【高一数学】高一数学下学期期末试卷(共8页)
2022-2023学年度第二学期期末考试卷高一数学试卷(答案版)

2022-2023学年度第二学期期末考试卷高中数学答案120α=>,25,),二、多选题15.【答案】π12【详解】如图所示:设ADN α∠=,大正方形边长为a ,则cos DN a α=,sin AN a α=,cos sin MN a a αα=-,则()()()21cos sin cos sin 2S a a a a αααα=-+⨯阴,()()()22ABCD1cos sin cos sin 528a a a a S S a αααα-+⨯==阴,2215sin cos 2sin cos sin cos 28αααααα+-+=,化为33sin248α=,则1sin22α=,由题意π0,4α⎛⎫∈ ⎪⎝⎭,则π20,2α⎛⎫∈ ⎪⎝⎭,故π26α=,解得π12α=.故答案为:π12.16.【答案】10-【详解】设28(1)716y ax a x a =++++,其图象为抛物线,对于任意一个给定的a 值其抛物线只有在开口向下的情况下才能满足0y ≥而整数解只有有限个,所以a<0,因为0为其中一个解可以求得167a ≥-,又a Z ∈,所以2a =-或1a =-,则不等式为22820x x --+≥和290x -+≥,可分别求得2552x --≤≤-和33x -≤≤,因为x 位整数,所以4,3,2,1x =----和3,2,1,0,1,2,3x =---,所以全部不等式的整数解的和为10-.故答案为:10-.17.【答案】(1)52k ≥(2)1k ≤【详解】(1)由2511x x -<+,移项可得25101x x --<+,通分并合并同类项可得601x x -<+,等价于()()610x x -+<,解得16x -<<,则{}16A x x =-<<;由A B A = ,则A B ⊆,即1621k k -≤-⎧⎨≤+⎩,解得52k ≥.(2)p 是q 的必要不充分条件等价于B A ⊆.①当B =∅时,21k k -≥+,解得13k ≤-,满足.②当B ≠∅时,原问题等价于131216k k k ⎧>-⎪⎪-≥-⎨⎪+≤⎪⎩(不同时取等号)解得113k -<≤.综上,实数k 的取值范围是1k ≤.18.【答案】(1)π()sin(2)3f x x =+,(2){}2[3,2)-f=,的奇函数,所以()00),0∞和()+上分别单调递增.0,∞。
2024届四川绵阳中学高一数学第二学期期末统考试题含解析

2024届四川绵阳中学高一数学第二学期期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知等差数列{}n a 的前n 项和为n S ,若113a =,312S S =,则8a 的值为( ) A .137-B .0C .137D .1822.已知A(2,4)与B(3,3)关于直线l 对称,则直线l 的方程为 ( ). A .x +y =0 B .x -y =0 C .x -y +1=0D .x +y -6=03.如图,AB 是圆O 的直径,点C D 、是半圆弧的两个三等分点,AC a =,AD b =,则AO =( )A .b a -B .12a b - C .12a b -D .22b a -4.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin (sin cos )0B A C C +-=,a =2,c 2,则C = A .π12B .π6C .π4D .π35.tan15tan75︒+︒=( ) A .4B .23C .1D .26.已知函数2,01,()1,1.x x f x x x⎧⎪=⎨>⎪⎩若关于x 的方程1()()4f x x a a R =-+∈恰有两个互异的实数解,则a 的取值范围为 A .59,44⎡⎤⎢⎥⎣⎦B .59,44⎛⎤⎥⎝⎦C .59,{1}44⎛⎤⎥⎝⎦D .59,{1}44⎡⎤⎢⎥⎣⎦7.直线210mx y --=与直线2310x y 垂直,则m 的值为( ) A . 3B .34-C .2D .3-8.已知圆()()221 221:C x y ++-=,圆 ()()222 2516:C x y -+-= ,则圆1 C 与圆2C 的位置关系是( ) A .相离B .相交C .外切D .内切9.已知圆锥的底面半径为1,母线与底面所成的角为3π,则此圆锥的侧面积为( )A .23πB .2πC .3πD .π10.某种产品的广告费支出与销售额(单位:百万元)之间有如下对应数据: 2 4 5 6 830405070根据上表提供的数据,求出关于的回归直线方程为,则的值为( ) A .40B .50C .60D .70二、填空题:本大题共6小题,每小题5分,共30分。
2023-2024学年广西壮族自治区柳州市高一下学期期末质量检测数学试卷+答案解析

2023-2024学年广西壮族自治区柳州市高一下学期期末质量检测数学试卷❖一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.某市市场监管局为了了解饮料的质量,从该市区某超市在售的50种饮料中抽取了30种饮料,对其质量进行了检查.在这个问题中,30是()A.总体B.个体C.样本D.样本量2.矩形的直观图是()A.正方形B.矩形C.三角形D.平行四边形3.下列说法中正确的是()A.随机事件发生的频率就是这个随机事件发生的概率B.在n次随机试验中,一个随机事件A发生的频率具有确定性C.随着试验次数n的增大,一个随机事件A发生的频率会逐渐稳定于事件A发生的概率D.在同一次试验中,每个试验结果出现的频率之和不一定等于14.已知圆锥的侧面展开图是半径为6,圆心角为的扇形,则该圆锥的体积为()A. B. C. D.5.国家队射击运动员小王在某次训练中10次射击成绩单位:环如下:6,5,9,6,4,8,9,8,7,5,则这组数据的第60百分位数为()A. B.7 C. D.86.欧拉恒等式为虚数单位,e为自然对数的底数被称为数学中最奇妙的公式.它是复分析中欧拉公式的特例:当自变量时,,得根据欧拉公式,复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限7.如图,在中,,P为CD的中点,则()A. B. C. D.8.如图,在正四面体ABCD中,点E是线段AD上靠近点D的四等分点,则异面直线EC与BD所成角的余弦值为()A. B. C. D.二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得6分,部分选对的得2分,有选错的得0分。
9.已知复数,,则下列说法正确的是()A.若是实数,则与的虚部互为相反数B.若且,则,在复平面内对应的点关于实轴对称C.若,则D.若,则10.已知m,n是两条不同的直线,,,是三个不同的平面,则下列说法正确的是()A.若,,则B.若,,,则C.若,,则D.若,,,则11.口袋中装有大小质地完全相同的白球和黑球各2个,从中不放回的依次取出2个球,事件“取出的两球同色”,事件“第一次取出的是白球”,事件“第二次取出的是白球”,事件“取出的两球不同色”,则()A. B.A与B相互独立C.A与C相互独立D.三、填空题:本题共3小题,每小题5分,共15分。
河南省新乡市2023-2024学年高一下学期7月期末考试 数学含答案

新乡市2023-2024学年高一期末(下)测试数学(答案在最后)注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:人教A 版必修第一册占25%,第二册占75%.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}Z 21A x x =∈-<-,{}220B x x x =--≤,则A B = ()A.{}1B.{}1,0-C.{}1,2 D.{}1,0,1,2-2.22i3i 4-=+()A.17i 1313- B.214i 2525-C.214i 2525+ D.17i 2525-+3.已知函数()21x f x x a-=+是奇函数,则=a ()A .B.1C.1- D.24.已知平面向量a ,b满足1a = ,2b = ,且2a b -= ,则cos ,a b = ()A.12B.14 C.16D.185.已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>≤⎪⎝⎭的部分图象如图所示,则8π3f ⎛⎫= ⎪⎝⎭()A.0B.1C.2D.36.将颜色为红、黄、白的3个小球随机分给甲、乙、丙3个人,每人1个,则与事件“甲分得红球,乙分得黄球或甲分得黄球、乙分得红球”互为对立事件的是()A.甲分得黄球B.甲分得白球C.丙没有分得白球D.甲分得白球,乙分得黄球7.已知2sin 23sin 2αβ=,且()tan 1αβ-=,则()tan αβ+=()A.1B.3C.5D.78.在正三棱柱111ABC A B C -中,1AA AB =,M 是AB 的中点,N 是棱11B C 上的动点,则直线MN 与平面11BCC B 所成角的正切值的最大值为()A.12B.22 C.32D.34二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分,有选错的得0分.9.如图,在长方体1111ABCD A B C D -中,点M ,N ,E ,F 分别在棱11A B ,11A D ,11B C ,11C D 上,且平面AMN ∥平面EFDB ,下列结论正确的是()A.MN EF ∥B.EF BD ∥C.AN DF∥ D.BE ∥平面AMN10.Z 国进口的天然气主要分为液化天然气和气态天然气两类.2023年Z 国天然气进口11997吨,其中液化天然气进口7132吨,气态天然气进口4865吨.2023年Z 国天然气及气态天然气进口来源分布及数据如图所示:下列结论正确的是()A.2023年Z 国从B 国进口的液化天然气比从A 国进口的多B.2023年Z 国没有从A 国进口液化天然气C.2023年Z 国从C 国进口的液化天然气一定比从D 国进口的多D.2023年Z 国从B 国进口的液化天然气一定比从D 国进口的多11.在ABC 中,D 是BC 的中点,4BC =,AD =,下列结论正确的是()A.若AC =,则=ABB.ABC 面积的最大值为C.7BA CA ⋅= D.若2B C =,则3AB =三、填空题:本题共3小题,每小题5分,共15分.把答案填在答题卡中的横线上.12.函数()222x f x -=的最大值为______.13.在某次调查中,采用分层随机抽样的方法得到10个A 类样本,30个B 类样本.若A 类样本的平均数为5.5,总体的平均数为4,则B 类样本的平均数为______.14.已知某圆台的母线长为3,下底面的半径为1,若球O 与该圆台的上、下底面及侧面都相切,则球O 的表面积为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数()cos f x x x =+.(1)求()f x 的最小正周期;(2)求()f x 的单调递增区间;(3)求()f x 在π0,2⎡⎤⎢⎥⎣⎦上的值域.16.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且cos 2c bB a+=.(1)证明:2A B =;(2)若2a =,3π4C =,求ABC 的周长.17.为了解某校高一年级学生数学学习的阶段性表现,该年级组织了一次测试.已知此次考试共有1000名学生参加,将考试成绩分成六组:第一组[)30,50,第二组[)50,70,…,第六组[]130,150.整理数据得到如图所示的频率分布直方图.(1)该校根据试卷的难易程度进行分析,认为此次成绩不低于110分,则阶段性学习达到“优秀”,试估计这1000名学生中阶段性学习达到“优秀”的人数;(2)若采用等比例分层抽样的方法,从成绩在[)50,70和[)110,130内的学生中共抽取6人,查看他们的答题情况来分析知识点的掌握情况,再从中随机选取3人进行面对面调查分析,求这3人中恰有1人成绩在[)110,130内的概率.18.如图,在四棱锥P ABCD -中,PD ⊥底面ABCD ,E 是PC 的中点,点F 在棱BP 上,且EF BP ⊥,四边形ABCD 为正方形,2PD CD ==.(1)证明:BP DF ⊥;(2)求三棱锥F BDE -的体积;(3)求二面角F DE B --的余弦值.19.在世界杯小组赛阶段,每个小组内的四支球队进行循环比赛,共打6场,每场比赛中,胜、平、负分别积3,1,0分.每个小组积分的前两名球队出线,进入淘汰赛.若出现积分相同的情况,则需要通过净胜球数等规则决出前两名,每个小组前两名球队出线,进入淘汰赛.假定积分相同的球队,通过净胜球数等规则出线的概率相同(例如:若B ,C ,D 三支积分相同的球队同时争夺第二名,则每个球队夺得第二名的概率相同).已知某小组内的A ,B ,C ,D 四支球队实力相当,且每支球队在每场比赛中胜、平、负的概率都是13,每场比赛的结果相互独立.(1)求A球队在小组赛的3场比赛中只积3分的概率;(2)已知在已结束的小组赛的3场比赛中,A球队胜2场,负1场,求A球队最终小组出线的概率.新乡市2023-2024学年高一期末(下)测试数学注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:人教A 版必修第一册占25%,第二册占75%.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}Z 21A x x =∈-<-,{}220B x x x =--≤,则A B = ()A.{}1B.{}1,0-C.{}1,2 D.{}1,0,1,2-【答案】C 【解析】【分析】根据题意,A 集合里的元素为整数,B 集合需解出具体解集,结合交集,得解.【详解】因为{}{}Z 211,2,3,A x x =∈-<-= ,{}{}22012B x x x x x =--≤=-≤≤,所以{}1,2⋂=A B .故答案选:C2.22i3i 4-=+()A.17i 1313- B.214i 2525-C.214i 2525+ D.17i 2525-+【答案】B 【解析】【分析】由复数除法运算法则可得答案.【详解】()()()()22i 43i 22i 214i 214i 3i 43i 443i 252525----===-++-.故选:B3.已知函数()21x f x x a-=+是奇函数,则=a ()A.0 B.1C.1- D.2【答案】A 【解析】【分析】利用奇函数定义,列式计算即得.【详解】由函数()f x 是奇函数,得()()0f x f x +-=,则22110x x x a x a--+=+-+,解得0a =,函数21()x f x x-=定义域为(,0)(0,)-∞+∞ ,是奇函数,所以0a =.故选:A4.已知平面向量a ,b满足1a = ,2b = ,且2a b -= ,则cos ,a b = ()A.12B.14C.16D.18【答案】D 【解析】【分析】对2a b -= 两边平方可得a b ⋅,再由向量的夹角公式计算可得答案.【详解】因为()2222447-=+-⋅=a ba b a b ,因为1a =,2b = ,所以14a b ⋅= ,1cos ,8⋅==a b a b a b .故选:D.5.已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>≤⎪⎝⎭的部分图象如图所示,则8π3f ⎛⎫= ⎪⎝⎭()A.0B.1C.2D.3【答案】A 【解析】【分析】由图中周期可得ω,由5π112f ⎛⎫=⎪⎝⎭可得ϕ,后可得答案.【详解】由图可得,15πππ41264T =-=,则2ππT ω==.因为0ω>,所以2ω=,则()()sin 2f x x ϕ=+.因为5π5πsin 211212f ϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,所以5ππ2π62k ϕ+=+,k ∈Z ,解得π2π3k ϕ=-+,k ∈Z .因为π2ϕ≤,所以π3ϕ=-,则()πsin 23f x x ⎛⎫=- ⎪⎝⎭,故8π8ππsin 2sin 5π0333f ⎛⎫⎛⎫=⨯-== ⎪ ⎪⎝⎭⎝⎭.故选:A6.将颜色为红、黄、白的3个小球随机分给甲、乙、丙3个人,每人1个,则与事件“甲分得红球,乙分得黄球或甲分得黄球、乙分得红球”互为对立事件的是()A.甲分得黄球B.甲分得白球C.丙没有分得白球D.甲分得白球,乙分得黄球【答案】C 【解析】【分析】由对立事件的概念即可得解.【详解】甲分得红球,乙分得黄球或甲分得黄球,乙分得红球,即丙分得白球,与丙没有分得白球互为对立事件.故选:C.7.已知2sin 23sin 2αβ=,且()tan 1αβ-=,则()tan αβ+=()A.1B.3C.5D.7【答案】C 【解析】【分析】利用凑角、两角和与差的正弦展开式化简可得答案.【详解】因为()()2ααβαβ=++-,()()2βαβαβ=+--,所以()()2sin αβαβ⎡⎤++-=⎣⎦()()3sin αβαβ⎡⎤+--⎣⎦,展开化简()()()()()()2sin 2sin cos 2cos sin αβαβαβαβαβαβ⎡⎤++-=+-++-⎣⎦()()()()3sin cos 3cos sin αβαβαβαβ=+--+-,所以()()()()5cos sin sin cos αβαβαβαβ+-=+-,故()()tan 5tan 5αβαβ+=-=.故选:C.8.在正三棱柱111ABC A B C -中,1AA AB =,M 是AB 的中点,N 是棱11B C 上的动点,则直线MN 与平面11BCC B 所成角的正切值的最大值为()A.12B.2 C.2D.4【答案】D 【解析】【分析】根据题意,先画出图象,作MG BC ⊥,然后由面面的垂直的性质可得MG ⊥平面11BCC B ,进而可知MNG ∠为直线MN 与平面11BCC B 所成的角,当MNG ∠取得最大值时,tan MGMNG NG∠=取得最大值,NG 取得最小值,从而可得直线MN 与平面11BCC B 所成角的正切值的最大值.【详解】如图,作MG BC ⊥,垂足为G ,连接NG .在正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B ,因为平面ABC ⋂平面11BCC B BC =,MG ⊂平面ABC ,MG BC ⊥,所以MG ⊥平面11BCC B .故MNG ∠为直线MN 与平面11BCC B 所成的角.当MNG ∠取得最大值时,tan MGMNG NG∠=取得最大值,NG 取得最小值.不妨设1AA AB a ==,则133cos 224MG MB B a ==⋅=,NG 的最小值为a ,于是3tan 4MG MNG NG ∠==.故选:D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分,有选错的得0分.9.如图,在长方体1111ABCD A B C D -中,点M ,N ,E ,F 分别在棱11A B ,11A D ,11B C ,11C D 上,且平面AMN ∥平面EFDB ,下列结论正确的是()A.MN EF ∥B.EF BD ∥C.AN DF ∥D.BE ∥平面AMN【答案】ABD【解析】【分析】利用面面平行的性质结合线面平行的判定定理逐个选项判断即可.【详解】因为平面AMN ∥平面EFDB ,平面1111D C B A 与平面EFDB 和平面AMN 的都相交,,MN EF 是交线,所以MN EF ∥,故A 正确;因为长方体1111ABCD A B C D -,所以平面1111∥A B C D 平面ABCD ,而平面EFDB 与这两个平行平面的都相交,EF BD ,是交线,所以EF BD ∥,故B 正确,如图,连接MF ,此时平面DAMF 与平面1111D C B A 和平面ABCD 的都相交,,DA MF 是交线,所以DA MF ∥,而1111,DA D A DA D A =∥,所以11MF D A ∥,又因为11D F MA ∥,所以四边形11D FMA 是平行四边形,所以11MF D A =,MF DA =,所以四边形DAMF 是平行四边形,所以DF AM ∥,因为AM AN A = ,所以AN 与DF 不平行,故C 错误;如图,连接NE ,由长方体性质得面11BCC B ∥面11AA D D ,NA EB是交线,此时平面NEBA与这两个平面的都相交,,∥,所以BE AN又因为AN⊂面AMN,BE⊄面AMN,所以BE∥平面AMN,故D正确.故选:ABD10.Z国进口的天然气主要分为液化天然气和气态天然气两类.2023年Z国天然气进口11997吨,其中液化天然气进口7132吨,气态天然气进口4865吨.2023年Z国天然气及气态天然气进口来源分布及数据如图所示:下列结论正确的是()A.2023年Z国从B国进口的液化天然气比从A国进口的多B.2023年Z国没有从A国进口液化天然气C.2023年Z国从C国进口的液化天然气一定比从D国进口的多D.2023年Z国从B国进口的液化天然气一定比从D国进口的多【答案】ABC【解析】【分析】由饼状统计图的实际含义逐一验算各个选项即可求解.【详解】对于B,2023年Z国从A国进口天然气2480吨,全部为气态天然气,所以2023年Z国没有从A国进口液化天然气,B正确.对于A,2023年Z国从B国进口天然气2435吨,其中气态天然气1630吨,液化天然气805吨,所以2023年Z 国从B 国进口的液化天然气比从A 国进口的多,A 正确.对于C ,假设2023年Z 国气态天然气其余部分全部来自C 国,共486524801630340415---=吨,则Z 国从C 国进口液化天然气24164152001-=吨,仍然大于从D 国进口的天然气的总量,所以2023年Z 国从C 国进口的液化天然气一定比从D 国进口的多,C 正确.对于D ,2023年Z 国从B 国进口液化天然气24351630805-=吨,2023年Z 国从D 国进口的天然气总量为1666吨,若全部为液化天然气,则2023年Z 国从B 国进口的液化天然气比从D 国进口的少,D 错误.故选:ABC.11.在ABC 中,D 是BC 的中点,4BC =,AD =,下列结论正确的是()A.若AC =,则=ABB.ABC 面积的最大值为C.7BA CA ⋅=D.若2B C =,则3AB =【答案】BCD【解析】【分析】根据勾股定理可判定A;根据三角形面积公式可判定B;根据向量运算可判定C;结合正余弦定理可判定D.【详解】在ACD 中,222AC CD AD +=,所以π2C =,AB ==,A 错误.当AD BC ⊥时,AD 最大,所以ABC 面积的最大值为12BC AD ⋅=,B 正确.()()()()227BA CA BD DA CD DA BD DA BD DA DA BD ⋅=+⋅+=+⋅-+=-= ,C 正确.在ABC 中,由正弦定理可得sin 2sin AC AB C C=,得2cos AC AB C =.在ACD 中,由余弦定理可得222224cos 7cos 28cos AC CD AD AB C C AC CD AB C+--==⋅,即227cos 48C AB AB =-.在ABD △中,由余弦定理可得222227cos 22cos 124AB BD AD AB C C AB BD AB+--===-⋅,即2278cos 4AB AB C AB -=-,所以22778448AB AB AB AB AB-=⋅--,整理得22150AB AB +-=,解得3AB =(5AB =-舍去),D 正确.三、填空题:本题共3小题,每小题5分,共15分.把答案填在答题卡中的横线上.12.函数()222x f x -=的最大值为______.【答案】4【解析】【分析】根据二次函数的性质得222x -≤,再由指数函数的性质即可求解.【详解】因为222x -≤,所以()222224x f x -=≤=,故函数()222x f x -=的最大值为4.故答案为:4.13.在某次调查中,采用分层随机抽样的方法得到10个A 类样本,30个B 类样本.若A 类样本的平均数为5.5,总体的平均数为4,则B 类样本的平均数为______.【答案】3.5【解析】【分析】设B 类样本的平均数为x ,通过总体的平均数列方程,进而解方程可得B 类样本的平均数.【详解】设B 类样本的平均数为x ,则10 5.530440x ⨯+=,解得 3.5x =.故答案为:3.5.14.已知某圆台的母线长为3,下底面的半径为1,若球O 与该圆台的上、下底面及侧面都相切,则球O 的表面积为______.【答案】8π【解析】【分析】把空间问题降维,转化在轴截面中进行研究,需要理解轴截面的概念,利用等面积法及勾股定理建立等式求解.【详解】解:如图,在轴截面梯形ABCD 中,3AD BC ==,22AB BF ==,设球O 的半径为r ,222EF OE OM r ===.()111122222ABCD S CD AB EF CD OE BC OM AB OF =+⋅=⋅+⨯⋅+⋅梯形,解得:4CD =,因为()()2222BC r CE BF =+-,所以22r =,所以球O 的表面积为24π8πr =,故答案为:8π.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数()cos f x x x =+.(1)求()f x 的最小正周期;(2)求()f x 的单调递增区间;(3)求()f x 在π0,2⎡⎤⎢⎥⎣⎦上的值域.【答案】(1)2π(2)()2ππ2π,2π33k k k ⎡⎤-++∈⎢⎥⎣⎦Z (3)[]1,2【解析】【分析】(1)利用辅助角公式化简()f x ,进而求得的最小正周期;(2)利用辅助角公式化简()f x ,进而求得单调递增区间;(3)利用整体代换的方法,求得在区间π0,2⎡⎤⎢⎥⎣⎦上的值域.【小问1详解】()πcos 2sin 6f x x x x ⎛⎫=+=+ ⎪⎝⎭.()f x 的最小正周期为2π.【小问2详解】令πππ2π2π262k x k -+≤+≤+,k ∈Z ,解得2ππ2π2π33k x k -+≤≤+,k ∈Z ,所以()f x 的单调递增区间为2ππ2π,2π33k k ⎡⎤-++⎢⎥⎣⎦(k ∈Z ).【小问3详解】因为π0,2⎡⎤∈⎢⎣⎦x ,所以ππ2π,663x ⎡⎤+∈⎢⎥⎣⎦,所以π1sin ,162x ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦,()[]1,2f x ∈.故()f x 在π0,2⎡⎤⎢⎥⎣⎦上的值域为[]1,2.16.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且cos 2c b B a +=.(1)证明:2A B =;(2)若2a =,3π4C =,求ABC 的周长.【答案】(1)证明见解析(22【解析】【分析】(1)由正弦定理以及三角恒等变换即可得证;(2)由正弦定理以及三角恒等变换即可得解.【小问1详解】因为cos 2c b B a+=,所以2cos c b a B +=,所以sin sin 2sin cos C B A B +=.因为()sin sin sin cos cos sin C A B A B A B =+=+,所以()sin sin cos cos sin sin =-=-B A B A B A B ,则B A B =-(或πB A B +-=,舍去),即2A B =.【小问2详解】因为3ππ4C A B =--=,2A B =,所以π6A =,π12B =.πππ62sin sin sin 12464B ⎛⎫==-= ⎪⎝⎭.由sin sin sin a b c A B C==,可得22sin 1sin 22a c C A =⋅=⋅=,2sin 1sin 42a b B A =⋅=⋅=故ABC 的周长为2a b c ++=+.17.为了解某校高一年级学生数学学习的阶段性表现,该年级组织了一次测试.已知此次考试共有1000名学生参加,将考试成绩分成六组:第一组[)30,50,第二组[)50,70,…,第六组[]130,150.整理数据得到如图所示的频率分布直方图.(1)该校根据试卷的难易程度进行分析,认为此次成绩不低于110分,则阶段性学习达到“优秀”,试估计这1000名学生中阶段性学习达到“优秀”的人数;(2)若采用等比例分层抽样的方法,从成绩在[)50,70和[)110,130内的学生中共抽取6人,查看他们的答题情况来分析知识点的掌握情况,再从中随机选取3人进行面对面调查分析,求这3人中恰有1人成绩在[)110,130内的概率.【答案】(1)200人(2)15【解析】【分析】(1)用学生成绩在[]110,150内的频率乘以1000即可得解;(2)写出从6人中任选3人的样本空间,以及抽取的3人中恰有1人成绩在[)110,130内的样本空间写出来,结合古典概型概率计算公式即可求解.【小问1详解】由频率分布直方图,可得学生成绩在[]130,150内的频率为0.04,在[)110,130内的频率为0.16,故估计这1000名学生中阶段性学习达到“优秀”的人数为1000(0.040.16)200⨯+=.【小问2详解】学生成绩在[)50,70内的频率为0.08,在[)110,130内的频率为0.16,则抽取的6人中,成绩在[)50,70内的有2人,在[)110,130内的有4人.记成绩在[)110,130内的4名学生为a ,b ,c ,d ,在[)50,70内的2名学生为E ,F ,则从6人中任选3人,样本空间可记{,,,,,,,,,,abc abd abE abF acd acE acF adE adF aEF ,,,,,,,,,}bcd bcE bcF bdE bdF bEF cdE cdF cEF dEF ,共包含20个样本.用事件A 表示“这3人中恰有1人成绩在[)110,130内”,则A ={aEF ,bEF ,cEF ,dEF },A 包含4个样本.故所求概率()41205P A ==.18.如图,在四棱锥P ABCD -中,PD⊥底面ABCD ,E 是PC 的中点,点F 在棱BP 上,且EF BP ⊥,四边形ABCD 为正方形,2PD CD ==.(1)证明:BP DF ⊥;(2)求三棱锥F BDE -的体积;(3)求二面角F DE B --的余弦值.【答案】(1)证明见解析(2)49(3)13【解析】【分析】(1)由线面垂直的判定求证;(2)由12F BDE E BDF C BDF V V V ---==转化求解;(3)由线面垂直的性质得BEF ∠即二面角F DE B --的平面角,即可求解.【小问1详解】证明:因为PD ⊥底面ABCD ,BC ⊂底面ABCD ,所以PD BC ⊥.因为四边形ABCD 为正方形,所以DC BC ⊥.因为PD DC D ⋂=,所以BC ⊥平面PCD .因为DE ⊂平面PCD ,所以BC DE ⊥.在PCD 中,PD CD =,E 是PC 的中点,则DE PC ⊥.因为BC PC C ⋂=,所以DE ⊥平面PBC .因为PB ⊂平面PBC ,所以DE PB ⊥.因为EF BP ⊥,DE EF E = ,所以BP ⊥平面DEF .因为DF ⊂平面DEF ,所以BP DF ⊥.【小问2详解】连接AC 交BD 于点M ,如图所示:则AC BD ⊥,又PD ⊥底面ABCD ,AC ⊂平面ABCD ,得AC PD ⊥,而PD BD D ⋂=,则AC ⊥平面PDB ,则点C 到平面PDB 的距离为CM =因为E 是PC 的中点,所以12F BDE E BDF C BDF V V V ---==BD =,BP =,3BD DP DF BP ⋅==,3BF ==,所以123BDF S BF DF =⋅=△,18339C BDF V -=⨯=,所以49F BDE V -=.【小问3详解】解:由(1)可得DE ⊥平面PBC ,因为EF ⊂平面PBC ,EB ⊂平面PBC ,所以DE EF ⊥,DE EB ⊥.BEF ∠为二面角F DE B --的平面角.12PE PC ==,BE ==.因为PFE PCB ∽△△,所以PE EF PB BC =,解得3EF =.因为EF BP ⊥,即90EFB ∠=︒,所以1cos 3EF BEF BE ∠==.故二面角F DE B --的余弦值为13.19.在世界杯小组赛阶段,每个小组内的四支球队进行循环比赛,共打6场,每场比赛中,胜、平、负分别积3,1,0分.每个小组积分的前两名球队出线,进入淘汰赛.若出现积分相同的情况,则需要通过净胜球数等规则决出前两名,每个小组前两名球队出线,进入淘汰赛.假定积分相同的球队,通过净胜球数等规则出线的概率相同(例如:若B,C,D三支积分相同的球队同时争夺第二名,则每个球队夺得第二名的概率相同).已知某小组内的A,B,C,D四支球队实力相当,且每支球队在每场比赛中胜、平、负的概率都是1 3,每场比赛的结果相互独立.(1)求A球队在小组赛的3场比赛中只积3分的概率;(2)已知在已结束的小组赛的3场比赛中,A球队胜2场,负1场,求A球队最终小组出线的概率.【答案】(1)4 27(2)79 81【解析】【分析】(1)分类讨论只积3分的可能情况,结合独立事件概率乘法公式运算求解;(2)由题意,若A球队参与的3场比赛中胜2场,负1场,根据获胜的三队通过净胜球数等规则决出前两名,分情况讨论结合独立事件概率乘法公式运算求解.【小问1详解】A球队在小组赛的3场比赛中只积3分,有两种情况.第一种情况:A球队在3场比赛中都是平局,其概率为1111 33327⨯⨯=.第二种情况:A球队在3场比赛中胜1场,负2场,其概率为11113 3339⨯⨯⨯=.故所求概率为114 27927+=.【小问2详解】不妨假设A球队参与的3场比赛的结果为A与B比赛,B胜;A与C比赛,A胜;A与D比赛,A胜.此情况下,A积6分,B积3分,C,D各积0分.在剩下的3场比赛中:若C与D比赛平局,则C,D每队最多只能加4分,此时C,D的积分都低于A的积分,A可以出线;若B与C比赛平局,后面2场比赛的结果无论如何,都有两队的积分低于A,A可以出线;若B与D比赛平局,同理可得A可以出线.故当剩下的3场比赛中有平局时,A一定可以出线.若剩下的3场比赛中没有平局,则当B,C,D各赢1场比赛时,A可以出线.当B,C,D中有一支队伍胜2场时,若C胜2场,B胜1场,A,B,C争夺第一、二名,则A淘汰的概率为11111 333381⨯⨯⨯=;若D胜2场,B胜1场,A,B,D争夺第一、二名,则A淘汰的概率为11111 333381⨯⨯⨯=.其他情况A均可以出线.综上,A球队最终小组出线的概率为1179 1818181⎛⎫-+=⎪⎝⎭.【点睛】关键点点睛:解题的关键在于分类讨论获胜的三队通过净胜球数等规则决出前两名,讨论要恰当划分,做到不重不漏,从而即可顺利得解.。
上海市复旦大学附属中学2023-2024学年高一下学期期末考试 数学试题【含答案】

复旦中学高一期末数学试卷一、填空题1.已知角α终边经过点(2,1)P -,则sin α=.2.已知复数z 满足i 2i z =-,则z =3.满足π2cos 214x ⎛⎫+= ⎪⎝⎭,[0,π]x ∈的角x 的集合为.4.已知函数()sin 22y x ϕ=+(0ϕ>)是偶函数,则ϕ的最小值是.5.已知{}n a 为无穷等比数列,23a =,14i i a +∞==-∑,则{}n a 的公比为.6.若z 是实系数方程220x x p ++=的一个虚根,且2z =,则p =.7.若数列{}n a 的通项公式为222023n a n n =-+,则n =时1i ni a =∑取到最大值.8.如图,在离地面高400m 的热气球上,观测到山顶C 处的仰角为15°,山脚A 处的俯角为45°,已知60BAC ∠=︒,求山的高度BC =m ..9.已知P 是边长为3的正方形ABCD 内(包含边界)的一点,则AP AB ⋅的最大值是.10.已知公差不为0的等差数列{}n a 的前n 项和为n S ,若{}457,,10,0a S S ∈-,则n S 的最小值为11.已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-,求集合{}1,1500k m kb a a m =+≤≤∣中元素个数.12.17世纪法国数学家费马在给朋友的一封信中曾提出一个关于三角形的有趣问题:在三角形所在平面内,求一点,使它到三角形每个顶点的距离之和最小,现已证明:在ABC 中,若三个内角均小于120︒,则当点P 满足120APB APC BPC Ð=Ð=Ð=°时,点P 到三角形三个顶点的距离之和最小,点P 被人们称为费马点.根据以上知识,已知a为平面内任意一个向量,b 和c 是平面内两个互相垂直的向量,且||2,||3b c == ,则||||||-+++-a b a b a c 的最小值是.二、选择题13.已知z 为复数,则“z z =”是“22z z =”的()A .充分非必要条件B .必要非充分条件C .充要条件D .非充分非必要条件14.下列函数中,最小正周期为π且是偶函数的是()A .cos 2y x=B .tan y x=C .πsin 4y x ⎛⎫=+ ⎪⎝⎭D .sin 2y x=15.欧拉公式i e cos isin x x x =+(i 为虚数单位,x ∈R ,e 为自然底数)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,现有以下两个结论:①i e 10π+=;②2299cos isin cos isin cos isin i 101010101010ππππππ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭其中所有正确结论的编号是()A .①②均正确B .①②均错误C .①对②错D .①错②对16.设无穷项等差数列{}n a 的公差为()0d d ≠,前n 项和为n S ,则下列四个说法中正确的个数是()①若0d <,则数列{}n S 有最大项;②若数列{}n S 有最大项,则0d <;③若数列{}n S 是递增数列,则对任意的*n ∈N ,均有0n S >;④若对任意的*n ∈N ,均有0n S >,则数列{}n S 是递增数列.A .1个B .2个C .3个D .4个三、解答题17.已知复数z 满足()1i 2i,z O +=为坐标原点,复数z 在复平面内对应的向量为OZ .(1)求34i z +-;(2)若向量OZ 绕O 逆时针旋转π2得到,OZ OZ '' 对应的复数为z ',求z z ⋅'.18.设数列{}n a 的前n 项和12n n S a a =-,且123,1,a a a +成等差数列.(1)求数列{}n a 的通项公式;(2)记数列1n a ⎧⎫⎨⎬⎩⎭前n 项和n T ,求使111000n T -<成立的n 的最小值.19.已知函数()sin ,f x x x =∈R .(1)求解方程:()13f x =;(2)设()()2π222g x x f x ⎛⎫=++ ⎪⎝⎭,求函数()g x 的单调递增区间;(3)在ABC 中,角,,A B C 所对应的边为,,a b c .若()4,f A b ABC == 的面积为求sin C 的值.20.已知数列{}n a ,若{}1n n a a ++为等比数列,则称{}n a 具有性质P.(1)若数列{}n a 具有性质P ,且1231,3a a a ===,求45,a a 的值;(2)若2(1)n nn b =+-,判断数列{}n b 是否具有性质P 并证明;(3)设212n c c c n n +++=+L ,数列{}n d 具有性质P ,其中13212321d d d c d d c =-=+=,,,试求数列{}n d 的通项公式.II 卷21.将函数()π4cos2f x x =和直线()1g x x =-的所有交点从左到右依次记为1A ,2A ,…,n A ,若(P ,则125...PA PA PA +++=.22.已知*(1,2,9)i a i ∈=⋯N ,且对任意()*28k k ∈≤≤N 都有11k k a a -=+或11k k a a +=-中有且仅有一个成立,16a =,99a =,则91a a ++ 的最小值为.23.若向量,,a b c →→→满足a b ¹,0c ≠ ,且()()0c a c b -⋅-= ,则a b a b c++-的最小值是.24.已知函数()3112f x x ⎛⎫=-+ ⎪⎝⎭,则122023202420242024f f f ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值为.1.5-【详解】∵角α终边经过点(2,1)P -,∴OP =sinα=,故答案为2【分析】根据复数的乘除运算及复数的模的运算公式即可求解.【详解】因为复数z 满足i 2i z =-,所以2i12i iz -==--,所以z ==3.π17π,2424⎧⎫⎨⎬⎩⎭【分析】借助余弦函数的性质计算即可得.【详解】由π2cos 214x ⎛⎫+= ⎪⎝⎭,则()ππ22π43x k k +=±+∈Z ,即()πππ68x k k =±-+∈Z ,又[0,π]x ∈,则0k =,有πππ6824x =-=,当1k =,有ππ17ππ6824x =--+=,故角x 的集合为π17π,2424⎧⎫⎨⎬⎩⎭.故答案为:π17π,2424⎧⎫⎨⎬⎩⎭.4.4π##14π【分析】利用三角函数的性质即可求解.【详解】因为函数()sin 22y x ϕ=+是偶函数,所以π2π,Z 2k k ϕ=+∈,解得ππ,Z 24k k ϕ=+∈,又0ϕ>,所以当0k =时,ϕ的最小值是π4.故答案为:π4ϕ=.5.12-##0.5-【分析】由题意知,||1q <,再利用无穷等比数列和的公式求解即可.【详解】因为无穷等比数列{}n a ,14i i a +∞==-∑,则||1q <,141a q=--,又213a a q q==,所以34(1)q q =--,解得12q =-或32q =(舍).故答案为:12-.6.4【详解】设z a bi =+,则方程的另一个根为z a bi '=-,且22z ==,由韦达定理直线22,1,z z a a +==-∴=-'23,b b ∴==所以(1)(1) 4.p z z =⋅=-'-=7.1011【分析】由0n a ≥判断出变号的相邻两项即可求解.【详解】令2220230n a n n =-+≥,解得202302n ≤≤,∵n N *∈,∴前1011项为正数,从1012项开始为负数,∴当1011n =时,1i ni a =∑取到最大值,故答案为:1011.8.600m【分析】先根据已知条件求解出,AM ACM ∠的大小,然后在ACM △中利用正弦定理求解出AC ,再根据,AC BC 的关系求解出BC .【详解】因为=45,60MAD CAB ∠︒∠=︒,所以180456075MAC ∠=︒-︒-︒=︒,所以180756045MCA ∠=︒-︒-︒=︒,又因为cos 45400m MA MD ︒==,所以MA =,又因为sin 60sin 45AC AM=︒︒,所以AC =,所以sin 60600m 2BC AC =︒=,故答案为:600m .【点睛】关键点点睛:解答本题的关键是将ACM △中的角和边先求解出来,然后利用正弦定理求解出AC 的值,再借助直角三角形中边的关系达到求解高度BC 的目的.9.9【分析】在正方形中建立平面直角坐标系,设(,),(03,03)P x y x y ≤≤≤≤,结合向量数量积的概念可得结果.【详解】以A 点为原点建立如图所示的平面直角坐标系,设(,),(03,03)P x y x y ≤≤≤≤,可得(0,0),(3,0)A B ,所以(,),(3,0)AP x y AB ==,故(,)(3,0)3AP AB x y x ⋅== ,当3x =时,AP AB ⋅最大,最大值为9.故答案为:9.10.12-【分析】对4a 的值进行分类讨论,结合等差数列前n 项和最值的求法求得n S 的最小值.【详解】n S 取得最小值,则公差0d >,410a =-或40a =,(1)当17474530,0,770,5102a a a d S a S a +=>=⨯====-1130,51010a d a d ⇒+=+=-,16,20,28,2804n n a d a n a n n ⇒=-=>=-=-≤⇒≤,所以n S 的最小值为4146241212S a d =+=-+=-.(2)当1747410,0,77702a a a d S a +=->=⨯==-,不合题意.综上所述:457=0,= 10,0,n a S S S -=的最小值为12-.故答案为:12-11.9【分析】设{}n a 的公差为d ,由题意223344a b a b b a -=-=-基本量化简得到1122d a b ==.1k m b a a =+,代入基本量,化简得到22k m -=,通过m 的范围进而得到k 的范围.【详解】设等差数列{}n a 的公差为d ,2233a b a b -=- ,1111224a d b a d b ∴+-=+-,即12d b =.2244a b b a -=- ,()1111283a d b b a d ∴+-=-+,得到1125a d b +=,将12d b =代入,得到11a b =,即1122d b a ==.1k m b a a =+ ,()111121k b a m d a -∴⋅=+-+,即()11112212k b b m b -⋅=+-,10b ≠ 得到22k m -=,21500,12500k m -≤≤≤≤ ,028k ≤-≤,210k ≤≤,所以元素个数为9个.故答案为:9.12.3+【分析】读懂题意,建立直角坐标系,将向量求模问题转化为费马点问题.【详解】以b为x 轴,c 为y 轴,建立直角坐标系如下图,设(),a x y = ,则()()2,0,0,3b c == ,a c a b a b --=+ ,a c ab a b ∴-+-++即为平面内一点(),x y 到()()()0,3,2,0,2,0-三点的距离之和,由费马点知:当点(),P x y 与三顶点()()()0,3,2,0,2,0A B C -构成的三角形ABC 为费马点时a c a b a b -+-++最小,将三角形ABC 放在坐标系中如下图:现在先证明ABC 的三个内角均小于120︒:4AB BC BC ==,22211cos 0213AB AC BCBAC AB AC +-∠==> ,222cos cos 02AB BC ACABC ACB AB BC+-∠=∠==,ABC ∴ 为锐角三角形,满足产生费马点的条件,又因为ABC 是等腰三角形,点P 必定在底边BC 的对称轴上,即y 轴上,120,30BPC PCB ︒︒∠=∴∠=,tan 233PO OC PCB =∠=⨯= ,即230,3⎛ ⎝⎭P ,现在验证120BPA ︒∠=:2333BP AP ==-,2221cos 22BP AP AB BPA BP AP +-∠==- ,120BPA ︒∴∠=,同理可证得120CPA ︒∠=,即此时点0,3⎛ ⎝⎭P 是费马点,到三个顶点A ,B ,C 的距离之和为233BP CP AP ++=+=+,即a c a b a b -+-++ 的最小值为3+;故答案为:3+13.A【分析】正向可得R z ∈,则正向成立,反向利用待定系数法计算即可得0a =或0b =,则必要性不成立.【详解】若z z =,则R z ∈,则22z z =,故充分性成立;若22z z =,设i,,R z a b a b =+∈,则2222i z a ab b =+-,222i z a ab b =--,则20ab =,0a =或0,b z =∴与z 不一定相等,则必要性不成立,则“z z =”是“22z z =”的充分非必要条件,故选:A 14.A【分析】借助三角函数得周期性与对称性逐项判断即可得.【详解】对A :2π2πT ==,又cos 2y x =是偶函数,故A 正确;对B :tan y x =为奇函数,故B 错误;对C :πsin 4y x ⎛⎫=+ ⎪⎝⎭周期为2π,故C 错误;对D :sin 2y x =为奇函数,故D 错误.故选:A.15.A【分析】对①,通过欧拉公式,i e cos i sin πππ=+,算出即可;对②,先将欧拉公式逆用,将原式化简为29i i i 101010e e e πππ⋅⋅⋅⋅⋅⋅ ,再通过指数运算性质化简,最后再用欧拉公式展开,最后算出即可.【详解】对①,由题意,i e 1cos i sin 11010πππ+=++=-++=,正确;对②,原式=29i i i 101010e eeπππ⋅⋅⋅⋅⋅⋅ =29999i i i 10101021010299eeecos isin 22ππππππππ⎛⎫⎛⎫+++⋅+⋅ ⎪⎪⎝⎭⎝⎭===+ =cosi sini 22ππ+=,正确.故选:A.16.C【分析】由等差数列的求和公式可得()2111+222n n n d d S na n a n +⎛⎫=+=+ ⎪⎝⎭,可看作关于n 的二次函数,由二次函数的性质逐个验证即可【详解】由等差数列的求和公式可得()2111+222n n n d d S na n a n +⎛⎫=+=+ ⎪⎝⎭,对于①,若0d <,由二次函数的性质可得数列{}n S 有最大项,故①正确;对于②,若数列{}n S 有最大项,则对应抛物线开口向下,则有0d <,故②正确;对于③,若对任意*n ∈N ,均有0n S >,对应抛物线开口向上,则有0d >,故数列{}n S 是递增数列,故③正确;对于④,若数列{}n S 是递增数列,则对应抛物线开口向上,则0d >,但无法确定0n S >恒成立,故④错误;故正确的有3个,故选:C【点睛】本题考查等差数列的求和公式的应用,考查数列的函数性质的应用17.(1)5(2)2-【分析】(1)求出对应复数,再利用模的公式求模即可.(2)利用复数的几何意义结合旋转的性质求出对应复数,再求乘积即可.【详解】(1)由()1i 2i z +=得:()()()()2i 1i 2ii 1i 1i 1i 1i 1i z -===-=+++-,34i 43i 5z ∴+-=-=.(2)又1i z =+,由复数的几何意义,得向量()1,1OZ = 绕原点O 逆时针旋转π2得到的()1,1OZ -'= ,则OZ '对应的复数为1i z '=-+,则()()1i 1i 2z z ⋅=+⋅-+=-'.18.(1)2n n a =.(2)10.【详解】试题分析:(1)借助于()12n n n a S S n -=-≥将12n n S a a =-转化为12(1)n n a a n -=>,进而得到数列为等比数列,通过首项和公比求得通项公式;(2)整理数列1n a ⎧⎫⎨⎩⎭的通项公式112n n a =,可知数列为等比数列,求得前n 项和n T ,代入不等式111000n T -<可求得n 的最小值试题解析:(1)由已知12n n S a a =-,有1122(1)n n n n n a S S a a n --=-=->,即12(1)n n a a n -=>.从而21312,4a a a a ==.又因为123,1,a a a +成等差数列,即1232(1)a a a +=+.所以11142(21)a a a +=+,解得12a =.所以,数列{}n a 是首项为2,公比为2的等比数列.故2n n a =.(2)由(1)得112n n a =.所以2311[1()]1111122112222212n n n n T -=++++==-- .由111000n T -<,得111121000n --<,即21000n >.因为9102512100010242=<<=,所以10n ≥.于是,使111000n T -<成立的n 的最小值为10.考点:1.数列通项公式;2.等比数列求和19.(1)1(1)arcsin ,3k x k k Z π=+-∈(2)πππ,π,Z 36k k k ⎡⎤-++∈⎢⎥⎣⎦(3)26【分析】(1)将()f x 代入方程,用反三角函数解出即可;(2)将()f x 代入()g x 用半角公式,辅助角公式进行化简,求出单调增区间即可;(3)先求出sin A 的值,再根据面积公式求出c 的值,根据sin A 的值求出角A 的值,再用余弦定理求出a ,再根据正弦定理即可求出sin A .【详解】(1)解:由题知()13f x =,即1sin 3x =,解得12arcsin ,3x k k Z π=+∈或12arcsin ,3x k k Z ππ=+-∈;即1(1)arcsin ,3k x k k Z π=+-∈(2)由题()()2π222g x x f x ⎛⎫=++ ⎪⎝⎭,即()()2π22sin 2g x x x ⎛⎫=++ ⎪⎝⎭()222cos x x=+()()2cos 21x x =++π2sin 216x ⎛⎫=++ ⎪⎝⎭,()g x ∴的单调递增区间为:πππ2π22π262k x k -+≤+≤+,Z k ∈,解得:ππππ36k x k -+≤≤+,Z k ∈,故()g x 的单调递增区间为πππ,πZ 36k k k ⎡⎤-++∈⎢⎥⎣⎦;(3)由()32f A =sin A ∴=π3A ∴=或2π3A =,14,sin 2ABC b S bc A === 3c ∴=,当π3A =时,在ABC 中由余弦定理得:22221691cos 22432b c a a A bc +-+-===⋅⋅,解得a =,此时在ABC 中由正弦定理得:sin sin a c A C=,解得sin sin c A C a =当2π3A =时,在ABC 中由余弦定理得:22221691cos 22432b c a a A bc +-+-===-⋅⋅,解得a =此时在ABC 中由正弦定理得:sin sin a c A C=,解得sin sin 74c A C a ==,综上:sin C =3111sin 74C =.20.(1)45,a a 分别为5、11(2)数列{}n b 具有性质P ,证明见解析(3)()1*N ,213n n n d n -+-=∈【分析】(1)根据数列数列{}n a 具有性质P 可得{}1n n a a ++为等比数列,根据等比数列性质可求得答案;(2)依据数列新定义,结合等比数列定义即可判断结论,进而证明;(3)求出2n c n =,可得12n n n d d ++=,进而推出22n n n d d +-=,分n 为奇偶数,求出n d ,综合可得答案.【详解】(1)由题意数列{}n a 具有性质P ,{}1n n a a ++为等比数列,设公比为q ,由1231,3a a a ===,得122334424,,,28,5a a a a q a a a +=+=∴=+=∴=∴,又45516,11a a a +=∴=;(2)数列{}n b 具有性质P ;证明:因为2(1)n n n b =+-,所以()()111212132n n n n n n n b b ++++=+-++-=⋅,则112132232n n n nn n b b b b +++++⋅==+⋅,即{}1n n b b ++为等比数列,所以数列{}n b 具有性质P .(3)因为212n c c c n n +++=+L ,则12c =,2121(1)1,(2)n c c c n n n -+++=-+-≥L ,故22(1)12,(2)n c n n n n n n ++==---≥,12c =适合该式,故2n c n =,所以由13212321d d d c d d c =-=+=,,得13223124d d d d d =-=+=,,,则123122311,2,,3,4d d d d d d d ===∴+=+=,因为数列{}n d 具有性质P ,故{}1n n d d ++为等比数列,设其公比为q ',则2q '=,故111222,22,n n n n n n n n n d d d d d d +++++=++∴=∴-=,当n 为偶数时,()()()2422244222122213n n n n n n n n d d d d d d d d ------=-+-++-+=++++= ;当n 为奇数时,()()()12412243112(21)212221133n n n n n n n n n d d d d d d d d ------+=-+-++-+=+-++=++= ,故()1*N ,213n n n d n -+-=∈.【点睛】关键点睛:本题是关于数列新定义类型题目,解答的关键是要理解数列新定义,并依据该定义去解决问题.21.10【分析】根据题意作出两个函数的图象分析交点个数,利用对称性化简向量的和即可求解.【详解】如图可知:函数()π4cos2f x x =和直线()1g x x =-共有5个交点,依次为12345,,,,A A A A A ,其中()31,0A ,∵函数()π4cos 2f x x =和直线()1g x x =-均关于点()31,0A 对称,则12345,,,,A A A A A 关于点()31,0A 对称,∴632,1,2,3i i PA i PA PA -+==uuu r uuuur uuu r ,且(31,PA =uuu r ,故533125...22510PA PA PA PA PA ===+++=⨯uuu r uuu r uuu r uuu r uuu r .故答案为:10.22.31【分析】根据题意分两种情况讨论求出91a a ++ 的值,即可求得91a a ++ 的最小值.【详解】解:由题设,知:1i a ≥;211a a =+或231a a =-中恰有一个成立;321a a =+或341a a =-中恰有一个成立;…871a a =+或891a a =-中恰有一个成立;则①2117a a =+=,341a a =-,561a a =-,781a a =-,则()129357252a a a a a a +++=+++ ,当3571a a a ===时,129a a a +++ 的和为最小值为:31;②231a a =-,451a a =-,671a a =-,891a a =-,则()129468262a a a a a a +++=+++ ,当4681a a a ===时,129a a a +++ 的和为最小值为:32;因此,129a a a +++ 的最小值为:31.故答案为:31.23.2【解析】设,,a OA b OB c OC →→→→→→===,由条件可知AC BC ⊥,画出图形,由向量加减法及性质可得a b a bc→→→→→++-2||2||OM CM OC →→→+=,利用两边之和不小于第三边求解.【详解】设,,a OA b OB c OC →→→→→→===,因为0c a c b →→→→⎛⎫⎛⎫-⋅-= ⎪ ⎪⎝⎭⎝⎭,所以()()0OC OA OC OB →→→→-⋅-=,即0AC BC →→⋅=,所以AC BC ⊥,取AB 中点M ,如图,所以2||2||a b a bOA OB OA OB OM AM cOC OC →→→→→→→→→→→→→++-++-+==2||2||2||2OM CM OC OC OC →→→→→+=≥=,当且仅当,,O M C 三点共线时取等号.故答案为:2【点睛】本题主要考查了向量的加减法运算,向量加法的几何意义,考查了数形结合思想,属于难题.24.2023【分析】利用函数的对称性得到()()12f x f x +-=,然后计算即可.【详解】根据题意,函数()3112f x x ⎛⎫=-+ ⎪⎝⎭,则()3311111122f x x x ⎛⎫⎛⎫-=--+=--+ ⎪ ⎪⎝⎭⎝⎭,故()()12f x f x +-=,11012122024f f ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,122023120232202210111013202420242024202420242024202420242024f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++=+++++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 101210112120232024f ⎛⎫=⨯+= ⎪⎝⎭故答案为:2023.。
武汉华中师范大学第一附属中学2024年高一下学期7月期末检测数学试题+答案

华中师大一附中2023-2024学年度下学期期末检测高一年级数学试题考试时间:120分钟 试卷满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足()20241i i z +−=(i 为虚数单位),则z 的虛部为( )A .12B .12−C .i 2D .i 2−2.某商场组织了一次幸运抽奖活动,袋中装有标号分别为1~8的8个大小形状相同的小球,现抽奖者从中抽取1个小球.事件A =“取出的小球编号为奇数”,事件B =“取出的小球编号为偶数”,事件C =“取出的小球编号小于6”,事件D =“取出的小球编号大于6”,则下列结论错误的是( ) A .A 与B 互斥B .A 与B 互为对立事件C .C 与D 互为对立事件D .B 与D 相互独立3.已知m ,n 是不同的直线,α,β,γ是不同的平面,则下列结论正确的是( ) A .若m α∥,n α∥,则m n ∥ B .若m α∥,m β∥,则αβ∥ C .若m α∥,αβ∥,则m β∥D .若αγ⊥,βγ⊥,l αβ= ,则l γ⊥4.甲乙两人进行三分远投比赛,甲、乙每次投篮命中的概率分别为0.5和0.4,且两人之间互不影响.若两人分别投篮一次,则两人中至少一人命中的概率为( ) A .0.6B .0.7C .0.8D .0.95.在△ABC 中,a ,b ,c 为角A ,B ,C 对应的边,则“cos sin a C a C b c −=−”是“△ABC 为直角三角形”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.如图,圆台1OO 的轴截面是等腰梯形ABCD ,24AB BC CD ===,E 为下底面O 上的一点,且AE =,则直线CE 与平面ABCD 所成角的正切值为( )A .2B .12 C D 7.掷一枚质地均匀的骰子3次,则三个点数之和大于14的概率为( ) A .17216B .554C .427D .352168.在平行四边形ABCD 中,2π3BAD ∠=,1AB =,2AD =.P 是以C 为圆心,点,且AP AB AD λµ=+,则λµ+的最大值为( )A .2+BC .2+D .2+二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求、全部选对的得6分,部分选对的得部分分,有选错的得0分.9.四名同学各掷骰子7次,分别记录每次骰子出现的点数,根据四名同学的统计结果,判断可能出现了点数6的是( ) A .中位数为3,极差为3B .平均数为2,第80百分位数为4C .平均数为3,中位数为4D .平均数为3,方差为110.在平面直角坐标系中,可以用有序实数对表示向量类似的,可以把有序复数对()()1212,,C z z z z ∈看作一个向量,记()12,a z z = ,则称a为复向量.类比平面向量的相关运算法则,对于()12,a z z = ,()34,b z z = ,1234,,,C z z z z ∈,规定如下运算法则:①()1324,a b z z z z +++ ;②()1324,a b z z z z −−−;③1324a b z z z z ⋅=+ ;④||a = .则下列结论正确的是( )A .若(i,1i)a =+ ,(2,2i)b =− ,则15i a b ⋅=+B .若0a = ,则()0,0a =C .a b b a ⋅=⋅D .()a b c a b a c ⋅+=⋅+⋅11.如图所示,在直角梯形BCEF 中,90CBF BCE ∠=∠=°,A ,D 分别是BF ,CE 上的点,且AD BC ∥,222AB ED BC AF ====,将四边形ADEF 沿AD 向上折起,连接BE ,BF ,CE .在折起的过程中,下列结论正确的是( )A .AC ∥平面BEFB .BE 与AD 所成的角先变大后变小C .几何体EF ABCD 体积有最大值53D .平面BCE 与平面BEF 不可能垂直三、填空题:本题共3小题,每小题5分,共15分.12.已知圆锥体积为3π,表面积是底面积的3倍,则该圆锥的母线长为______.13.已知平面向量a ,b ,3b = ,向量a 在向量b 上的投影向量为16b −,则a b ⋅= ______.14.在正三棱柱111ABC A B C −中,14AB AA ==,E 为线段1CC 上动点,D 为BC 边中点,则三棱锥A -BDE 外接球表面积的最小值为______.四、解答题:本题共5小题,共77分解答应写出文字说明、证明过程或演算步骤.15.(13分)某市举办了党史知识竞赛,从中随机抽取部分参赛选手,统计成绩后对统计数据整理得到如图所示的频率分布直方图.(1)试估计全市参赛者成绩的第40百分位数(保留小数点后一位)和平均数(单位:分);(2)若用按比例分配的分层随机抽样的方法从[)50,60,[)60,70,[)70,80三层中抽取一个容量为6的样本,再从这6人中随机抽取两人,求抽取的两人都及格(大于等于60分为及格)的概率.16.(15分)如图,四边形PDCE 为矩形,直线PD 垂直于梯形ABCD 所在的平面.90ADC BAD =∠=°∠,F 是线段P A 的中点,PD =112AB AD CD ===.(1)求证:AC ∥平面DEF ;(2)求点F 到平面BCP 的距离.17.(15分)在△ABC 中,a ,b ,c 为角A ,B ,C 对应的边,S 为△ABC 的面积.且2sin sin sin 21sin C ab B a A S B−=−.(1)求A ;(2)若2a =,求△ABC 内切圆半径的最大值.18.(17分)如图,在三棱柱111ABC A B C −中,底面是边长为4的等边三角形,14CC =,D 、E 分别是线段AC 、1CC 的中点,点1C 在平面ABC 内的射影为点D .(1)求证:1A C ⊥平面BDE ;(2)设G 为棱11B C 上一点,111C G C B λ=,()0,1λ∈. ①若12λ=,请在图中作出三棱柱111ABC A B C −过G 、B 、D 三点的截面,并求该截面的面积; ②求二面角G -BD -E 的取值范围.19.(17分)对于两个平面向量a ,b,如果有0a b a a ⋅−⋅> ,则称向量a 是向量b 的“迷你向量”.(1)若(1,)m x = ,(2,1)n x =− ,m 是n的“迷你向量”,求实数x 的取值范围; (2)一只蚂蚁从坐标原点()0,0O 沿最短路径爬行到点(),N n n 处(n N ∈且2n ≥).蚂蚁每次只能沿平行或垂直于坐标轴的方向爬行一个单位长度,爬完第i 次后停留的位置记为()112P i n ≤≤,设()1,0M n −.记事件T =“蚂蚁经过的路径中至少有n 个i P 使得ON 是i OP的迷你向量”。
河南天一大联考2024届高一数学第二学期期末考试试题含解析

河南天一大联考2024届高一数学第二学期期末考试试题 注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知5a =,3b =,且12a b ⋅=-,则向量a 在向量b 上的投影等于( ) A .-4 B .4 C .125- D .1252.如图,随机地在图中撒一把豆子,则豆子落到阴影部分的概率是( )A .B .C .D .3.下列函数中,既是偶函数又在(,0)-∞上是单调递减的是A .cos y x =-B .lg y x =C .21y x =-D .x y e -=4.在正方体1111ABCD A B C D -中,M 、N 分别是棱1AA 和AB 的中点,P 为上底面1111D C B A 的中心,则直线PB 与MN 所成的角为( ) A .30° B .45° C .60° D .90°5.若a 、b 、c >0且a (a +b +c )+bc =4-32a +b +c 的最小值为( ) A . 3-1B . 3 1C .3 2D .3 26.已知直线1:230l x ay +-=与()2:110l a x y -++=,若12l l //,则a =( ) A .2 B .1 C .2或-1 D .-2或17.若两个球的半径之比为1:3,则这两球的体积之比为( )A .1:3B .1:1C .1:27D .1:98.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,5sin 7A =,5a =,7b =,则sin B 等于( )A .35B .45C .37D .19.函数tan()42y x ππ=-的部分图像如图所示,则()OA OB AB +⋅的值为( )A .1B .4C .6D .710.下列命题正确的是( )A .有两个面平行,其余各面都是四边形的几何体叫棱柱.B .有两个面平行,其余各面都是平行四边形的几何体叫棱柱.C .有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱.D .用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台.二、填空题:本大题共6小题,每小题5分,共30分。
2022-2023学年山东省济南市高一(下)期末数学试卷【答案版】

2022-2023学年山东省济南市高一(下)期末数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数z =11+2i对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限2.《2023年五一出游数据报告》显示,济南凭借超强周边吸引力,荣登“五一”最强周边游“吸金力”前十名榜单.其中,济南天下第一泉风景区接待游客100万人次,济南动物园接待游客30万人次,千佛山景区接待游客20万人次.现采用按比例分层抽样的方法对三个景区的游客共抽取1500人进行济南旅游满意度的调研,则济南天下第一泉风景区抽取游客( ) A .1000人B .300人C .200人D .100人3.设α,β为两个平面,则α⊥β的充要条件是( ) A .α过β的一条垂线B .α,β垂直于同一平面C .α内有一条直线垂直于α与β的交线D .α内有两条相交直线分别与β内两条直线垂直 4.袋子中有5个大小质地完全相同的球,其中3个红球,2个黄球,从中不放回地依次随机摸出2个球,则第二次摸到红球的概率为( ) A .110B .15C .25D .355.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,B =π4,b =1,c =√62,则角C 的值为( )A .π3B .2π3C .π3或2π3D .无解6.如果三棱锥S ﹣ABC 底面不是等边三角形,侧棱SA ,SB ,SC 与底面ABC 所成的角都相等,SO ⊥平面ABC ,垂足为O ,则O 是△ABC 的( ) A .垂心B .重心C .内心D .外心7.已知锐角△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,B =π3,c =2,则△ABC 的周长的取值范围为( )A .(3+√3,2+2√3)B .(3+√3,4+2√3)C .(3+√3,6+2√3)D .(3+√3,+∞)8.在四棱锥P ﹣ABCD 中,P A ⊥底面ABCD ,底面ABCD 为正方形,P A =AB =1.点E ,F ,G 分别为平面P AB ,平面P AD 和平面ABCD 内的动点,点Q 为棱PC 上的动点,则QE 2+QF 2+QG 2的最小值为( ) A .12B .23C .34D .1二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.已知复数ω=−12+√32i ,则下列说法中正确的是( )A .|ω|=1B .ω3=﹣1C .ω2=ωD .ω2+ω+1=010.先后抛掷质地均匀的硬币两次,则下列说法正确的是( ) A .事件“恰有一次正面向上”与事件“恰有一次反面向上”相等B .事件“至少一次正面向上”与事件“至少一次反面向上”互斥C .事件“两次正面向上”与事件“两次反面向上”互为对立事件D .事件“第一次正面向上”与事件“第二次反面向上”相互独立11.某学校为了调查高一年级学生每天体育活动时间情况,随机选取了100名学生,绘制了如图所示频率分布直方图,则下列说法正确的是( )A .平均数的估计值为30B .众数的估计值为35C .第60百分位数估计值是32D .随机选取这100名学生中有25名学生体育活动时间不低于40分钟12.如图,已知三棱锥D ﹣ABC 可绕AB 在空间中任意旋转,△ABC 为等边三角形,AB 在平面α内,AB ⊥CD ,AB =2,CD =√6,cos∠CBD =14,则下列说法正确的是( )A .二面角D ﹣AB ﹣C 为π2B .三棱锥D ﹣ABC 的外接球表面积为20π3C .点C 与点D 到平面α的距离之和的最大值为2 D .点C 在平面α内的射影为点M ,线段DM 的最大值为√15+√32三、填空题:本题共4小题,每小题5分,共20分. 13.一组数据1,2,4,5,8的第75百分位数为 .14.在正方体ABCD ﹣A 1B 1C 1D 1中,直线BC 1与直线CD 1夹角的余弦值为 . 15.在圆C 中,已知弦AB =2,则AB →⋅AC →的值为 .16.已知△ABC 的重心为G ,面积为1,且AB =2AC ,则3AG 2+BC 2的最小值为 . 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知e →1,e →2是两个单位向量,夹角为π3,设a→=e →1+2e →2,b→=te →1−3e →2.(1)求|a →|;(2)若a →⊥b →,求t 的值.18.(12分)已知正三棱柱ABC ﹣A 1B 1C 1的棱长均为2,M 为A 1C 1的中点. (1)求证:BC 1∥平面AB 1M ; (2)求点B 到平面AB 1M 的距离d .19.(12分)独立事件是一个非常基础但又十分重要的概念,对于理解和应用概率论和统计学至关重要.它的概念最早可以追溯到17世纪的布莱兹•帕斯卡和皮埃尔•德•费马,当时被定义为彼此不相关的事件.19世纪初期,皮埃尔•西蒙•拉普拉斯在他的《概率的分析理论》中给出了相互独立事件的概率乘法公式.对任意两个事件A 与B ,如果P (AB )=P (A )P (B )成立,则称事件A 与事件B 相互独立,简称为独立.(1)若事件A 与事件B 相互独立,证明:A 与B 相互独立;(2)甲、乙两人参加数学节的答题活动,每轮活动由甲、乙各答一题,已知甲每轮答对的概率为35,乙每轮答对的概率为23.在每轮活动中,甲和乙答对与否互不影响,各轮结果也互不影响,求甲乙两人在两轮活动中答对3道题的概率.20.(12分)某社区工作人员采用分层抽样的方法分别在甲乙两个小区各抽取了8户家庭,统计了每户家庭近7天用于垃圾分类的总时间(单位:分钟),其中甲小区的统计表如下,设x i ,y i 分别为甲,乙小区抽取的第i 户家庭近7天用于垃圾分类的总时间,s x 2,s y 2分别为甲,乙小区所抽取样本的方差,已知x =18∑ 8i=1x i =200,s x 2=18∑ 8i=1(x i −x)2=200,y =195,s y 2=210,其中i =1,2,⋯,8.(1)若a ≤b ,求a 和b 的值;(2)甲小区物业为提高垃圾分类效率,优先试行新措施,每天由部分物业员工协助垃圾分类工作,经统计,甲小区住户每户每天用于垃圾分类的时间减少了5分钟.利用样本估计总体,计算甲小区试行新措施之后,甲乙两个小区的所有住户近7天用于垃圾分类的总时间的平均值z 和方差s z 2.参考公式:若总体划为2层,通过分层随机抽样,各层抽取的样本量、样本平均数和样本方差分别为:m ,x 1,s 12;n ,x 2,s 22,总的样本平均数为ω,样本方差为s 2,则s 2=m m+n [s 12+(x 1−ω)2]+n m+n[s 22+(x 2−ω)2].21.(12分)如图1,在等腰△ABC 中,AC =4,A =π2,O ,D 分别为BC 、AB 的中点,过D 作DE ⊥BC 于E .如图2,沿DE 将△BDE 翻折,连接BA ,BC 得到四棱锥B ﹣ACED ,F 为AB 中点.(1)证明:DF ⊥平面AOB ;(2)当OB =√2时,求直线BF 与平面BCD 所成的角的正弦值.22.(12分)射影几何学中,中心投影是指光从一点向四周散射而形成的投影,如图,O 为透视中心,平面内四个点E ,F ,G ,H 经过中心投影之后的投影点分别为A ,B ,C ,D .对于四个有序点A ,B ,C ,D ,定义比值x =CACBDA DB叫做这四个有序点的交比,记作(ABCD ). (1)证明:(EFGH )=(ABCD );(2)已知(EFGH)=32,点B为线段AD的中点,AC=√3OB=3,sin∠ACOsin∠AOB=32,求cos A.2022-2023学年山东省济南市高一(下)期末数学试卷参考答案与试题解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数z=11+2i对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限解:z=11+2i=1−2i(1+2i)(1−2i)=15−25i,它在复平面内对应点为(15,−25),在第四象限.故选:D.2.《2023年五一出游数据报告》显示,济南凭借超强周边吸引力,荣登“五一”最强周边游“吸金力”前十名榜单.其中,济南天下第一泉风景区接待游客100万人次,济南动物园接待游客30万人次,千佛山景区接待游客20万人次.现采用按比例分层抽样的方法对三个景区的游客共抽取1500人进行济南旅游满意度的调研,则济南天下第一泉风景区抽取游客()A.1000人B.300人C.200人D.100人解:依题意济南天下第一泉风景区应抽取游客1500×100100+30+20=1000(人).故选:A.3.设α,β为两个平面,则α⊥β的充要条件是()A.α过β的一条垂线B.α,β垂直于同一平面C.α内有一条直线垂直于α与β的交线D.α内有两条相交直线分别与β内两条直线垂直解:由α⊥β可得α经过β的一条垂线,反之若α经过β的一条垂线,由面面垂直的判定定理可得α⊥β,故A正确;α,β垂直于同一个平面,可得α,β平行或相交,故B错误;α内有一条直线垂直于α与β的交线,可得α,β不一定垂直,故C 错误; α内有两条相交直线分别与β内两条直线垂直,可得α,β平行或相交,故D 错误. 故选:A .4.袋子中有5个大小质地完全相同的球,其中3个红球,2个黄球,从中不放回地依次随机摸出2个球,则第二次摸到红球的概率为( ) A .110B .15C .25D .35解:袋子中有5个大小质地完全相同的球,其中3个红球,2个黄球, 从中不放回地依次随机摸出2个球, 第二次摸到红球的情况有两种:①第一次摸到红球,第二次摸到红球,概率为:P 1=35×24=310, ②第一次摸到黄球,第二次摸到红球,概率为:P 2=25×34=310, 则第二次摸到红球的概率为P =P 1+P 2=310+310=35. 故选:D .5.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,B =π4,b =1,c =√62,则角C 的值为( ) A .π3B .2π3C .π3或2π3D .无解解:∵B =π4,b =1,c =√62,由正弦定理有:bsinB=c sinC,∴sinC =csinB b =√62×√221=√32,∵c >b ,∴C >B ,∴C ∈(π4,π),∴C =π3或2π3.故选:C .6.如果三棱锥S ﹣ABC 底面不是等边三角形,侧棱SA ,SB ,SC 与底面ABC 所成的角都相等,SO ⊥平面ABC ,垂足为O ,则O 是△ABC 的( ) A .垂心 B .重心C .内心D .外心解:如图所示:因为SO ⊥平面ABC ,侧棱SA ,SB ,SC 与底面ABC 所成的角都相等, 则∠SAO =∠SBO =∠SCO ,AO =SO tan∠SAO ,BO =SO tan∠SBO ,CO =SOtan∠SCO,故AO =BO =CO ,故O 是△ABC 的外心. 故选:D .7.已知锐角△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,B =π3,c =2,则△ABC 的周长的取值范围为( )A .(3+√3,2+2√3)B .(3+√3,4+2√3)C .(3+√3,6+2√3)D .(3+√3,+∞)解:∵B =π3,c =2, ∴由正弦定理得asinA=b sinπ3=2sinC,∴b =√3sinC ,a =2sinA sinC =2sin(π3+C)sinC =√3cosC+sinCsinC, ∴a +b =√3sinC+√3cosC+sinCsinC=√3(cosC+1)sinC+1=2√3cos 2C 22sin C 2cos C 2+1=√3tan C 2+1,在锐角△ABC 中,{0<C <π20<2π3−C <π2,解得π6<C <π2, ∴π12<C 2<π4,即tanπ12<tan C2<1,又tan π6=2tanπ121−tan 2π12=√33,解得tan π12=2−√3或tan π12=−2−√3(不合题意,舍去), ∴2−√3<tan C2<1,∴1<1tan C 212−3=2+√3,∴√3+1<√3tan C 2+1<4+2√3,即√3+1<a +b <4+2√3,∴√3+3<a +b +c <6+2√3,故△ABC 的周长的取值范围为(√3+3,6+2√3). 故选:C .8.在四棱锥P ﹣ABCD 中,P A ⊥底面ABCD ,底面ABCD 为正方形,P A =AB =1.点E ,F ,G 分别为平面P AB ,平面P AD 和平面ABCD 内的动点,点Q 为棱PC 上的动点,则QE 2+QF 2+QG 2的最小值为( ) A .12B .23C .34D .1解:由题意得QE ,QF ,QG 均最小时,平方和最小,过点Q 分别作平面P AB ,平面P AD ,平面ABCD 的垂线,垂足分别为E ,F ,G , 连接AQ ,因为P A ⊥面ABCD ,BC ⊂平面ABCD ,所以P A ⊥BC ,因为底面ABCD 为正方形,所以AB ⊥BC ,又因为P A ∩AB =A ,P A ,AB ⊂平面P AB ,所以BC ⊥面P AB ,因为QE ⊥平面P AB ,则QE ∥BC ,又因为点Q 在PC 上,则点E 应在PB 上, 同理可证F ,G 分别位于PD ,AC 上, 从而补出长方体EQFJ ﹣HGIA ,则AQ 是以QE ,QF ,QG 为共点的长方体的对角线,则AQ ²=QE ²+QF ²+QG ², 则题目转化为求AQ 的最小值,显然当AQ ⊥PC 时,AQ 的最小值, 因为四边形ABCD 为正方形,且P A =AB =1,则AC =√2, 因为P A ⊥面ABCD ,AC ⊂面ABCD ,所以P A ⊥AC , 所以PC =√PA 2+AC 2=√3, 则直角三角形P AC 斜边AC 的高AQ =1×√2√3=√63,此时AQ 2=23, 则QE ²+QF ²+QG ²的最小值为23,故选:B .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.已知复数ω=−12+√32i ,则下列说法中正确的是( )A .|ω|=1B .ω3=﹣1C .ω2=ωD .ω2+ω+1=0解:ω=−12+√32i ,则ω2=(−12+√32i)=−12−√32i ,ω2≠ω,故C 错误; |ω|=√(−12)2+(√32)2=1,故A 正确;ω3=ω2•ω=(−12−√32i)(−12+√32i)=1,故B 错误; ω2+ω+1=−12−√32i −12+√32i +1=0,故D 正确.故选:AD.10.先后抛掷质地均匀的硬币两次,则下列说法正确的是()A.事件“恰有一次正面向上”与事件“恰有一次反面向上”相等B.事件“至少一次正面向上”与事件“至少一次反面向上”互斥C.事件“两次正面向上”与事件“两次反面向上”互为对立事件D.事件“第一次正面向上”与事件“第二次反面向上”相互独立解:根据题意,依次分析选项:对于A,事件“恰有一次正面向上”即“一次正面向上、一次反面向上”,同样,事件“恰有一次反面向上”也是“一次正面向上、一次反面向上”,两个事件相等,A正确;对于B,事件“至少一次正面向上”,即“一次正面向上、一次反面向上”和“两次都是正面向上”,事件“至少一次反面向上”,即“一次正面向上、一次反面向上”和“两次都是反面向上”,两个事件不互斥,B错误;对于C,事件“两次正面向上”与事件“两次反面向上”不是对立事件,还有一种情况“一次正面向上、一次反面向上”,C错误;对于D,由相互独立事件的定义,事件“第一次正面向上”与事件“第二次反面向上”相互独立,D正确.故选:AD.11.某学校为了调查高一年级学生每天体育活动时间情况,随机选取了100名学生,绘制了如图所示频率分布直方图,则下列说法正确的是()A.平均数的估计值为30B.众数的估计值为35C.第60百分位数估计值是32D.随机选取这100名学生中有25名学生体育活动时间不低于40分钟解:对于A,由频率分布直方图可知平均数的估计值为:5×0.1+15×0.18+25×0.22+35×0.25+45×0.2+55×0.05=29.2,故A 错误;对于B ,由频率分布直方图可知[30,40)的频率最大,因此众数的估计值为35,故B 正确; 对于C ,由频率分布直方图得从第一组到第六组的频率依次是0.1,0.18,0.22,0.25,0.2,0.05, 所以第60百分位数估计值m 在[30,40)内,所以0.1+0.18+0.22+(m ﹣30)×0.025=0.6,解得m =34,故C 错误;对于D ,随机选取这100名学生中体育活动时间不低于40分钟的人数为100×(0.2+0.05)=25,故D 正确. 故选:BD .12.如图,已知三棱锥D ﹣ABC 可绕AB 在空间中任意旋转,△ABC 为等边三角形,AB 在平面α内,AB ⊥CD ,AB =2,CD =√6,cos∠CBD =14,则下列说法正确的是( )A .二面角D ﹣AB ﹣C 为π2B .三棱锥D ﹣ABC 的外接球表面积为20π3C .点C 与点D 到平面α的距离之和的最大值为2 D .点C 在平面α内的射影为点M ,线段DM 的最大值为√15+√32解:对于A 选项,在△BCD 中,BC =AB =2,CD =√6,cos∠CBD =14, 由余弦定理可得CD 2=BC 2+BD 2﹣2BC •BD cos ∠CBD , 即4+BD 2−4BD ×14=6,即BD 2﹣BD ﹣2=0,因为BD >0,解得BD =2, 取AB 的中点E ,连接CE 、DE ,如下图所示:因为△ABC 为等边三角形,E 为AB 的中点,所以,CE ⊥AB ,又因为CD ⊥AB ,CD ∩CE =C ,CD ,CE ⊂平面CDE ,所以,AB ⊥平面CDE , 因为DE ⊂平面CDE ,所以,DE ⊥AB , 所以,二面角D ﹣AB ﹣C 的平面角为∠CED ,因为E 为AB 的中点,所以,AD =BD =2,故△ABD 也是边长为2的等边三角形, 所以DE =√AD 2−AE 2=√4−1=√3,CE =√AC 2−AE 2=√4−1=√3, 又因为CD =√6,所以,CE 2+DE 2=CD 2,则CE ⊥DE , 故二面角D ﹣AB ﹣C 为π2,A 对;对于B 选项,设△ABC 、△ABD 的中心分别为点G 、H ,分别过点G 、H 作GO ∥DE 、HO ∥CE ,设GO ∩HO =O , 因为CE ⊥DE ,CE ⊥AB ,AB ∩DE =E ,AB 、DE ⊂平面ABD ,所以,CE ⊥平面ABD ,因为HO ∥CE ,则OH ⊥平面ABD ,同理,OG ⊥平面ABC , 所以,O 为三棱锥D ﹣ABC 的外接球球心, 由等边三角形的几何性质可知,HE =13DE =√33,同理,GE =13CE =√33,因为OH ∥GE ,OG ∥EH ,HE =GE =√33,GE ⊥HE , 所以,四边形OHEG 为正方形,且OH =GE =√33, 又因为DH =DE −HE =√3−√33=2√33, 因为CE ⊥DE ,OH ∥CE ,则OH ⊥DE ,则OD =√OH 2+DH 2=√(33)2+(233)2=√153, 所以,三棱锥D ﹣ABC 的外接球半径为√153,因此,三棱锥D ﹣ABC 的外接球的表面积为4π⋅OD 2=4π×(√153)2=20π3,B 对; 对于C 选项,设点D 在平面α内的射影点为N ,连接MN ,因为CM ⊥a ,DN ⊥a ,则CM ∥DN ,故点C 、D 、N 、M 四点共面, 因为AB ⊂α,则AB ⊥CM ,又因为CD ⊥AB ,CD ∩CM =C ,CD 、CM ⊂平面CDNM ,则AB ⊥平面CDNM , 又因为AB ⊥平面CDE ,故平面CDE 与平面CDNM 重合, 又因为E ∈α,M ,N ∈α,故E ∈MN , 设∠CEM =θ,其中0≤θ≤π2,又因为∠CED =π2,则∠DEN =π−∠CED −∠CEM =π−π2−θ=π2−θ, 所以,CM =CEsin ∠CEM =√3sinθ,DN =DEsin ∠DEN =√3sin(π2−θ)=√3cosθ,所以,点C 与点D 到平面α的距离之和CM +DN =√3sinθ+√3cosθ=√6sin(θ+π4), 因为0≤θ≤π2,则π4≤θ+π4≤3π4,故当θ+π4=π2时,即当θ=π4时,CM +DN 取最大值√6,C 错; 对于D 选项,ME =CEcosθ=√3cosθ,∠DEM =∠CED +∠CEM =π2+θ, 由余弦定理可得DM =√DE 2+EM 2−2DE ⋅EMcos(π2+θ) =√3+3cos 2θ+2√3⋅√3cosθsinθ=√3+3×1+cos2θ2+3sin2θ =√3sin2θ+3cos2θ2+92=√352sin(2θ+φ)+92, 其中φ为锐角,且tanφ=12,因为0≤θ≤π2,则φ≤2θ+φ≤π+φ,故当2θ+φ=π2时,DM 取得最大值, 且(DM)max =√9+352=√18+654=√15+√32,D 对. 故选:ABD .三、填空题:本题共4小题,每小题5分,共20分. 13.一组数据1,2,4,5,8的第75百分位数为 5 .解:5×75%=3.75,故一组数据1,2,4,5,8的第75百分位数为5. 故答案为:5.14.在正方体ABCD ﹣A 1B 1C 1D 1中,直线BC 1与直线CD 1夹角的余弦值为 12.解:如图,连接A 1C 1,A 1B ,在正方体ABCD ﹣A 1B 1C 1D 1中,有A 1D 1∥B 1C 1∥BC ,A 1D 1=B 1C 1=BC , 所以四边形A 1D 1CB 为平行四边形,所以A 1B ∥CD 1, 所以∠A 1BC 1为直线BC 1与直线CD 1夹角或其补角, 设正方体ABCD ﹣A 1B 1C 1D 1棱长为a , 则A 1B =BC 1=A 1C 1=√2a , 所以△A 1BC 1为等边三角形, 所以∠A 1BC 1=π3,故直线BC 1与直线CD 1夹角的余弦值为cos ∠A 1BC 1=cos π3=12. 故答案为:12.15.在圆C 中,已知弦AB =2,则AB →⋅AC →的值为 2 . 解:∵在圆C 中,已知一条弦AB =2,∴根据圆的几何性质得出:|AC |cos ∠CAB =12|AB |=12×2=1, ∵AB →•AC →=|AB →•|AC →|cos ∠CAB =2×1=2. 故答案为:2.16.已知△ABC 的重心为G ,面积为1,且AB =2AC ,则3AG 2+BC 2的最小值为4√213.解:由题意c =2b ,S △ABC =12bc sin A =1,即b 2sin A =1;连接AG 并延长交BC 于D ,则D 为BC 的中点,可得AD →=12(AB →+AC →),又因为G 为三角形的重心,则AG →=23AD →,可得AG →=13(AB →+AC →),BC →=AC →−AB →,所以AG 2=AG →2=19(AB →2+AC →2+2AB →•AC →)=19(c 2+b 2+2bc cos A )=19(5b 2+4b 2cos A ), BC 2=BC →2=AC →2+AB →2﹣2AB →•AC →=b 2+c 2﹣2bc cos A =5b 2﹣4b 2cos A ,所以3AG 2+BC 2=53b 2+4b 23cos A +5b 2﹣4b 2cos A =203b 2−83b 2cos A =203sinA −8cosA 3sinA,令t =203sinA −8cosA 3sinA>0,则3t sin A +8cos A =20, 即sin (A +φ)=20√9t +64≤1,当且仅当A +φ=π2时取等号,tan φ=82t ,可得9t 2+64≥400,解得t ≥4√213或t ≤−4√213(舍), 即t 的最小值为:4√213.故答案为:4√213. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知e →1,e →2是两个单位向量,夹角为π3,设a→=e →1+2e →2,b→=te →1−3e →2.(1)求|a →|;(2)若a →⊥b →,求t 的值.解:(1)∵|e 1→|=|e 2→|=1,<e 1→,e 2→>=π3, ∴e 1→⋅e 2→=12,∴|a →|=√e 1→2+4e 2→2+4e 1→⋅e 2→=√1+4+2=√7; (2)∵a →⊥b →,∴a →⋅b →=(e 1→+2e 2→)⋅(te 1→−3e 2→)=te 1→2−6e 2→2+(2t −3)e 1→⋅e 2→=t −6+12(2t −3)=0,解得t =154. 18.(12分)已知正三棱柱ABC ﹣A 1B 1C 1的棱长均为2,M 为A 1C 1的中点. (1)求证:BC 1∥平面AB 1M ; (2)求点B 到平面AB 1M 的距离d .证明:(1)连接A 1B 交AB 1于点N ,连接MN ,则正三棱柱中A 1B 1BA 是平行四边形, 所以N 为A 1B 的中点,又M 为A 1C 1的中点,所以MN ∥BC 1,BC 1⊄平面AB 1M ,MN ⊂平面AB 1M ,所以BC 1∥平面AB 1M . 解:(2)过M 作MH ⊥A 1B 1,垂足为H ,由题意可得B 1M =√3,AM =√5,AB 1=2√2,所以B 1M 2+AM 2=AB 12,所以B 1M ⊥AM ,所以△AB 1M 的面积S △AB 1M =12×√3×√5=√152, 因为正三棱柱中平面A 1B 1C 1⊥平面A 1B 1BA ,又平面A 1B 1C 1∩平面A 1B 1BA =A 1B 1,MH ⊂平面A 1B 1C 1,且MH ⊥A 1B 1, 所以MH ⊥平面A 1B 1BA ,即M 到平面A 1B 1BA 的距离为MH =MA 1sin π3=√32,又△ABB 1的面积S △ABB 1=12AB ⋅BB 1=2, 所以V M−ABB 1=13MH ⋅S △ABB 1=13×√32×2=√33,又V M−ABB 1=V B−MAB 1, 所以13S △AB 1M ⋅d =√33,解得d =2√55, 所以点B 到平面AB 1M 的距离为2√55. 19.(12分)独立事件是一个非常基础但又十分重要的概念,对于理解和应用概率论和统计学至关重要.它的概念最早可以追溯到17世纪的布莱兹•帕斯卡和皮埃尔•德•费马,当时被定义为彼此不相关的事件.19世纪初期,皮埃尔•西蒙•拉普拉斯在他的《概率的分析理论》中给出了相互独立事件的概率乘法公式.对任意两个事件A 与B ,如果P (AB )=P (A )P (B )成立,则称事件A 与事件B 相互独立,简称为独立.(1)若事件A 与事件B 相互独立,证明:A 与B 相互独立;(2)甲、乙两人参加数学节的答题活动,每轮活动由甲、乙各答一题,已知甲每轮答对的概率为35,乙每轮答对的概率为23.在每轮活动中,甲和乙答对与否互不影响,各轮结果也互不影响,求甲乙两人在两轮活动中答对3道题的概率.解:(1)证明:事件A 与事件B 相互独立,则P (AB )=P (A )P (B ), 又由B =A B +AB ,事件A B 和AB 互斥,则有P (B )=P (A B +AB )=P (AB )+P (A B )=P (A )P (B )+P (A B ),变形可得:P (A B )=P (B )﹣P (A )P (B )=[1﹣P (A )]P (B )=P (A )P (B ), 故事件A 与B 相互独立;(2)根据题意,设事件A 1、A 2分别表示甲答对1道、2道题目,事件B 1、B 2分别表示乙答对1道、2道题目,则P (A 1)=2×35×(1−35)=1225,P (A 2)=35×35=925, P (B 1)=2×23×(1−23)=49,P (B 2)=23×23=49, 若甲乙两人在两轮活动中答对3道题,即A 2B 1+A 1B 2,则甲乙两人在两轮活动中答对3道题的概率P =P (A 2B 1+A 1B 2)=P (A 2B 1)+P (A 1B 2)=925×49+1225×49=2875. 20.(12分)某社区工作人员采用分层抽样的方法分别在甲乙两个小区各抽取了8户家庭,统计了每户家庭近7天用于垃圾分类的总时间(单位:分钟),其中甲小区的统计表如下,设x i,y i分别为甲,乙小区抽取的第i户家庭近7天用于垃圾分类的总时间,s x2,s y2分别为甲,乙小区所抽取样本的方差,已知x=18∑8i=1x i=200,s x2=18∑8i=1(x i−x)2=200,y=195,s y2=210,其中i=1,2,⋯,8.(1)若a≤b,求a和b的值;(2)甲小区物业为提高垃圾分类效率,优先试行新措施,每天由部分物业员工协助垃圾分类工作,经统计,甲小区住户每户每天用于垃圾分类的时间减少了5分钟.利用样本估计总体,计算甲小区试行新措施之后,甲乙两个小区的所有住户近7天用于垃圾分类的总时间的平均值z和方差s z2.参考公式:若总体划为2层,通过分层随机抽样,各层抽取的样本量、样本平均数和样本方差分别为:m,x1,s12;n,x2,s22,总的样本平均数为ω,样本方差为s2,则s2=mm+n [s12+(x1−ω)2]+nm+n[s22+(x2−ω)2].解:(1)已知x=18∑8i=1x i=18(200+220+200+180+200+a+b+220)=200,整理得a+b=380,①又s x2=18∑8i=1(x i−x)2=8[3×(200﹣200)2+2×(220﹣200)2+(180﹣200)2+(a﹣200)2+(b﹣200)2]=200,整理得(a﹣200)2+(b﹣200)2=400,②联立①②,解得a=180,b=200或a=200,b=180,因为a≤b,所以a=180,b=200;(2)设甲小区试行新措施之后,甲小区抽取的第i户家庭近7天用于垃圾分类的总时间为m i,此时m i=x i﹣35,则m i=x−35=165,s m2=s x2=200,所以z=116(8m+8y)=12(165+195)=180,s z2=88+8[s m2+(m−z)2]+88+8[s y2+(y−z)]=12[200+(165﹣180)2]+12[210+(195﹣180)2]=430.21.(12分)如图1,在等腰△ABC中,AC=4,A=π2,O,D分别为BC、AB的中点,过D作DE⊥BC于E .如图2,沿DE 将△BDE 翻折,连接BA ,BC 得到四棱锥B ﹣ACED ,F 为AB 中点.(1)证明:DF ⊥平面AOB ;(2)当OB =√2时,求直线BF 与平面BCD 所成的角的正弦值.(1)证明:因为DE ⊥BE ,DE ⊥OE ,且BE ∩OE =E ,BE 、OE ⊂平面BCE , 所以DE ⊥平面BCE ,又OA ∥DE ,所以OA ⊥平面BCE ,设点P 是翻折前点B 所在的位置,则D 为AP 的中点, 因为F 为AB 的中点,所以DF ∥PB ,因为PB ⊂平面BCE ,所以OA ⊥PB ,所以OA ⊥DF , 由题意知,DA =DB ,因为F 为AB 的中点,所以DF ⊥AB , 又OA ∩AB =A ,OA 、AB ⊂平面AOB , 所以DF ⊥平面AOB .(2)解:以O 为坐标原点,建立如图所示的空间直角坐标系,则A (0,0,2√2),P (2√2,0,0),C (﹣2√2,0,0),D (√2,0,√2), 由(1)知,DF ⊥平面AOB ,因为DF ∥PB ,所以PB ⊥平面AOB ,所以PB ⊥OB , 又OB =√2=12OP ,所以∠POB =60°,所以B (√22,√62,0),F (√24,√64,√2), 所以BF →=(−√24,−√64,√2),CD →=(3√2,0,√2),CB →=(5√22,√62,0),设平面BCD 的法向量为n →=(x ,y ,z ),则{n →⋅CD →=0n →⋅CB →=0,即{3√2x +√2z =05√22x +√62y =0, 令x =1,则y =53,z =﹣3,所以n →=(1,53,﹣3), 设直线BF 与平面BCD 所成的角为θ,则sin θ=|cos <BF →,n →>|=|BF →⋅n →||BF →|⋅|n →|=|−√24+√64×5√3−3√2|(24)+(64)√1+(5√3)=4√3355,故直线BF 与平面BCD 所成的角的正弦值为4√3355. 22.(12分)射影几何学中,中心投影是指光从一点向四周散射而形成的投影,如图,O 为透视中心,平面内四个点E ,F ,G ,H 经过中心投影之后的投影点分别为A ,B ,C ,D .对于四个有序点A ,B ,C ,D ,定义比值x =CACBDA DB叫做这四个有序点的交比,记作(ABCD ). (1)证明:(EFGH )=(ABCD );(2)已知(EFGH )=32,点B 为线段AD 的中点,AC =√3OB =3,sin∠ACOsin∠AOB =32,求cos A .解:(1)证明:在△AOC 、△AOD 、△BOC 、△BOD 中,CA CB =S △AOC S △BOC =12OA⋅OCsin∠AOC 12OB⋅OCsin∠BOC =OAsin∠AOC OBsin∠BOC,DA DB=S △AOD S △BOD=12OA⋅ODsin∠AOD 12OB⋅ODsin∠BOD =OAsin∠AOD OBsin∠BOD,所以(ABCD)=CA CB DA DB=OAsin∠AOC OBsin∠BOC OAsin∠AOD OBsin∠BOD=sin∠AOC⋅sin∠BODsin∠BOC⋅sin∠AOD,又在△EOG 、△EOH 、△FOG 、△FOH 中,GE GF =S △EOG S △FOG =12OE⋅OGsin∠EOG 12OF⋅OGsin∠FOG =OEsin∠EOG OFsin∠FOG,HE HF=S △EOH S △FOH=12OE⋅OHsin∠EOH 12OF⋅OHsin∠FOH =OEsin∠EOH OFsin∠FOH,所以(EFGH)=GE GF HE HF=OEsin∠EOG OFsin∠FOG OEsin∠EOH OFsin∠FOH=sin∠EOG⋅sin∠FOHsin∠FOG⋅sin∠EOH ,又∠EOG =∠AOC ,∠FOH =∠BOD ,∠FOG =∠BOC ,∠EOH =∠AOD , 所以sin∠AOC⋅sin∠BOD sin∠BOC⋅sin∠AOD=sin∠EOG⋅sin∠FOH sin∠FOG⋅sin∠EOH,所以(EFGH )=(ABCD ).(2)由题意可得(EFGH)=32,所以(ABCD)=32,即CACB DA DB=32,所以CA CB ⋅DBDA=32,又点B 为线段AD 的中点,即DB DA=12,所以CACB=3,又AC =3,则AB =2,BC =1, 设OA =x ,OC =y 且OB =√3, 由∠ABO =π﹣∠CBO , 所以cos ∠ABO +cos ∠CBO =0, 即2√3)222×2×√3+2√3)222×1×√3=0,解得x 2+2y 2=15,①在△AOB 中,由正弦定理可得AB sin∠AOB =x sin∠ABO,②在△COB 中,由正弦定理可得OB sin∠BCO=y sin∠CBO,③且sin ∠ABO =sin ∠CBO ,②③得,x y=AB sin∠AOB⋅sin∠BCO OB=32×√3=√3,即x =√3y ,④由①④解得x =3,y =√3(负值舍去), 即AO =3,OC =√3所以cosA =AO 2+AB 2−OB 22AO⋅AB =32+22−(√3)22×3×2=56.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学下学期期末试卷第Ⅰ卷 (选择题 共50分)一、 选择题: 本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、==θθθcot ,54cos 是第二象限角,则且若( )(A )34 (B ) 34 (C )-34 (D )-342、下列函数中是周期为π的奇函数的为( )(A )x y 2sin 21-= (B ))32sin(3π+=x y (C )2tan xy =(D ))2sin(2π+=x y 3、若三角形三边长分别是4cm ,6cm ,8cm ,则此三角形是( )(A )锐角三角形 (B )直角三角形 (C )钝角三角形 (D )形状不定的三角形 4、点P 分向量21P P 所成的比为1,则1P 分向量2PP 所成的比为( ) (A )1 (B )-1 (C )21 (D )21- 5、,)();()()中,给出下列式子:(在A C B C B A ABC cos cos 2sin sin 1++++∆ ),其中恒为定值的是();()(2sec 2cos 42tan 2tan3AC B C B A ++ (A )(1)与(2) (B )(2)与(3) (C )(3)与(4) (D )(2)与(4)6、若为则ABC AB BC AB ∆=+•,02( )(A )直角三角形 (B )钝角三角形 (C )锐角三角形 (D )等腰直角三角形 7.已知231cos sin -=+αα(πα<<0),那么α2cos 等于( ) (A )21或21- (B )21 (C )21- (D )238、已知函数)2|)(|sin(2πϕϕω<+=x y 的图象的一部分如图所示,则( )(A )6,2πϕω== (B )6,2πϕω-== (C )3,2πϕω== (D )3,2πϕω-==9、向量a 与b 反向,下列等式成立的是( )(A )||||||b a b a -=- (B )||||||b a b a +=+-第八题(C )||||||b a b a +=- (D )||||b a b a -=+10、已知O 为原点,点A ,B 的坐标分别是),0(),0,(a a ,其中常数0>a ,点P 在线AB 上,且)10(≤≤•=t AB t AP ,则OP OA •的最大值为( ) (A )2a (B )a (C ) a 2 (D )a 3第Ⅱ卷 (非选择题 共100分)二、填空题:本大题共4小题,每小题4分,满分16分.把答案填在题中横线上. 11、=+000050sin 20sin 50cos 70sin 求值12、已知则,,中,,5||,3||,4315,0===<•==∆∆b a S b a b CA a BC ABC ABC =+•-)()3(b a a13、函数R x x x y ∈-=,cos 3sin 的值域是 14、若将向量)1,2(=a 绕原点按逆时针方向旋转4π,得到向量b ,则向量b 的 坐标是三、 解答题:本大题共6小题,每题14分,满分84分.解答应写出文字说明,证明过程或演算步骤.的值。
),求()(、已知θθθθθπθπ22cos cos sin 3sin 2cos 3sin 216-++=+参考答案一、选择题1、B 。
利用三角函数定义计算。
一算数值,二定符号。
2、D 。
首先利用三角公式化简各式,然后利用求周期的公式求周期ππ===--=-=22,2cos )2cos 1(1sin 212T x x x y ,偶函数 ππ=+=T x y ),32sin(3,非奇非偶 π2,2tan ==T xy ,奇函数ππ=-=+=T x x y ,2sin 2)2sin(2,奇函数3、是钝角三角形∴<+,846222,(余弦公式的变形应用)4、D .定比分点概念,先算数值,再看数值的符号。
两向量同向为正,反向为负。
5、B 。
,)();()()(0cos )cos(cos cos 2sin 2sin sin 1=+-=++=++A A A C B C C B A π 2tan2sec 2sin 2sec 2cos 2sec 2cos 412tan 2cot 2tan 2tan 2tan 2tan3AA A A A A CBC C C C C B A ==-=+==-=+ππ)(;)(6、A .AC AB AC AB AB BC AB AB BC AB ⊥=•=+•=+•所以,0)(27、B .,0231cos sin <-=+αα ,0πα<<παππαπ2223,43<<∴<<∴ 212cos ),2223(,232sin 2sin 1cos sin 212314324)231()cos (sin 22=∴<<-=∴-=-=-=-=-=+απαπαααααα8、C ..3,03,0)3sin(,0)62sin(2.2,πϕϕπϕπϕπϖπ=∴=+-∴=+-∴=+-⋅=∴= T9、C .作图分析即可。
10、A .=•+=•+=+•=•AB t OA OA AP OA OA AP OA OA OP OA 22)(2222)1()1()(a a t OA t OB OA t OA OB t OA OA ≤-=-+•=-•+二、填空题11、)5020cos(50sin 20sin 50cos 20cos 50sin 20sin 50cos 70sin 0-=+=+23)30cos(0=-= 12、,23sin ,4315sin 5321=∴=⨯⨯=∆C C S ABC 00120,90,0=∴>∴<•C C b a29)21(5332733)()3(2-=-⨯⨯⨯--=•--=+•-∴b a a b a a 13、]2,2[)3sin(2cos 3sin -∈-=-=πx x x y14、),(设y x b b a b a =⋅=•,cos ||||θ ;)1(2252252 =⨯=+∴y x ) (2522=+y x ,由(1)(2)得),(22322=b 三、解答题1....................................................2.................................).........(1.....................................................0,01..............................0,0,)2(2............................................................................2..........................................................................2. (1152)2'•++•=•++•+•='+•+=•'=•=•'=•=•∴⊥'+-='+-='+=BO CB CB CB AC BOCB CB BO AC CB AC BO CB CB AC CO AB AO CB AD CB BO AC BE AC BE AC BO BC AC BO CA CB BO AB AO )(同理)()、( 1.....................................................................................2................................................................................0)('⊥∴'=•=++=CO AB AO CB BO CB AC CB 1......................................................................472,1)2tan(2............................................................................22:)2)(1(1...........................).........2...(. (02)),0(071tan '=+∴-=+'<+<∴'<<-∴<<-<-=πβαβαπβαπβπαπβ 得由1.................................................15:1.....................................................1592 (9152)124224212..................................................cos 22.. (242)33131312,sin sin 2 (31)31231231sin .2 (3123)20312212031cos 2 (7)120212312021cos 192222222222222''=='=⋅⋅⋅-+='∠⋅-+=∴'=∴=∠=∠∴'=-=∠∴'=⨯⨯-+=∠'-=⨯⨯-+=∠城才能到达这个人还要走答不合题意应舍去,故经检验或,解得:即,即)(又、解:A km km AD km AD km km AD AD AD CAB AD AC AD AC CD km AC AC CAB CB CBD AC CBD CBD CDB2...........................................).........](32,6[.,)(326,2236222,0,0)3(1.....................)(3),(22622..........................................................42)1(2,0)2(2.. (2)2)1(2...............................2)62sin(222sin 32cos 32sin 322cos 12,3cos sin 32cos 2)(20max 2'∈++∴∈+≤≤++≤+≤+∴<-∴>'∈+-=∈+-=+'+=++--=∴>'=='+++-=++--=++-+-=++--=Z k k k Z k k x k k x k a a Z k k x Z k k x b a b a a f a T b a x a b a x a x a b a x a xa b a x x a x a x f πππππππππππππππππππππ单调递增区间是函数单调递增时即当时取到最大值即当、解: 2...........................................................5,2,1352......................................................],........3,[)()],21(),1([)(1..............................].........1,21[)62sin(],67,6[62,]2,0[)4('-==∴⎩⎨⎧=+-=∴'+∈-∈∴'-∈+∴∈+∈b a b a b b a b x f f f x f x x x 即时当πππππ命题双向细目表命题意图本试卷范围是高一下册全部内容,包括三角函数及向量两大部分,适合高一学生下学期期末考试使用。