2018年浙江财经大学考研试题 601高等数学
2018年度浙江数学高考试题(整理汇编含标准答案)

绝密★启用前2018年普通高等学校招生全国统一考试 (浙江卷)数学本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页;非选择题部分 3至4页。
满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题 纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求, 在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共 10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是 符合题目要求的。
1.已知全集 U={1 , 2, 3, 4, 5}, A={1 , 3},则 e u A=A .B . {1 , 3} C. {2 , 4, 5} D . {1 , 2, 3, 4, 5}22 .双曲线—y 2 = 1的焦点坐标是参考公式:若事件A, B 互斥,贝U P(A B) P(A) P(B) 若事件A, B 相互独立,贝U P(AB) P(A) P(B) 若事件A 在一次试验中发生的概率是p,则n次独立重复试验中事件 A 恰好发生k 次的概率_ k kn kP n (k) C n P (1 p) (k 0,1,2,L ,n)台体的体积公式V 1(Si - S1S 2 S 2)h其中Si,&分别表示台体的上、下底面积,h 表柱体的体积公式V Sh其中S 表示柱体的底面积, h 表示柱体的高 锥体的体积公式V - Sh3其中S 表示锥体的底面积, h 表示锥体的高 球的表面积公式―_2S 4 R球的体积公式R 33A . (- y/2 , 0),(握,0)D.既不充分也不必要条件7 .设0<p<1,随机变量E 的分布列是3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位: cm 3)是A . 2B . 44 .复数—(i 为虚数单位)的共轴复数是1 iC.充分必要条件A .充分不必要条件B.必要不充分条件则|a- b|的最小值是则当 p 在(0, 1)内增大时,B. D ( &增大C. D ( &先减小后增大D. D ( &先增大后减小8 .已知四棱锥S-ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设 SE与BC 所成的角为SE 与平面ABCD 所成的角为也,二面角S- AB- C 的平面角为 饱 则C.9 .已知a, b, e 是平面向量, e 是单位向量. 若非零向量 a 与e 的夹角为,向量 b 满足 b 2-4e b+3=0,A . 73-1B . ^3+1 C. D . 2-4310.已知 ai,a 2,a 3,a 4成等比数列,且 a i a? & a 4 ln(a i a ? a 3).若 A. a 〔 a 3,a 2a 4B. a 1 a 3,a 2 a 4C. a a 3,a 2 a 4非选择题部分(共110分)二、填空题:本大题共 7小题,多空题每题 6分,单空题每题4分,共36分。
2018年普通高等学校招生全国统一考试数学试题(浙江卷,含解析)

2018年普通高等学校招生全国统一考试数学试题(浙江卷)本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页;非选择题部分3至4页。
满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:互斥,则相互独立,则分别表示台体的上、下底面积,台体的高柱体的体积公式其中表示柱体的底面积,表示柱体的高锥体的体积公式其中表示锥体的底面积,表示锥体的高球的体积公式其中表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知全集U={1,2,3,4,5},A={1,3},则A. B. {1,3} C. {2,4,5} D. {1,2,3,4,5}【答案】C【解析】分析:根据补集的定义可得结果.详解:因为全集,,所以根据补集的定义得,点睛:若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解. 2. 双曲线的焦点坐标是A. (−,0),(,0)B. (−2,0),(2,0)C. (0,−),(0,)D. (0,−2),(0,2) 【答案】B【解析】分析:根据双曲线方程确定焦点位置,再根据求焦点坐标. 详解:因为双曲线方程为,所以焦点坐标可设为,因为,所以焦点坐标为,选B.点睛:由双曲线方程可得焦点坐标为,顶点坐标为,渐近线方程为.3. 某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是俯视图正视图A. 2B. 4C. 6D. 8 【答案】C【解析】分析:先还原几何体为一直四棱柱,再根据柱体体积公式求结果.详解:根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上下底分别为1,2,梯形的高为2,因此几何体的体积为选C.点睛:先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等. 4. 复数(i 为虚数单位)的共轭复数是A. 1+iB. 1−iC. −1+iD. −1−i【解析】分析:先分母实数化化简复数,再根据共轭复数的定义确定结果.详解:,∴共轭复数为,选B.点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数的相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭复数为.5. 函数y=sin2x的图象可能是A. B.C. D.【答案】D【解析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令,因为,所以为奇函数,排除选项A,B;因为时,,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.6. 已知平面α,直线m,n满足mα,nα,则“m∥n”是“m∥α”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】分析:根据线面平行的判定定理得充分性成立,而必要性显然不成立.详解:因为,所以根据线面平行的判定定理得.由不能得出与内任一直线平行,所以是的充分不必要条件,故选A.点睛:充分、必要条件的三种判断方法:(1)定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.(2)等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.7. 设0<p<1,随机变量ξ的分布列是则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】D【解析】分析:先求数学期望,再求方差,最后根据方差函数确定单调性.详解:,,,∴先增后减,因此选D.点睛:8. 已知四棱锥S−ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S−AB−C的平面角为θ3,则A. θ1≤θ2≤θ3B. θ3≤θ2≤θ1C. θ1≤θ3≤θ2D. θ2≤θ3≤θ1【答案】D【解析】分析:分别作出线线角、线面角以及二面角,再构造直角三角形,根据边的大小关系确定角的大小关系.详解:设O为正方形ABCD的中心,M为AB中点,过E作BC的平行线EF,交CD于F,过O作ON垂直EF于N,连接SO,SN,OM,则SO垂直于底面ABCD,OM垂直于AB,因此从而因为,所以即,选D.点睛:线线角找平行,线面角找垂直,面面角找垂面.9. 已知a,b,e是平面向量,e是单位向量.若非零向量a与e的夹角为,向量b满足b2−4e·b+3=0,则|a−b|的最小值是A. −1B. +1C. 2D. 2−【答案】A【解析】分析:先确定向量所表示的点的轨迹,一个为直线,一个为圆,再根据直线与圆的位置关系求最小值.详解:设,则由得,由得因此的最小值为圆心到直线的距离减去半径1,为选A.点睛:以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程、解不等式、求函数值域或直线与曲线的位置关系,是解决这类问题的一般方法.10. 已知成等比数列,且.若,则A. B. C. D.【答案】B【解析】分析:先证不等式,再确定公比的取值范围,进而作出判断.详解:令则,令得,所以当时,,当时,,因此,若公比,则,不合题意;若公比,则但,即,不合题意;因此,,选B.点睛:构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2018年浙江数学(含答案)

9.已知 a,b,e 是平面向量,e 是单位向量.若非零向量 a 与 e 的夹角为 则|a−b|的最小值是 A. 3 −1 B. 3 +1 C.2
π ,向量 b 满足 b2−4e·b+3=0, 3
D.2− 3
10.已知 a1 , a2 , a3 , a4 成等比数列,且 a1 + a2 + a3 + a4 = ln(a1 + a2 + a3 ) .若 a1 1 ,则 A. a1 a3 , a2 a4 B. a1 a3 , a2 a4 C. a1 a3 , a2 a4 D. a1 a3 , a2 a4
由题意知各点坐标如下:
A(0, − 3,0), B(1,0,0), A1 (0, − 3, 4), B1 (1,0, 2), C1 (0, 3,1),
因此 AB1 = (1, 3, 2), A 1B 1 = (1, 3, −2), AC 1 1 = (0, 2 3, −3), 由 AB1 A1B1 = 0 得 AB1 ⊥ A1 B1 . 得 AB1 ⊥ A1C1 . 由 AB1 AC 1 1 =0 所以 AB1 ⊥ 平面 A1 B1C1 . (Ⅱ)设直线 AC1 与平面 ABB1 所成的角为 . 由(Ⅰ)可知 AC1 = (0, 2 3,1), AB = (1, 3,0), BB1 = (0,0, 2), 设平面 ABB1 的法向量 n = ( x, y, z ) .
6 1 , ,sin C1 A1B1 = 7 7
所以 C1D = 3 ,故 sin C1 AD =
C1 D 39 = . AC1 13
因此,直线 AC1 与平面 ABB1 所成的角的正弦值是 方法二:
39 . 13
2018年浙江财经大学金融硕士(MF)金融学综合真题试卷(题后含答案及解析)

2018年浙江财经大学金融硕士(MF)金融学综合真题试卷(题后含答案及解析)题型有:1.jpg />(r0-rB),式中,rS表示权益的期望报酬率,即公司的权益资本成本;r0表示完全权益公司的资本成本;rB是公司的债务资本成本。
18.考虑公司税的影响。
正确答案:含公司税时的MM模型1963年莫迪格安尼和米勒发表了《公司所得税和资本成本:一种修正》一文,放宽了其初始模型的假设条件,首次将公司税引入MM定理,并在此基础上重新得出两个命题:命题Ⅰ:负债公司的价值等于相同风险等级的无负债公司的价值加上负债的节税利益,节税利益等于公司税率乘以负债额。
用公式可以表示为:VL=VU+TC.B,其中TC为公司税率。
命题Ⅰ意味着,考虑了公司所得税后,负债经营时的公司价值要高于未负债经营时的公司价值,且负债越多,企业的价值越高;当企业负债达到100%时,企业的价值达到最大。
命题Ⅱ:负债经营公司的权益资本成本等于同类风险的无负债公司的权益资本成本加上风险报酬,风险报酬则取决于公司的资本结构和所得税率。
用公式可以表述为rS=r0+(r0-rB)(1-TC)。
命题Ⅱ表示在考虑了公司所得税后,尽管权益资本成本还会随着负债程度的提高而上升,不过其上升幅度低于不考虑公司所得税时上升的幅度。
此特性加上负债节税的利益,产生了命题Ⅰ的结果:企业使用的负债越多,它的加权平均资本成本就越低,企业的价值就越高。
关于市场利率的决定,主要有古典理论、凯恩斯理论和可贷资金理论。
请回答以下问题:19.分别阐述并比较这三种理论的主要思想。
正确答案:古典理论从实体经济角度出发讨论利率的决定。
它认为,货币是附意在实物经济之上的一层“面纱”而已,不会对实际经济产生实质性的影响。
因此,利率的决定与表面的货币因素无关,而是由实质的借贷资本供求所决定的。
具体来讲,利率是由储蓄函数和投资函数共同决定的,取决于储蓄函数和投资函数的均衡点;投资是利率的减函数,储蓄是利率的增函数。
2018年考研数学高数真题答案解析

2018年考研数学高数真题答案解析店铺考研网为大家提供2018年考研数学高数真题答案解析,更多考研资讯请关注我们网站的更新!2018年考研数学高数真题答案解析数学二的高等数学部分,还是有一些偏难。
一个比较明显的特点大家都知道,2016年是数一难,2017年是数三难,那么今年2018年比较典型的特点就是数二难。
下面我简单从这个高等数学部分给大家讲解一下咱们2018年考试题的这个特点,纵观这个2018年的高数题目,包括数一数二数三的题目,它有以下几个特点。
第一个特点题目本身比较常规,就像它考的分部积分,约束条件的这种极值都是比较常规的题目。
但是它有一个比较明显的特点,就是题目比较灵活。
虽然是常规题目,但是出题的角度比较灵活,又间杂着一些计算量大,会导致大家在做题过程中不太容易掌握好节奏。
那就说明大家在复习过程中是否注意到了计算量。
如果今天来听直播的有2019的同学,那么大家一定要注意,咱们要引以为戒。
不能热热闹闹一年,年初定个雄心壮志,那你忽略了咱们考研最基本的要求。
基本功要扎实,那基本功扎实要求两个方面,一是基本概念、基本原理要熟练。
第二个就是计算要扎实。
在考场上咱们说了唯一能保证你的是计算能力。
天下武功唯快不破,你计算能力不过关,那你节奏被打乱了,你整个考试的心情就会糟。
大家注意考试题目,咱们该考的都考了,那么你看题目分部积分,包括极限的反问题,给出极限让你求参数,或者让你求极限,或者是连续性,可导性。
在分段间的这种连续性、可导性。
一元函数积分的这种对称性,或者是极坐标和直角坐标这种转换,都是一些常规的题目。
但是题目本身它有一个灵活性,而且还要求一些所谓的计算能力,这是大家应该注意的。
2019的同学更应该注意,计算能力是我们未来所要面对的,千年不变的就是计算能力,这是考研2018年考试题的一个特点。
第二个特点就是怎么体现这种计算能力?今年的命题的一个思路就是函参数,函参数的一个特点是让你讨论,讨论给你AB一个极限,或者是一个方程,给你AB让你去讨论参数,或者是给你一个参数方程,或者是把这种应用题的条件都隐含了,虽然是代等数约束条件的极值,问你给出一个L长的一个线,让你围成圆、正三角形、正方形它的体积最大。
广东财经大学601-数学分析2018 - 2020年考研真题汇编

广东财经大学硕士研究生入学考试试卷考试年度:2019年 考试科目代码及名称:601-数学分析(自命题) 适用专业:071400 统计学[友情提醒:请在考点提供的专用答题纸上答题,答在本卷或草稿纸上无效!]一、计算题(6题,每题10分,共60分)1.求数列极限();!)!2(!)!22(lim 1n n n n n -+++∞→2.求函数极限();sin 1ln sin tan lim2xx xx x +-→ 3.设φ是可微函数,由0),=--bz cy az cx (φ所确定函数),(y x f z =.求yz b x z a∂∂+∂∂. 4.求函数级数∑+∞=-12n nx xe 的和函数和收敛域.5.设yx e x y x f 42),(-=α,确定α使得f 满足方程.122⎪⎭⎫ ⎝⎛∂∂∂∂=∂∂x f x x x y f 6.设xyz u =.求全微分.3u d二、应用题(4题,每题15分,共60分) 1.已知,x y 满足()22+2 1.x y -=求w =的取值范围.2.曲线⎪⎩⎪⎨⎧=+=4222y y x z 在点)5,4,2(处得切线与x 轴得正向所夹得角度是多少?3.求由方程012=-+y x e xy 确定的隐函数)(x y y =的二阶导数).(''x y4.求不定积分⎰xdx e x sin .三、证明题(2题,每题15分,共30分) 1. 已知)(x f 在区间],[b a 上连续. 求证().)()()(2122⎪⎭⎫ ⎝⎛-≤⎪⎭⎫ ⎝⎛⎰⎰-b a n n ba dx x f ab dx x f n2. 已知.,0为自然数n x >证明存在唯一),(10∈θ使得.11lim 0+==+→⎰n xe dt e x x xt nn θθ且广东财经大学硕士研究生入学考试试卷考试年度:2020年 考试科目代码及名称:601-数学分析(自命题) 适用专业:071400 统计学[友情提醒:请在考点提供的专用答题纸上答题,答在本卷或草稿纸上无效!]一、计算题(6题,每题10分,共60分) 1.求极限!limn n n n→∞。
2018年度6月浙江数学专业考试卷及其内容规范标准答案

2018年6月浙江省数学学考试卷及答案一 选择题1. 已知集合{1,2}A =,{2,3}B =,则A B =I ( ) A. {1} B.{2} C.{1,2} D.{1,2,3}答案:B 由集合{1,2}A =,集合{2,3}B =,得{2}A B =I . 2. 函数2log (1)y x =+的定义域是( )A. (1,)-+∞B.[1,)-+∞C.(0,)+∞D.[0,)+∞ 答案:A∵2log (1)y x =+,∴10x +>,1x >-,∴函数2log (1)y x =+的定义域是(1,)-+∞. 3. 设R α∈,则sin()2πα-=( )A. sin αB.sin α-C.cos αD.cos α- 答案:C 根据诱导公式可以得出sin()cos 2παα-=.4. 将一个球的半径扩大到原来的2倍,则它的体积扩大到原来的( ) A. 2倍 B.4倍 C.6倍 D.8倍 答案:D设球原来的半径为r ,则扩大后的半径为2r ,球原来的体积为343r π,球后来的体积为334(2)3233r r ππ=,球后来的体积与球原来的体积之比为33323843r r ππ=.5. 双曲线221169x y -=的焦点坐标是( ) A. (5,0)-,(5,0) B.(0,5)-,(0,5)C.(0),D.(0,, 答案:A因为4a =,3b =,所以5c =,所以焦点坐标为(5,0)-,(5,0).6. 已知向量(,1)a x =r ,(2,3)b =-r,若//a b r r ,则实数x 的值是( )A. 23-B.23C.32-D.32答案:AQ (,1)a x =r ,(2,3)b =-r ,利用//a b r r 的坐标运算公式得到320x --=,所以解得23x =-.7. 设实数x ,y 满足0230x y x y -≥⎧⎨+-≤⎩,则x y +的最大值为( )A. 1B.2C.3D.4 答案:B作出可行域,如图:当z x y =+经过点(1,1)A 时,有ax 2m z x y =+=.8. 在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知45B =o ,30C =o ,1c =,则b =( ) A.2B.答案:C由正弦定理sin sin b cB C=可得sin 1sin 4521sin sin 302c B b C ⋅︒====︒9. 已知直线l ,m 和平面α,m α⊂,则“l m ⊥”是“l α⊥”的( )A. 充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 答案:B因为“直线和平面垂直,垂直与平面上所有直线”,但是“直线垂直于平面上一条直线不能判断垂直于整个平面”所以是必要不充分条件。
601理学数学考试大纲

西安财经学院硕士研究生入学考试初试考试大纲考试科目:理学数学考试科目代码:601适用专业:统计学参考书目:[1] 同济大学数学系主编. 高等数学(上、下)(第六版),高等数学出版社.[2] 同济大学数学系主编. 线性代数(第五版),高等数学出版社.[3] 《概率论与数理统计》(第四版).浙江大学盛骤.谢式千.潘承毅编.高等教育出版社.考试总分:150分考试时间:3小时考试内容之高等数学函数、极限、连续考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.了解数列极限和函数极限的概念.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.8.理解函数连续性的概念,会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最值定理、介值定理),并会应用这些性质.一元函数微分学考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义,会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数的导数,会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念、导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle)定理、拉格朗日( Lagrange)中值定理,了解泰勒定理和柯西(Cauchy)中值定理,掌握这四个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性,会求函数图形的拐点和渐近线.9.会描述简单函数的图形.一元函数积分学考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿——莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积、旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4.了解反常积分的概念,会计算简单反常积分.多元函数微积分学考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标和极坐标),了解无界区域上较简单的反常二重积分并会计算.无穷级数考试要求1.了解级数的收敛与发散、收敛级数的和的概念.2.了解级数的基本性质和级数收敛的必要条件,掌握几何级数及P -级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.4.会求幂级数的收敛半径、收敛区间及收敛域.5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛域的和函数.6.了解 x e 、x sin 、x cos 、)1ln(x +及α)1(x +的麦克劳林(Maclaurin)展开式.常微分方程考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法.3.会解二阶常系数齐次线性微分方程.4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式、指数函数、正弦函数、余弦函数的二阶常系数非齐次线性微分方程.5.会用微分方程求解简单的经济应用问题.考试内容之线性代数行列式考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.矩阵考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.向量考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解内积的概念,掌握线性无关向量组正交规范化的施密特方法.线性方程组考试要求1.会用克莱姆法则解线性方程组.2.掌握非齐次线性方程组有解和无解的判定方法.3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.矩阵的特征值和特征向量考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.二次型考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.考试内容之概率论与数理统计随机事件和概率考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算,理解独立重复试验的概念,掌握计算有关事件概率的方法.随机变量及其分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、泊松(Poisson)分布及其应用.3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用.5.会求随机变量函数的分布.多维随机变量及其分布考试要求1.理解多维随机变量的分布函数的概念和基本性质.2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度,掌握二维随机变量的边缘分布和条件分布.3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.4.掌握二维均匀分布和二维正态分布,理解其中参数的概率意义.5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布.随机变量的数字特征考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.3.了解切比雪夫不等式.大数定律和中心极限定理考试要求1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.数理统计的基本概念考试要求1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念.2.了解产生离散型随机变量、连续性随机变量的典型模式,了解正态分布和标准正态分布、均匀分布、指数分布以及分布的双侧分位数,会查相应的数值表.3.掌握正态总体的样本均值、样本方差、样本矩的抽样分布.4.了解经验分布函数的概念和性质.试卷结构选择题(24分)、填空题(32分)、解答题(94分).。