集合与函数知识点公式定理记忆口诀

合集下载

高中数学知识点与公式

高中数学知识点与公式

第一章 集合与函数概念 1.集合1.1高中数学知识点与公式集合的概念及其表示 ⑴.集合中元素的三个特征:①.确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了.②.互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的.③.无序性:即集合中的元素无顺序,可以任意排列、调换。

⑵.元素与集合的关系有且只有两种:属于(用符号“∈”表示)和不属于(用符号“∉”表示).⑶.集合常用的表示方法有三种:列举法、Venn 图、描述法. (4).常见的数集及其表示符号1.2集合间的基本关系1.3集合之间的基本运算【重要提醒】1.若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1.2.A ⊆B ⇔A ∩B =A ⇔A ∪B =B ()()UUAB A B U ⇔=∅⇔= .3.奇数集:Z Z Z =+∈==−∈==±∈x x n n x x n nx x n n 21,21,4 1.}{}{}{. 4. 德▪摩根定律:①并集的补集等于补集的交集,即()=()()UUU A B A B ;②交集的补集等于补集的并集,即()=()()UUU A B A B .2.函数及其表示 2.1函数的相关概念注意:判断一个对应关系是否是函数关系,就看这个对应关系是否满足函数定义中“定义域内的任意一个自变量的值都有唯一确定的函数值”这个核心点.(2)函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域,与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.(3)构成函数的三要素:函数的三要素为定义域、值域、对应关系.(4)函数的表示方法函数的表示方法有三种:解析法、列表法、图象法.解析法:一般情况下,必须注明函数的定义域;列表法:选取的自变量要有代表性,应能反映定义域的特征;图象法:注意定义域对图象的影响.2.2函数的三要素(1).函数的定义域函数的定义域是使函数解析式有意义的自变量的取值范围,常见基本初等函数定义域的要求为:(1)分式函数中分母不等于零.(2)偶次根式函数的被开方式大于或等于0.(3)一次函数、二次函数的定义域均为R .(4)y =x 0的定义域是{x |x ≠0}.(2).函数的解析式(1)函数的解析式是表示函数的一种方式,对于不是y =f (x )的形式,可根据题目的条件转化为该形式.(2)求函数的解析式时,一定要注意函数定义域的变化,特别是利用换元法(或配凑法)求出的解析式,不注明定义域往往导致错误.(3).函数的值域函数的值域就是函数值构成的集合,熟练掌握以下四种常见初等函数的值域:(1)一次函数y =kx +b (k 为常数且k ≠0)的值域为R .(2)反比例函数=xy k (k 为常数且k ≠0)的值域为(−∞,0)∪(0,+∞).(3)二次函数y =ax 2+bx +c (a ,b ,c 为常数且a ≠0),当a >0时,二次函数的值域为+∞−a ac b 4[,)42;当a <0时,二次函数的值域为−∞−aac b 4(,]42.求二次函数的值域时,应掌握配方法:=++=++−a ay ax bx c a x b ac b 24()4222. 2.3分段函数 分段函数的概念若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,则这种函数称为分段函数.分段函数虽由几个部分组成,但它表示的是一个函数. 3.函数基本性质 3.1函数的单调性 单调函数的定义自左向右看图象是上升的自左向右看图象是下降的单调区间的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 函数的最值注意:(1)函数的值域一定存在,而函数的最值不一定存在; (2)若函数的最值存在,则一定是值域中的元素;若函数的值域是开区间,则函数无最值,若函数的值域是闭区间,则闭区间的端点值就是函数的最值. 函数单调性的常用结论(1)若f x g x ,)()(均为区间A 上的增(减)函数,则+f x g x )()(也是区间A 上的增(减)函数;(2)若>k 0,则kf x )(与f x )(的单调性相同;若<k 0,则kf x )(与f x )(单调性相反;(3)函数=>y f x f x 0)()()(在公共定义域内与=−y f x )(,=f x y ()1的单调性相反;(4)函数=≥y f x f x 0)()()(在公共定义域内与=y 的单调性相同; (5)一些重要函数的单调性:①=+xy x 1的单调性:在−∞−,1](和+∞1,)[上单调递增,在−1,0)(和0,1)(上单调递减;②=+xy ax b (>a 0,>b 0)的单调性:在⎝−∞⎛,和⎭⎪⎪+∞⎫上单调递增,在⎝⎭ ⎪ ⎪⎛⎫和⎝ ⎛上单调递减. 3.2 函数的奇偶性(1).函数奇偶性的定义及图象特点注意:由函数奇偶性的定义可知,函数具有奇偶性的一个前提条件是:对于定义域内的任意一个x ,−x 也在定义域内(即定义域关于原点对称).(2).函数奇偶性的几个重要结论(1)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.(2)f x (),g x ()在它们的公共定义域上有下面的结论:(3)若奇函数的定义域包括0,则=f 00)(. (4)若函数f x )(是偶函数,则−==f x f x f x )()()(.(5)定义在−∞+∞,)(上的任意函数f x )(都可以唯一表示成一个奇函数与一个偶函数之和. (6)若函数=y f x )(的定义域关于原点对称,则+−f x f x )()(为偶函数,−−f x f x )()(为奇函数,⋅−f x f x )()(为偶函数.重难点 复合函数的单调性①奇函数+奇函数=奇函数,偶函数+偶函数=偶函数;②奇函数×奇函数=偶函数,奇函数×偶函数=奇函数,偶函数×偶函数=偶函数;第二章 基本初等函数 2.1 指数与指数函数 (1)根式概念:式子na 叫做根式,其中n 叫做根指数,a 叫做被开方数. 性质:(na )n =a (a 使na 有意义); 当n 为奇数时,na n=a ,当n 为偶数时,na n=|a |=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a <0.(2)分数指数幂规定:正数的正分数指数幂的意义是a mn =na m (a >0,m ,n ∈N *,且n >1);正数的负分数指数幂的意义是a -m n =1na m(a >0,m ,n ∈N *,且n >1);0的正分数指数幂等于0;0的负分数 指数幂没有意义.有理指数幂的运算性质:a r a s =a r +s ;(a r )s =a rs ;(ab )r =a r b r ,其中a >0,b >0,r ,s ∈Q.(3)指数函数及其性质概念:函数y =a x (a >0且a ≠1)叫做指数函数,x 是自变量,函数的定义域是R ,a 是底数. 指数函数的图象与性质R2.2 对数与对数函数 (1)对数的概念如果a x =N (a >0,且a ≠1),那么x 叫做以a 为底N 的对数,记作=log a x N ,其中a 叫做对数的底数,N 叫做真数.(2)对数的性质、换底公式与运算性质(1)对数的性质:①a log a N =N ;②log a a b =b (a >0,且a ≠1). (2)对数的运算法则;如果a >0且a ≠1,M >0,N >0,那么①=+log ()log log a a a MN M N ; ②=−log log log aa a MNM N ; ③=log log a n a M n M (n ∈R); ④=log log n a m a b mnb .(3)换底公式:=log log log a c c b ba(a ,b 均大于零且不等于1). (3)对数函数及其性质(1)概念:y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,定义域是(0,+∞).(2)对数函数的图象与性质定义域:(02.3 幂函数(1)幂函数的定义:一般地,形如y=xα的函数称为幂函数,其中x 是自变量,α为常数.(2)常见的5种幂函数的图象(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.第三章 函数的应用 1.函数零点的定义一般地,如果函数=y f x ()在实数α处的值等于零,即=αf ()0,则α叫做这个函数的零点.重点强调:零点不是点,是一个实数; 2.零点存在性定理如果函数=y f x ()在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f a f b ⋅<()()0,那么函数=y f x ()在区间(a ,b )内有零点,即存在∈c a b (,),使得f c =()0,这个c 也就是方程f x =()0的根.3.二分法二分法求零点:对于在区间[a ,b ]上连续不断,且满足f a ()·f b ()<0的函数=y f x (),通过不断地把函数f x ()的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.给定精度ε,用二分法求函数f x ()的零点近似值的步骤如下:(1)确定区间[a ,b ],验证f a ()·f b ()<0,给定精度ε; (2)求区间(a ,b )的中点x 1;(3)计算f x 1():①若f x 1()=0,则x 1就是函数的零点; ②若f a ()·f x 1()<0,则令b =x 1(此时零点∈x a x 01(,)); ③若f x 1()·f b ()<0,则令a =x 1(此时零点∈x x b 01(,)); (4)判断是否达到精度ε;即若a b ||−<ε,则得到零点零点值a (或b );否则重复步骤2~4. 注意:二分法的条件·表明用二分法求函数的近似零点都是指变号零点.第四章 三角函数 1. 角的概念 1.角的定义角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. 2.角的分类⎩⎪⎪⎨⎪⎪⎧按旋转方向不同分类⎩⎪⎨⎪⎧正角:按逆时针方向旋转形成的角负角:按顺时针方向旋转形成的角零角:射线没有旋转按终边位置不同分类⎩⎪⎨⎪⎧象限角:角的终边在第几象限,这 个角就是第几象限角轴线角:角的终边落在坐标轴上3.终边相同的角f a ()f b ()<0所有与角α终边相同的角,连同角α在内,可构成一个集合:S={β|β=α+k·360°,k∈Z}.2.弧度制及应用1.弧度制的定义把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.2.弧度制下的有关公式3.任意角的三角函数有向线段MP为正弦线有向线段OM为余弦线有向线段AT为正切线4.同角三角函数的基本关系1.同角三角函数的基本关系(1)平方关系:sin2α+cos2α=1(α∈R).(2)商数关系:tan α=sin αcos α2.同角三角函数基本关系式的应用技巧5.三角函数的诱导公式R R 错误!6.函数y =A sin(ωx +φ)的图象1.用五点法作正弦函数和余弦函数的简图 (1)“五点法”作图原理:正弦函数y =sin x ,x ∈[0,2π]的图象上,五点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0). 余弦函数y =cos x ,x ∈[0,2π]的图象上,五点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1). (2)五点法作图的三步骤:列表、描点、连线(注意光滑). 2.函数y =A sin(ωx +φ)的有关概念3.用五点法画y =A sin(ωx +φ)一个周期内的简图用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个关键点,如下表所示:第五章平面向量1.向量的有关概念2.向量的线性运算三角形法则平行四边形法则三角形法则3.平面向量的坐标运算4.向量的夹角5.平面向量的数量积6.向量数量积的运算律第六章 三角恒等变换1、同角三角函数的基本关系式 :①+=θθsin cos 122,②θtan =sin cos θθ,2、正弦、余弦的诱导公式(奇变偶不变,符号看象限)3、和角与差角公式±=±αβαβαβsin()sin cos cos sin cos()cos cos sin sin αβαβαβ±=1tan tan αβ±=±αβαβtan()tan tan ±=±2(sin cos )12sin cos αααα4、二倍角公式及降幂公式=αααsin 2sin cos =−=−=−αααααcos 2cos sin 2cos 112sin 2222−=ααα1tan tan 22tan 2 ==−+αααα22sin ,cos 1cos 21cos 222第七章 解三角形【正弦定理】===A B CR a b csin sin sin 2(R 为∆ABC 外接圆的半径). 【正弦定理的变形】①===a R A b R B c R C 2sin ,2sin ,2sin②++====++A B C A B C Ra b c a b csin sin sin sin sin sin 2【三角形常用结论 】(1)>⇔>⇔>⇔<sin sin cos cos a b A B A B A B(2)在△ABC 中,有++=⇔=−+ππA B C C A B ()⇔=−+πC A B 222⇔=−+πC A B 222().(3)面积公式:①===S ah bh ch a b c222111,②===S ab C bc A ca B 222sin sin sin 111.第八章 数列 2.1等差数列(1).等差数列的定义--------(证明或判断等差数列) ①)数常为−=+a a d d n n (1或②−=−≥+−a a a a n n n n n (2)11 (2).等差数列的通项公式:=+−a a n d n (1)1或=+−a a n m dn m ()①当≠d 0时,等差数列的通项公式=+−=+−a a n d dn a d n (1)11是关于n 的一次函数,且斜率为公差d ;(3).等差数列的前n 和:=+S n a a n n 2()1,=+−S na d n n n 2(1)1①前n 和=+=+−−S na d n a n n n d dn 222()(1)112是关于n 的二次函数且常数项为0.(4)、等差中项:⑴若a A b ,,成等差数列,则A 叫做a 与b 的等差中项,且=+A a b2。

高中数学知识点归纳

高中数学知识点归纳

高中数学知识点归纳一、集合与函数概念。

1. 集合。

- 集合的定义:一些元素组成的总体。

- 集合的表示方法:列举法(如{1,2,3})、描述法(如{xx > 0})。

- 集合间的关系:- 子集:若集合A中的元素都在集合B中,则A⊆ B。

- 真子集:A⊆ B且A≠ B,则A⊂neqq B。

- 集合相等:A = B当且仅当A⊆ B且B⊆ A。

- 集合的运算:- 交集:A∩ B={xx∈ A且x∈ B}。

- 并集:A∪ B ={xx∈ A或x∈ B}。

- 补集:设U为全集,A⊆ U,则∁_UA={xx∈ U且x∉ A}。

2. 函数及其表示。

- 函数的概念:设A,B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→ B为从集合A到集合B的一个函数,记作y = f(x),x∈ A。

- 函数的三要素:定义域、值域、对应关系。

- 函数的表示方法:解析法(如y = x^2+1)、图象法、列表法。

3. 函数的基本性质。

- 单调性:- 增函数:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D 内的任意两个自变量的值x_1,x_2,当x_1时,都有f(x_1),那么就说函数y = f(x)在区间D上是增函数。

- 减函数:当x_1时,都有f(x_1)>f(x_2),则函数y = f(x)在区间D上是减函数。

- 奇偶性:- 偶函数:对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

- 奇函数:对于函数f(x)的定义域内任意一个x,都有f(-x)= - f(x),那么函数f(x)就叫做奇函数。

二、基本初等函数(Ⅰ)1. 指数函数。

- 指数与指数幂的运算:- 根式:sqrt[n]{a^m}=a^(m)/(n)(a > 0,m,n∈ N^*,n > 1)。

- 有理数指数幂的运算性质:a^r· a^s=a^r + s,(a^r)^s=a^rs,(ab)^r=a^rb^r(a > 0,b > 0,r,s∈ Q)。

数学七字顺口溜及三角函数

数学七字顺口溜及三角函数

数学七字顺口溜——巧学巧记学数学及三角函数根据多年的实践,总结规律繁化简;概括知识难变易,高中数学巧记忆。

言简意赅易上口,结合课本胜一筹。

始生之物形必丑,抛砖引得白玉出。

一、《集合与函数》内容子交并补集,还有幂指对函数。

性质奇偶与增减,观察图象最明显。

复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。

底数非1的正数,1两边增减变故。

函数定义域好求。

分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

二、《三角函数》三角函数是函数,象限符号坐标注。

函数图象单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。

正六边形顶点处,从上到下弦切割;中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。

诱导公式就是好,负化正后大化小,变成税角好查表,化简证明少不了。

二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。

两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。

和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。

条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。

公式顺用和逆用,变形运用加巧用;1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;三、《不等式》解不等式的途径,利用函数的性质。

对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。

数形之间互转化,帮助解答作用大。

集合函数知识点

集合函数知识点

一、集合1、 集合:某些具有共同属性的对象集在一起就形成一个集合,简称集。

元素:集合中的每个对象叫做这个集合的元素。

2、集合的表示方法⎧⎪⎪⎨⎪⎪⎩列举法描述法图示法区间法集合的分类⎪⎩⎪⎨⎧空集:无限集:有限集:3、子集:对于两个集合A 与B ,如果集合A 的任意元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A 。

也说集合A 是集合B 的子集。

即:若“B x A x ∈⇒∈”则B A ⊆。

子集性质:(1)任何一个集合是本身的子集;(2)空集是任何集合的子集;(3) 若B A ⊆,C B ⊆,则A C ⊆。

4、集合相等:对于两个集合A 与B ,如果集合A 的任意元素都是集合B 的元素,同时集合B 的任意元素都是集合A 的元素,我们就说A =B 。

即:若A ⊆B ,同时B ⊆A ,那么B A =。

5、真子集:对于两个集合A 与B ,如果A ⊆B ,并且A ≠B ,我们就说集合A 是集合B6、易混符号: ①“∈”与“⊆”:元素与集合之间是属于关系;集合与集合之间是包含关系 ②{0}与Φ:{0}是含有一个元素0的集合,Φ是不含任何元素的集合7、子集的个数:(1)空集的所有子集的个数是 1 个 (2)集合{a}的所有子集的个数是 2个 (3)集合{a,b}的所有子集的个数是4个 (4)集合{a,b,c}的所有子集的个数是8 个猜想: (1){a,b,c,d}的所有子集的个数是多少? (2){}n a a a ,,21 的所有子集的个数是多少?结论:含n 个元素的集合{}n a a a ,,21 的所有子集的个数是 2n,所有真子集的个数是2n-1,非空子集数为 2n-1 ,非空真子集数为 2n-2 。

8、交集定义:由所有属于集合A 且属于集合B 的元素所组成的集合,叫做A 与B 的交集。

即:=B A {}x B x x A ∈∈且 。

9、并集定义:由所有属于集合A 或属于集合B 的元素所组成的集合,叫做A 与B 的并集。

集合知识点和公式总结

集合知识点和公式总结

集合知识点和公式总结一、集合的基本概念和运算集合是由确定的、互不相同的元素所组成的整体,数学上常用大写字母A、B、C等表示集合,而集合中的元素用小写字母a、b、c等表示。

集合通常用花括号{}表示,例如集合A={1,2,3,4}。

1. 交集和并集交集:集合A与B的交集,记作A∩B,表示A和B都具有的元素的集合。

即A∩B={x|x∈A且x∈B}。

并集:集合A与B的并集,记作A∪B,表示A和B所有的元素的集合,不重复计算。

即A∪B={x|x∈A或x∈B}。

2. 补集和差集补集:集合A的补集,记作A'或A^C,表示集合U中所有不在A中的元素构成的集合。

即A'={x|x∈U且x∉A}。

差集:集合A与B的差集,记作A-B,表示属于A而不属于B的元素构成的集合。

即A-B={x|x∈A且x∉B}。

3. 子集和真子集子集:若集合A中的所有元素都属于集合B,则称A为B的子集,记作A⊆B。

真子集:若A是B的子集,但A不等于B,则称A为B的真子集,记作A⊂B。

4. 交换律、结合律和分配律交换律:集合的交集和并集满足交换律,即A∩B=B∩A,A∪B=B∪A。

结合律:集合的交集和并集满足结合律,即A∩(B∩C)=(A∩B)∩C,A∪(B∪C)=(A∪B)∪C。

分配律:集合的交集和并集满足分配律,即A∩(B∪C)=(A∩B)∪(A∩C),A∪(B∩C)=(A∪B)∩(A∪C)。

5. 德摩根定律德摩根定律是集合运算中的重要定律,它包括两个方面的内容:(1) 互补律:(A∪B)'=A'∩B',(A∩B)'=A'∪B'。

(2) 反演律:A'=U-A,A∪B=U-(A'∩B')。

6. 其他运算除了交集、并集、补集、差集等基本运算外,集合还可以进行笛卡尔积、幂集等运算。

二、概率与统计中的集合应用在概率与统计中,集合是一个非常重要的概念,它与事件、随机变量、概率分布等有着密切的关系。

高中(必修一)数学口诀

高中(必修一)数学口诀

高中数学口诀人教A 版必修一第一章 集合篇1、集合三个特性:确定性、互异性、无序性(互异性:求出答案记得带回去检验看是否出现重复)2、常见数集表示方法:(1)、N ——自然数数集(自然的英语nature) (2)、Z ——整数集(拼音zheng )(3)、Q ——有理数集 (4)、R ——实数集3、一个集合有n 个元素,则其子集的个数为n 2,真子集个数为12-n ,非空子集个数为12-n ,非空真子集个数为22-n .4、元素与集合之间用∉∈或,集合于集合之间用⊆。

5、空集是任何集合的子集,是任何非空集合的真子集。

6、口诀:看到子集,首先考虑空集,然后才是画数轴列不等式。

7、两个重要公式:∁U (A ∪B )=(∁U A )∩(∁U B );∁U (A ∩B )=(∁U A )∪(∁U B ).(口诀:拆开变号)人教A 版必修一第一章 函数篇1、区间是一种特殊的数集表达形式,只能用于表示数集,而且不管开闭,必须左小右大。

2、形成函数的三个要求:每一性、唯一性、允许多对一不能一对多。

3、函数三要素:定义域、值域和对应关系(函数问题,不管啥题定义域优先)4、函数的表示方法:解析法、图像法、列表法5、判断两个函数是否相等只需要判断定义域和对应关系是否相等即可。

6、求定义域口诀(1)、先求定义域再化简; (2)、分式要求分母不为0.(3)、偶次根式要求被开方数≥0; (4)、0次方和负数次方要求底数不为0;(5)、指数要求底数>0且≠1; (6)、对数(log )要求真数>0,底数>0且≠1;(7)、复合函数定义域的求法:(口诀:简单算复杂“放”,复杂算简单“代”。

) 若()x f 定义域为[]b a , ,则复合函数()[]x g f 定义域由()b x g a ≤≤解出; 若()[]x g f 定义域为[]b a , ,则()x f 定义域相当于[]b a x ,∈时()x g 的值域.7、函数值域的求法(求值域也要先求定义域)(1)、图像法:能画图的坚决画图(2)、单调性法:有增减就可以代两端求最值得到值域;(3)、换元法:(口诀:次方出现两倍关系就可以使用换元法,设低次为t )操作步骤:第一步:求定义域并设t ; 第二步:马上求出t 的范围;第三步:用t 表示出x ; 第四步:求出新函数值域即为原函数的值域。

数学必修一集合与函数概念知识点梳理(供参考)

数学必修一集合与函数概念知识点梳理(供参考)

高中数学 必修1知识点 第一章 集合与函数概念〖〗集合【】集合的含义与表示(1)集合的概念集合中的元素具有肯定性、互异性和无序性. (2)常常利用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或a M ∉,二者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无穷个元素的集合叫做无穷集.③不含有任何元素的集合叫做空集(∅).【】集合间的大体关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n-个真子集,它有21n-个非空子集,它有22n-非空真子集.【】集合的大体运算(8)交集、并集、补集B {xA A=∅=∅B A⊆B B⊆B {xA A=A∅=B A⊇B B⊇U A{|x x1()UA=∅2()UA A U=【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集0)>{|x a-<|x(2)一元二次不等式的解法0)()()()U U UA B A B=()()()U U UA B A B=〖〗函数及其表示 【】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,若是依照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一肯定的数()f x 和它对应,那么这样的对应(包括集合A ,B 和A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:概念域、值域和对应法则.③只有概念域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,知足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;知足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;知足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,别离记做[,)a b ,(,]a b ;知足,,,x a x a x b x b ≥>≤<的实数x 的集合别离记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必需a b <.(3)求函数的概念域时,一般遵循以下原则:①()f x 是整式时,概念域是全部实数.②()f x 是分式函数时,概念域是使分母不为零的一切实数.③()f x 是偶次根式时,概念域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个大体初等函数的四则运算而合成的函数时,则其概念域一般是各大体初等函数的概念域的交集.⑧对于求复合函数概念域问题,一般步骤是:若已知()f x 的概念域为[,]a b ,其复合函数[()]f g x 的概念域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其概念域,按照问题具体情况需对字母参数进行分类讨论. ⑩由实际问题肯定的函数,其概念域除使函数成心义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常常利用方式和求函数值域的方式大体上是相同的.事实上,若是在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常常利用方式: ①观察法:对于比较简单的函数,咱们可以通过观察直接取得值域或最值.②配方式:将函数解析式化成含有自变量的平方式与常数的和,然后按照变量的取值范围肯定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必需有2()4()()0b y a y c y ∆=-⋅≥,从而肯定函数的值域或最值.④不等式法:利用大体不等式肯定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题. ⑥反函数法:利用函数和它的反函数的概念域与值域的互逆关系肯定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方式肯定函数的值域或最值. ⑧函数的单调性法.【】函数的表示法(5)函数的表示方式表示函数的方式,常常利用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,若是依照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 和A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.若是元素a 和元素b 对应,那么咱们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖〗函数的大体性质 【】单调性与最大(小)值(1)函数的单调性函数的单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数....(1)利用定义 (2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数....(1)利用定义 (2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象下降为减)(4)利用复合函数②在公共概念域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 别离在(,]a -∞-、[,)a +∞上为增函数,别离在[,0)a -、(0,]a 上为减函数.(3)最大(小)值概念①一般地,设函数()y f x =的概念域为I ,若是存在实数M知足:(1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =.那么,咱们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的概念域为I ,若是存在实数m 知足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,咱们称m 是函数()f x 的最小值,记作max ()f x m =.x 1x 2y=f(X)xy f(x )1f(x )2oy=f(X)yx ox x 2f(x )f(x )211yxo【】奇偶性(4)函数的奇偶性①概念及判定方式函数的 性 质定义图象 判定方法 函数的奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称) 如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有概念,则(0)0f =.③奇函数在y 轴双侧相对称的区间增减性相同,偶函数在y 轴双侧相对称的区间增减性相反.④在公共概念域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①肯定函数的概念域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用大体函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各类大体初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象 ()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下别离范围、转变趋势、对称性等方面研究函数的概念域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,取得问题结果的重要工具.要重视数形结合解题的思想方式.。

高考数学知识点公式汇总

高考数学知识点公式汇总

高考数学知识点公式汇总一. 知识点 集合1. n 个元素的子集有2n 个. ②n 个元素的真子集有2n -1个. ③n 个元素的非空真子集有2n -2个.2. ①一个命题的否命题为真,它的逆命题一定为真. 否命题⇔逆命题.②一个命题为真,则它的逆否命题一定为真. 原命题⇔逆否命题. 例:①若325≠≠≠+b a b a 或,则应是真命题.解:逆否:a = 2且 b = 3,则a+b = 5,成立,所以此命题为真. ②,且21≠≠y x 3≠+y x . 解:逆否:x + y =3x = 1或y = 2.21≠≠∴y x 且3≠+y x ,故3≠+y x 是21≠≠y x 且的既不是充分,又不是必要条件.3. 有限集的元素个数定义:有限集A 的元素的个数叫做集合A 的基数,记为card( A)规定 card(φ) =0.基本公式:(1)()()()()(2)()()()()()()()()card A B card A card B card A B card A B C card A card B card C card A B card B C card C A card A B C =+-=++---+(3) card ( U A )= card(U)- card(A)二.含绝对值不等式、一元二次不等式的解法 三.1.整式不等式的解法特例① 一元一次不等式ax>b 解的讨论;②一元二次不等式ax 2+box>0(a>0)解的讨论.0>∆0=∆0<∆二次函数c bx ax y ++=2(0>a )的图象一元二次方程()的根002>=++a c bx ax有两相异实根)(,2121x x x x <有两相等实根a bx x 221-==无实根2.分式不等式的解法 (1)标准化:移项通分化为)()(x g x f >0(或)()(x g x f <0);)()(x g x f ≥0(或)()(x g x f ≤0)的形式, (2)转化为整式不等式(组)⎩⎨⎧≠≥⇔≥>⇔>0)(0)()(0)()(;0)()(0)()(x g x g x f x g x f x g x f x g x f3.含绝对值不等式的解法(1)公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法. (2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题.三 简易逻辑1. 逻辑联结词、简单命题与复合命题:“或”、“且”、“非”这些词叫做逻辑联结词;不含有逻辑联结词的命题是简单命题;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合与函数知识点公式定理记忆口诀内容子交并补集,还有幂指对函数。

性质奇偶与增减,观察图象最明显。

复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。

底数非1的正数,1两边增减变故。

函数定义域好求,分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

§1.2.1 函数的概念¤知识要点:1. 设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =()f x ,x A ∈.其中,x 叫自变量,x 的取值范围A 叫作定义域,与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域.2. 设a 、b 是两个实数,且a <b ,则:{x |a ≤x ≤b }=[a ,b ] 叫闭区间; {x |a <x <b }=(a ,b ) 叫开区间;{x |a ≤x <b }=[,)a b , {x |a <x ≤b }=(,]a b ,都叫半开半闭区间.符号:“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”. 则{|}(,)x x a a >=+∞,{|}[,)x x a a ≥=+∞,{|}(,)x x b b <=-∞,{|}(,]x x b b ≤=-∞,(,)R =-∞+∞.3. 决定函数的三个要素是定义域、值域和对应法则. 当且仅当函数定义域、对应法则分别相同时,函数才是同一函数.¤例题精讲:【例1】求下列函数的定义域: (1)121y x =+-;(2)3312x y x -=--.解:(1)由210x +-≠,解得1x ≠-且3x ≠-, 所以原函数定义域为(,3)(3,1)(1,)-∞----+∞. (2)由330120x x -≥⎧⎪⎨--≠⎪⎩,解得3x ≥且9x ≠,所以原函数定义域为[3,9)(9,)+∞.【例2】已知函数1()1x f x x-=+. 求:(1)(2)f 的值; (2)()f x 的表达式 解:(1)由121x x-=+,解得13x =-,所以1(2)3f =-.(2)设11x t x-=+,解得11t x t-=+,所以1()1t f t t-=+,即1()1x f x x-=+.点评:此题解法中突出了换元法的思想. 这类问题的函数式没有直接给出,称为抽象函数的研究,常常需要结合换元法、特值代入、方程思想等.【例3】已知函数22(),1x f x x Rx =∈+.(1)求1()()f x f x+的值;(2)计算:111(1)(2)(3)(4)()()()234f f f f f f f ++++++. 解:(1)由2222222221111()()1111111x x x x f x f x x x x x x ++=+=+==+++++.(2)原式11117(1)((2)())((3)())((4)())323422f f f f f f f =++++++=+=点评:对规律的发现,能使我们实施巧算. 正确探索出前一问的结论,是解答后一问的关键.§1.2.2 函数的表示法¤知识要点:1. 函数有三种表示方法:解析法(用数学表达式表示两个变量之间的对应关系,优点:简明,给自变量可求函数值);图象法(用图象表示两个变量的对应关系,优点:直观形象,反应变化趋势);列表法(列出表格表示两个变量之间的对应关系,优点:不需计算就可看出函数值).2. 分段函数的表示法与意义(一个函数,不同范围的x ,对应法则不同).3. 一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射(mapping ).记作“:f A B →”.判别一个对应是否映射的关键:A 中任意,B 中唯一;对应法则f . ¤例题精讲:【例1】如图,有一块边长为a 的正方形铁皮,将其四个角各截去一个边长为x 的小正方形,然后折成一个无盖的盒子,写出体积V 以x 为自变量的函数式是_____,这个函数的定义域为_______.解:盒子的高为x ,长、宽为2a x -,所以体积为V =2(2)x a x -.又由20a x >-,解得2a x <.所以,体积V 以x 为自变量的函数式是2(2)V x a x =-,定义域为{|0}2a x x <<.【例2】已知f (x )=333322x x x x-⎧++⎪⎨+⎪⎩(,1)(1,)x x ∈-∞∈+∞,求f [f (0)]的值.解:∵ 0(,1)∈-∞, ∴ f (0)=32. 又 ∵ 32>1,∴ f (32)=(32)3+(32)-3=2+12=52,即f [f (0)]=52.【例3】画出下列函数的图象:(1)|2|y x =-; (教材P 26 练习题3) (2)|1||24|y x x =-++.解:(1)由绝对值的概念,有2,2|2|2,2x x y x x x -≥⎧=-=⎨-<⎩.所以,函数|2|y x =-的图象如右图所示.(2)33,1|1||24|5,2133,2x x y x x x x x x +>⎧⎪=-++=+-≤≤⎨⎪--<-⎩,所以,函数|1||24|y x x =-++的图象如右图所示.点评:含有绝对值的函数式,可以采用分零点讨论去绝对值的方法,将函数式化为分段函数,然后根据定义域的分段情况,选择相应的解析式作出函数图象.【例4】函数()[]f x x =的函数值表示不超过x 的最大整数,例如[ 3.5]4-=-,[2.1]2=,当( 2.5,3]x ∈-时,写出()f x 的解析式,并作出函数的图象.解:3, 2.522,211,10()0,011,122,233,3x x x f x x x x x --<<-⎧⎪--≤<-⎪--≤<⎪=≤<⎨⎪≤<⎪≤<⎪=⎩. 函数图象如右: 点评:解题关键是理解符号[]m 的概念,抓住分段函数的对应函数式.§1.3.1 函数的单调性¤知识要点:1. 增函数:设函数y =f (x )的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2),那么就说f (x )在区间D 上是增函数(increasing function ). 仿照增函数的定义可定义减函数.2. 如果函数f (x )在某个区间D 上是增函数或减函数,就说f (x )在这一区间上具有(严格的)单调性,区间D 叫f(x )的单调区间. 在单调区间上,增函数的图象是从左向右是上升的(如右图1),减函数的图象从左向右是下降的(如右图2). 由此,可以直观观察函数图象上升与下降的变化趋势,得到函数的单调区间及单调性.3. 判断单调性的步骤:设x 1、x 2∈给定区间,且x 1<x 2;→计算f (x 1)-f (x 2) →判断符号→下结论.¤例题精讲:【例1】试用函数单调性的定义判断函数2()1x f x x =-在区间(0,1)上的单调性.解:任取12,x x ∈(0,1),且12x x <. 则1221121212222()()()11(1)(1)x x x x f x f x x x x x --=-=----.由于1201x x <<<,110x -<,210x -<,210x x ->,故12()()0f x f x ->,即12()()f x f x >.所以,函数2()1xf x x =-在(0,1)上是减函数. 【例2】求下列函数的单调区间: (1)|1||24|y x x =-++;(2)22||3y x x =-++.解:(1)33,1|1||24|5,2133,2x x y x x x x x x +>⎧⎪=-++=+-≤≤⎨⎪--<-⎩,其图象如右.由图可知,函数在[2,)-+∞上是增函数,在(,2]-∞-上是减函数.(2)22223,02||323,0x x x y x x x x x ⎧-++≥⎪=-++=⎨--+<⎪⎩,其图象如右.由图可知,函数在(,1]-∞-、[0,1]上是增函数,在[1,0]-、[1,)+∞上是减函数.点评:函数式中含有绝对值,可以采用分零点讨论去绝对值的方法,将函数式化为分段函数. 第2小题也可以由偶函数的对称性,先作y 轴右侧的图象,并把y 轴右侧的图象对折到左侧,得到(||)f x 的图象. 由图象研究单调性,关键在于正确作出函数图象.【例3】已知31()2x f x x +=+,指出()f x 的单调区间.解:∵ 3(2)55()322x f x x x +--==+++,∴ 把5()g x x-=的图象沿x 轴方向向左平移2个单位,再沿y 轴向上平移3个单位,得到()f x 的图象,如图所示.由图象得()f x 在(,2)-∞-单调递增,在(2,)-+∞上单调递增.点评:变形后结合平移知识,由平移变换得到一类分式函数的图象. 需知()f x a b ++平移变换规律.§1.3.1 函数最大(小)值¤知识要点:1. 定义最大值:设函数()y f x =的定义域为I ,如果存在实数M 满足:对于任意的x ∈I ,都有()f x ≤M ;存在x 0∈I ,使得0()f x = M . 那么,称M 是函数()y f x =的最大值(Maximum Value ). 仿照最大值定义,可以给出最小值(Minimum Value )的定义.2. 配方法:研究二次函数2(0)y a xb xc a =++≠的最大(小)值,先配方成224()24b ac b y a x a a -=++后,当0a >时,函数取最小值为244ac b a-;当0a <时,函数取最大值244ac b a-.3. 单调法:一些函数的单调性,比较容易观察出来,或者可以先证明出函数的单调性,再利用函数的单调性求函数的最大值或最小值.4. 图象法:先作出其函数图象后,然后观察图象得到函数的最大值或最小值. ¤例题精讲:【例1】求函数261y x x =++的最大值.解:配方为2613()24y x =++,由2133()244x ++≥,得260813()24x <≤++. 所以函数的最大值为8.【例3】求函数21y x x =+-的最小值.解:此函数的定义域为[)1,+∞,且函数在定义域上是增函数, 所以当1x =时,min 2112y =+-=,函数的最小值为2.点评:形如y ax b cx d =+±+的函数最大值或最小值,可以用单调性法研究,也可以用换元法研究.【另解】令1x t -=,则0t ≥,21x t =+,所以22115222()48y t t t =++=++,在0t ≥时是增函数,当0t =时,min 2y =,故函数的最小值为2.【例4】求下列函数的最大值和最小值:(1)25332,[,]22y x x x =--∈-; (2)|1||2|y x x =+--.解:(1)二次函数232y x x =--的对称轴为2bx a=-,即1x =-.画出函数的图象,由图可知,当1x =-时,max 4y =; 当32x =时,min 94y =-. 所以函数25332,[,]22y x x x =--∈-的最大值为4,最小值为94-.(2) 3 (2)|1||2|2 1 (12)3 (1)x y x x x x x ≥⎧⎪=+--=--<<⎨⎪-≤-⎩.作出函数的图象,由图可知,[3,3]y ∈-. 所以函数的最大值为3, 最小值为-3.点评:二次函数在闭区间上的最大值或最小值,常根据闭区间与对称轴的关系,结合图象进行分析. 含绝对值的函数,常分零点讨论去绝对值,转化为分段函数进行研究. 分段函数的图象注意分段作出.。

相关文档
最新文档