2x - 2(a+b) = 2(x-ab),当x≥a+b时,f'(x) ≥0;当x ≤ a+b时, f'(x) ≤0。故f(x)在区间[a+b, +\infty)上单调 递增,在区间(-\infty, a+b]上单调递减。于 是有f(x) ≥ f(a+b) = a^2 - 2ab + b^2 ≥0 。
02
基本不等式的应用
几何意义
直线和圆
利用基本不等式可以判断直线和圆的 位置关系,以及求解圆中弦长等几何 问题。
面积和体积
利用基本不等式可以求解一些涉及面 积和体积的问题,例如在给定周长的 条件下,求矩形或立方体的最大面积 或体积等。
代数意义
方程
利用基本不等式可以求解一些涉及方程的问题,例如利用基本不等式求根,判 断方程解的个数等。
证明方法
利用代数公式和实数的性质进行 证明。
基本不等式的性质
非负性
对于任意实数a和b,总有$(a-b)^2 \geq 0$,即$a^2 - 2ab + b^2 \geq 0$。
等号成立条件
当且仅当a=b时,基本不等式取等号。
传递性
若a≥b,c≥d,则ac≥bd。
基本不等式的证明
高中数学基本不等式 PPT课件 图文

2. 一段长为30 m的篱笆围成一个一边靠墙 的矩形菜园,墙长18 m,问这个矩形的长 、宽各为多少时,菜园的面积最大?最大 面积是多少?
谢谢! 学妹给我打电话,说她又换工作了,这次是销售。电话里,她絮絮叨叨说着一年多来工作上的不如意,她说工作一点都不开心,找不到半点成就感。 末了,她问我:学姐,为什么想找一份 自己热 爱的工 作这么 难呢? 我问她上一份工作干了多久,她说不到 三个月 ,做的 还是行 政助理 的工作 ,工作 内容枯 燥乏味 不说, 还特别 容易得 罪人, 实在不 是自己 的理想 型。 我又问了她前几份工作辞职的原因,结 果都是 大同小 异,不 是因为 工作乏 味,就 是同事 不好相 处,再 者就是 薪水太 低,发 展前景 堪忧。 粗略估计,这姑娘毕业不到一年,工作 却已经 换了四 五份, 还跨了 三个行 业。 但即使如此频繁的跳槽,她也仍然没有 找不到 自己满 意的工 作。 2 我问她,心目中理想型的工作是什么样 子的。 她说, 姐,你 知道苏 明玉吗 ?就是 《都挺 好》电 视剧里 的女老 大,我 就喜欢 她样子 的工作 ,有挑 战有成 就感, 有钱有 权,生 活自由 ,如果 给我那 样的工 作,我 会投入 我全部 的热情 。 听她说完,我尴尬的笑了笑。 其实每一个人都向往这样的成功,但这 姑娘却 本末倒 置了, 并不是 有了钱 有了权 有了成 就以后 才全力 以赴的 工作, 而是全 力以赴 工作, 投入了 自己的 全部以 后,才 有了地 位名望 钱财。 你要先投入,才会有收获,当你真正投 入做一 件事后 ,会明 白两件 事:首 先你会 明白, 把一件 事认认 真真做 好,所 获得的 收益远 大于同 时做很 多事; 你会明白,有人风风火火做各种事仍未 有回报 ,是因 为他们 从未投 入过。 从“做 了”到 “做” ,正如 “知道 ”到“ 懂得” 的距离 。 3 之前
谢谢! 学妹给我打电话,说她又换工作了,这次是销售。电话里,她絮絮叨叨说着一年多来工作上的不如意,她说工作一点都不开心,找不到半点成就感。 末了,她问我:学姐,为什么想找一份 自己热 爱的工 作这么 难呢? 我问她上一份工作干了多久,她说不到 三个月 ,做的 还是行 政助理 的工作 ,工作 内容枯 燥乏味 不说, 还特别 容易得 罪人, 实在不 是自己 的理想 型。 我又问了她前几份工作辞职的原因,结 果都是 大同小 异,不 是因为 工作乏 味,就 是同事 不好相 处,再 者就是 薪水太 低,发 展前景 堪忧。 粗略估计,这姑娘毕业不到一年,工作 却已经 换了四 五份, 还跨了 三个行 业。 但即使如此频繁的跳槽,她也仍然没有 找不到 自己满 意的工 作。 2 我问她,心目中理想型的工作是什么样 子的。 她说, 姐,你 知道苏 明玉吗 ?就是 《都挺 好》电 视剧里 的女老 大,我 就喜欢 她样子 的工作 ,有挑 战有成 就感, 有钱有 权,生 活自由 ,如果 给我那 样的工 作,我 会投入 我全部 的热情 。 听她说完,我尴尬的笑了笑。 其实每一个人都向往这样的成功,但这 姑娘却 本末倒 置了, 并不是 有了钱 有了权 有了成 就以后 才全力 以赴的 工作, 而是全 力以赴 工作, 投入了 自己的 全部以 后,才 有了地 位名望 钱财。 你要先投入,才会有收获,当你真正投 入做一 件事后 ,会明 白两件 事:首 先你会 明白, 把一件 事认认 真真做 好,所 获得的 收益远 大于同 时做很 多事; 你会明白,有人风风火火做各种事仍未 有回报 ,是因 为他们 从未投 入过。 从“做 了”到 “做” ,正如 “知道 ”到“ 懂得” 的距离 。 3 之前
基本不等式ppt课件

a b
12 3
1 4b 3a 1
+
8+ a + b ≥ 8+2
5a b(a+2b)=5
5
4b 3a
4b 3a 8+4 3
(当且仅当 a = b ,
·
=
5
a b
8+4 3
2 3
即 2b= 3a 时取等号),∴ + 的最小值为
.故选 B.
a b
5
22.(多选)(2021·湖南省长沙市长郡中学上学期适应性调查考试)小王从
n 4m 9
4m·n =2,
2
1
当且仅当 n=3,m=6时取等号.故选 C.
2
3
3.设 x>0,则函数 y=x+
-2的最小值为( A )
2x+1
A.0
1
B.2
解析
2≥2
C.1
3
D.2
1
2
3
由 于 x>0 , 则 y = x +
- = x+2 +
2
2x+1
1
x+ ·
2
m· n 4
二、高考小题
13.(2021·全国乙卷)下列函数中最小值为 4 的是( C )
A.y=x +2x+4
4
B.y=|sin x|+|sin x|
C.y=2 +2
4
D.y=ln x+
ln x
2
x
2-x
15.(2020·上海高考)下列不等式恒成立的是( B )
A.a2+b2≤2ab
C.a+b≥2 |ab|
命题中正确的是( AB )
A.若 P=1,则 S 有最小值 2
B.若 S+P=3,则 P 有最大值 1
12 3
1 4b 3a 1
+
8+ a + b ≥ 8+2
5a b(a+2b)=5
5
4b 3a
4b 3a 8+4 3
(当且仅当 a = b ,
·
=
5
a b
8+4 3
2 3
即 2b= 3a 时取等号),∴ + 的最小值为
.故选 B.
a b
5
22.(多选)(2021·湖南省长沙市长郡中学上学期适应性调查考试)小王从
n 4m 9
4m·n =2,
2
1
当且仅当 n=3,m=6时取等号.故选 C.
2
3
3.设 x>0,则函数 y=x+
-2的最小值为( A )
2x+1
A.0
1
B.2
解析
2≥2
C.1
3
D.2
1
2
3
由 于 x>0 , 则 y = x +
- = x+2 +
2
2x+1
1
x+ ·
2
m· n 4
二、高考小题
13.(2021·全国乙卷)下列函数中最小值为 4 的是( C )
A.y=x +2x+4
4
B.y=|sin x|+|sin x|
C.y=2 +2
4
D.y=ln x+
ln x
2
x
2-x
15.(2020·上海高考)下列不等式恒成立的是( B )
A.a2+b2≤2ab
C.a+b≥2 |ab|
命题中正确的是( AB )
A.若 P=1,则 S 有最小值 2
B.若 S+P=3,则 P 有最大值 1
基本不等式(共43张)ppt课件

15
判别式及根的关系
根的关系
判别式:$Delta = b^2 4ac$,用于判断一元二次方
程的根的情况。
01
02
03
当 $Delta > 0$ 时,方程有 两个不相等的实根;
当 $Delta = 0$ 时,方程有 两个相等的实根(即一个重
根);
04
2024/1/25
05
当 $Delta < 0$ 时,方程无 实根,有两个共轭复根。
基本不等式性质
传递性
若$a > b$且$b > c$,则$a > c$。
正数乘法保序性
若$a > b > 0$且$c > d > 0$ ,则$ac > bd$。
对称性
若$a = b$,则$b = a$;若 $a > b$,则$b < a$。
2024/1/25
可加性
若$a > b$且$c > d$,则$a + c > b + d$。
2024/1/25
35
思考题与练习题
思考题:如何利用均值不 等式证明其他不等式?
2024/1/25
|x - 3| < 5
练习题:解下列不等式, 并在数轴上表示解集
(x + 1)/(x - 2) > 0
36
THANKS。
2024/1/25
37
次不等式组来解决。
12
03
一元二次不等式解法
2024/1/25
13
一元二次不等式概念
一元二次不等式
只含有一个未知数,并且未知数的最高次数是2的不等式。
标准形式
$ax^2+bx+c>0$ 或 $ax^2+bx+c<0$,其中 $a neq 0$。
判别式及根的关系
根的关系
判别式:$Delta = b^2 4ac$,用于判断一元二次方
程的根的情况。
01
02
03
当 $Delta > 0$ 时,方程有 两个不相等的实根;
当 $Delta = 0$ 时,方程有 两个相等的实根(即一个重
根);
04
2024/1/25
05
当 $Delta < 0$ 时,方程无 实根,有两个共轭复根。
基本不等式性质
传递性
若$a > b$且$b > c$,则$a > c$。
正数乘法保序性
若$a > b > 0$且$c > d > 0$ ,则$ac > bd$。
对称性
若$a = b$,则$b = a$;若 $a > b$,则$b < a$。
2024/1/25
可加性
若$a > b$且$c > d$,则$a + c > b + d$。
2024/1/25
35
思考题与练习题
思考题:如何利用均值不 等式证明其他不等式?
2024/1/25
|x - 3| < 5
练习题:解下列不等式, 并在数轴上表示解集
(x + 1)/(x - 2) > 0
36
THANKS。
2024/1/25
37
次不等式组来解决。
12
03
一元二次不等式解法
2024/1/25
13
一元二次不等式概念
一元二次不等式
只含有一个未知数,并且未知数的最高次数是2的不等式。
标准形式
$ax^2+bx+c>0$ 或 $ax^2+bx+c<0$,其中 $a neq 0$。
基本不等式及其应用ppt课件

【解析】 x+x-4 1=(x-1)+x-4 1+1≥ 2 x-1·x-4 1+1=5.(当且仅当 x=3 时取等号)
易错点睛:(1)忽略基本不等式成立的前提条件致误. (2)忽略“定值”致误.
课堂考点突破
——精析考题 提升能力
考点一 利用基本不等式求最值
角度 1:拼凑法求最值
2
【例 1】 (1)已知 0<x<1,则 x(4-3x)取得最大值时 x 的值为_3_______.
A.5
B.6
C.7
D.8
【解析】 因为每台机器生产的产品可获得的总利润 s(单位:万元)与机器运转时间
t(单位:年,t∈N*)的关系为 s=-t2+23t-64,所以年平均利润 y=st=-t-6t4+23=-
t+6t4+23≤-2 t·6t4+23=7,当且仅当 t=8 时等号成立,故要使年平均利润最大,则 每台机器运转的时间 t 为 8,故选 D.
即该厂家 2022 年的促销费用投入 3 万元时,厂家的利润最大,最大为 21 万元.
『变式训练』
4.某公司购买了一批机器投入生产,若每台机器生产的产品可获得的总利润 s(单位:
万元)与机器运转时间 t(单位:年,t∈N*)的关系为 s=-t2+23t-64,要使年平均利润最
大,则每台机器运转的时间 t 为( D )
【解析】 (1)因为函数 f(x)=4x3-ax2-2bx 在 x=1 处有极值,所以 f ′(1)=12-2a -2b=0,即 a+b=6,又 a>0,b>0,则4a+1b=16(a+b)·4a+1b=165+ab+4ab≥5+6 4=32 当且仅当ab=4ab,即a=2b=4时取“=”,故选 C.
【解析】 解法一(换元消元法): 由已知得 x+3y=9-xy, 因为 x>0,y>0,所以 x+3y≥2 3xy, 所以 3xy≤x+23y2,当且仅当 x=3y,即 x=3,y=1 时取等号,即(x+3y)2+12(x+3y) -108≥0. 令 x+3y=t,则 t>0 且 t2+12t-108≥0, 得 t≥6,即 x+3y 的最小值为 6.
易错点睛:(1)忽略基本不等式成立的前提条件致误. (2)忽略“定值”致误.
课堂考点突破
——精析考题 提升能力
考点一 利用基本不等式求最值
角度 1:拼凑法求最值
2
【例 1】 (1)已知 0<x<1,则 x(4-3x)取得最大值时 x 的值为_3_______.
A.5
B.6
C.7
D.8
【解析】 因为每台机器生产的产品可获得的总利润 s(单位:万元)与机器运转时间
t(单位:年,t∈N*)的关系为 s=-t2+23t-64,所以年平均利润 y=st=-t-6t4+23=-
t+6t4+23≤-2 t·6t4+23=7,当且仅当 t=8 时等号成立,故要使年平均利润最大,则 每台机器运转的时间 t 为 8,故选 D.
即该厂家 2022 年的促销费用投入 3 万元时,厂家的利润最大,最大为 21 万元.
『变式训练』
4.某公司购买了一批机器投入生产,若每台机器生产的产品可获得的总利润 s(单位:
万元)与机器运转时间 t(单位:年,t∈N*)的关系为 s=-t2+23t-64,要使年平均利润最
大,则每台机器运转的时间 t 为( D )
【解析】 (1)因为函数 f(x)=4x3-ax2-2bx 在 x=1 处有极值,所以 f ′(1)=12-2a -2b=0,即 a+b=6,又 a>0,b>0,则4a+1b=16(a+b)·4a+1b=165+ab+4ab≥5+6 4=32 当且仅当ab=4ab,即a=2b=4时取“=”,故选 C.
【解析】 解法一(换元消元法): 由已知得 x+3y=9-xy, 因为 x>0,y>0,所以 x+3y≥2 3xy, 所以 3xy≤x+23y2,当且仅当 x=3y,即 x=3,y=1 时取等号,即(x+3y)2+12(x+3y) -108≥0. 令 x+3y=t,则 t>0 且 t2+12t-108≥0, 得 t≥6,即 x+3y 的最小值为 6.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y [解析] (1)由题意可知,二氧化碳每吨的平均处理成本为 x 1 80 000 1 80 000 = x+ -200≥2 x· -200=200, 2 x 2 x 1 80 000 当且仅当 x= ,即 x=400 时等号成立, 2 x 故该单位月处理量为 400 吨时, 才能使每吨的平均处理成本 最低,最低成本为 200 元.
考向三 基本不等式的综合应用[互动讲练型] [例 3] (1)(2017· 湖北华师一附中联考)若 2x+4y=4,则 x+ 2y 的最大值是________;
[解析] 因为 4=2x+4y=2x+22y≥2 2x×22y=2 2x+2y,所 以 2x+2y≤4=22,即 x+2y≤2,当且仅当 2x=22y=2,即 x=2y =1 时,x+2y 取得最大值 2. [答案] 2
———————[通· 一类]——————— 3.为了响应国家号召,某地决定分批建设保障性住房供给 社会.首批计划用 100 万元购得一块土地, 该土地可以建造每层 1 000 平方米的楼房, 楼房的每平方米建筑费用与建筑高度有关, 楼房每升高一层,整层楼每平方米建筑费用提高 20 元.已知建 筑第 5 层楼房时,每平方米建筑费用为 800 元. (1)若建筑第 x 层楼时,该楼房综合费用为 y 万元(综合费用 是建筑费用与购地费用之和),写出 y=f(x)的表达式. (2)为了使该楼房每平方米的平均综合费用最低,应把楼层 建成几层?此时平均综合费用为每平方米多少元?
2x2-a (2)(2017· 浙江金丽衢十二校联考 ( 一 )) 若函数 f(x) = x-1 (a<2)在区间(1,+∞)上的最小值为 6,则实数 a 的值是( ) 3 A.0 B. 2 1 C.1 D. 2
2x2-a 2x-12+4x-1+2-a [解析] 由题意得 f(x)= = = x-1 x-1 2-a 2-a 2(x-1)+ +4≥2 2x-1· +4=2 4-2a+4,当且仅 x-1 x-1 2-a 2-a 当 2(x-1)= , 即 x=1+ 时, 等号成立, 所以 2 4-2a 2 x-1 3 +4=6,即 a= ,故选 B. 2 [答案] B
[通· 一类] 2x 1.当 x>0 时,f(x)= 2 的最大值为________. x +1 2x 2 2 解析:∵x>0,∴f(x)= 2 = ≤ =1, 1 2 x +1 x+ x 1 当且仅当 x= ,即 x=1 时取等号. x 答案:1
4 2.若 x<3,则函数 f(x)= +x 的最大值为________. x -3
[悟· 技法] 利用基本不等式求最值的常用技巧 (1)若直接满足基本不等式条件,则直接应用基本不等式. (2)若不直接满足基本不等式条件,则需要创造条件对式子 进行恒等变形,如构造“1”的代换等. (3)若一次应用基本不等式不能达到要求,需多次应用基本 不等式,但要注意等号成立的条件必须要一致. 提醒:若可用基本不等式,但等号不成立,则一般是利用函 数单调性求解.
(2) 设该楼房每平方米的平均综合费用为 g(x) ,则 g(x) = 2 fx×10 000 10 x +71x+100 10fx 1 000 = = = 10x + + 1 000x x x x 1 000 710≥2 10x· +710=910. x 1 000 当且仅当 10x= ,即 x=10 时等号成立. x 综上可知应把楼层建成 10 层,此时平均综合费用最低,为 每平方米 910 元.
1 1 2.(2017· 郑州模拟)设 a>0,b>0.若 a+b=1,则 + 的最小 a b 值是( ) 1 A.2 B. C.4 D.8 4 1 1 a+b a+b b a b a 解析:由题意 + = + =2+ + ≥2+2 × a b a b a b a b b a 1 =4,当且仅当 = ,即 a=b= 时,取等号,所以最小值为 4. a b 2 答案:C
3.利用基本不等式求最值问题 已知 x>0,y>0,则 x=y (1)如果积 xy 是定值 p,那么当且仅当⑨__________ 时,x+ y 有最小值是⑩______( 2 p 简记:“积定和最小”). (2)如果和 x+y 是定值 s,那么当且仅当⑪__________ x=y 时, 2 s xy 有最大值是⑫__________(简记:“和定积最大”). 4
第四节 基本不等式
[小题热身] 1. 若 a, b∈R, 且 ab>0, 则下列不等式中, 恒成立的是( A.a2+b2>2ab B.a+b≥2 ab 1 1 2 b a C. + > D. + ≥2 a b ab a b
)
解析:∵a2+b2-2ab=(a-b)2≥0,∴A 错误. 对于 B、C,当 a<0,b<0 时,明显错误. b a ba 对于 D,∵ab>0,∴ + ≥2 · =2. a b ab 答案:D
5.已知 a,b,∈(0,+∞),若 ab=1,则 a+b 的最小值 为________;若 a+b=1,则 ab 的最大值为________.
解析:由基本不等式得 a+b≥2 ab=2,当且仅当 a=b=1 a+b 1 2 1 时取到等号;ab≤ =4,当且仅当 a=b=2时取到等号. 2 1 答案:2 4
2.几个重要不等式 (1)a2+b2≥⑤______( 2ab a,b∈R). a+b 2 2 (2)ab≤⑥__________( a,b∈R). 2 2 a + b a+b 2 (3) a,b∈R). 2 ≤⑦__________( 2 b a 2 (4) + ≥⑧______( a· b>0). a b a+b a2+b2 2 (5) ≤ ab≤ ≤ (a>0,b>0). 1 1 2 2 + a b
二、必明 2●个易误点 1.求最值时要注意三点:一是各项为正;二是寻求定值; 三是考虑等号成立的条件. 2.多次使用基本不等式时,易忽视取等号的条件的一致性.
考向一 利用基本不等式求最值[自主练透型] [例 1] (1) 3-aa+6(-6≤a≤3)的最大值为( 9 A.9 B. 2 3 2 C.3 D. 2
4 6.若 x>1,则 x+ 的最小值为________. x -1
4 4 解析:∵x+ =x-1+ +1≥4+1=5. x-1 x-1 4 当且仅当 x-1= ,即 x=3 时等号成立. x-1 答案:5
[知识重温] 一、必记 3●个知识点 a+b 1.基本不等式 ab≤ 2 (1)基本不等式成立的条件:①__________. a>0,b>0 (2)等号成立的条件:当且仅当②__________ 时取等号. a=b a+b 算术平均数 , ab (3)两个平均数: 称为正数 a, b 的③____________ 2 几何平均数 称为正数 a,b 的④__________.
[悟· 技法] 利用基本不等式求解实际应用题的方法 (1)问题的背景是人们关心的社会热点问题,如“物价、 销售、税收、原材料”等,题目往往较长,解题时需认真阅读, 从中提炼出有用信息,建立数学模型,转化为数学问题求解. (2)当运用基本不等式求最值时,若等号成立的自变量不在 定义域内时,就不能使用基本不等式求解, 此时可根据变量的范 围用对应函数的单调性求解.
3.已知 0<x<1,则 x(3-3x)取得最大值时 x 的值为( 1 1 3 2 A. B. C. D. 3 2 4 3
)
1 1 9 3 解析:由 x(3-3x)= ×3x(3-3x)≤ × = ,当且仅当 3x 3 3 4 4 1 =3-3x,即 x= 时等号成立. 2 答案:B
4.(2017· 兰州一模)在下列各函数中,最小值等于 2 的函数 是( ) 1 A.y=x+ x 1 π B.y=cos x+ (0<x< ) cos x 2 x2+3 C.y= 2 x +2 4 x D.y=e + x-2 e
1 π 解析:当 x<0 时,y=x+ ≤-2,故 A 错误;因为 0<x< , x 2 1 所以 0<cos x<1, 所以 y=cos x+ >2, 故 B 错误; 因为 x2+2 cos x 1 2 ≥ 2,所以 y= x +2+ 2 ≥2 中等号取不到,故 C t;0, 所以 y=e + x-2≥2 e ·x-2=2, 当且仅当 e = x, e e e 即 ex=2 时等号成立,故选 D. 答案:D
(2)(2017· 长春质检)设正实数 a,b 满足 a+b=1,则( 1 1 A. + 有最大值 4 a b 1 B. ab有最小值 2 C. a+ b有最大值 2 2 2 2 D.a +b 有最小值 2
)
[解析] 由于 a>0,b>0,由基本不等式得 1=a+b≥2 ab, 1 1 1 1 a+b 当且仅当 a=b 时,等号成立,∴ ab≤ ,∴ab≤ , + = 2 4 a b ab 1 1 1 = ≥4,因此 + 的最小值为 4,a2+b2= (a+b)2-2ab=1- ab a b 1 1 2ab≥1- = ,( a+ b)2=a+b+2 ab=1+2 ab≤1+1=2, 2 2 所以 a+ b有最大值 2,故选 C. [答案] C
(2)不获利. 设该公司每月获利为 S 元, 则 S=100x-y=100x 1 1 2 1 2 -2x -200x+80 000=- x +300x-80 000=- (x-300)2- 2 2 35 000,因为 x∈[400,600], 所以 S∈[-80 000,-40 000], 故该公司每月不获利.
考向二 基本不等式的实际应用[互动讲练型] [例 2] “节能减排,绿色生态”是当今世界各国所倡导, 某公司在科研部门的支持下,进行技术攻关,采用了新工艺,把 二氧化碳转化为一种可利用的化工产品. 已知该公司每月的处理 量最少为 400 吨,最多为 600 吨,月处理成本 y(元)与月处理量 1 2 x(吨)之间的函数关系可近似地表示为:y= x -200x+80 000, 2 且每处理一吨二氧化碳得到可利用的化工产品价值为 100 元. (1)该公司每月处理量为多少吨时,才能使每吨的平均处理 成本最低? (2)该公司每月能否获利?