微弱信号检测技术第一章
微弱信号检测-1

干扰噪声及其抑制技术 在干扰频率1MHz,干扰源电压5V, 在干扰频率1MHz,干扰源电压5V,寄生电容 1MHz 5V 0.01pF的情况下 干扰输入电压为31.4mV 的情况下, 31.4mV。 0.01pF的情况下,干扰输入电压为31.4mV。 3.14V 100倍 100倍
电场耦合 对放大器的干扰
干扰噪声及其抑制技术 4、磁场耦合干扰的抑制
(a)双绞线相邻结产生的感应电动势相互抵消 )
(b)利用大面积的地线减少互感 )
(c)减小干扰源 di /dt )
干扰噪声及其抑制技术 高导磁材料
图11 利用铁磁物质屏蔽抑制磁场干扰 (a)屏蔽干扰源; 屏蔽干扰源; (b)屏蔽敏感电路 屏蔽干扰源 屏蔽敏感电路
d v = - ∫ B.dA dt A
干扰噪声及其抑制技术 3、经互感耦合
电磁耦合 示意图 等效电路图
互感 干扰电压
干扰源电流
U nc = j ω MI n
干扰噪声及其抑制技术 互感耦合对交流电桥的干扰
在干扰频率10kHz, 在干扰频率10kHz, 10kHz 干扰源电流10mA 10mA, 干扰源电流10mA,互 0.1µH的情况下, 感0.1 H的情况下, 干扰电压为62.8 62.8µV 干扰电压为62.8 V。
干扰噪声及其抑制技术
第一讲 干扰噪声及其抑制技术
工业现场干扰会造成检测电路失去测量精度甚至测量结 果失常。本章讨论常见的干扰类型、干扰传输途径以及干扰 果失常。本章讨论常见的干扰类型、干扰传输途径以及干扰 干扰类型 以及 抑制方法。 抑制方法。 把那些不需要的电压和电流, 把那些不需要的电压和电流,并在一定条件下形成危害电 路正常工作的电量信号(干扰电压和干扰电流),称为“噪声” ),称为 路正常工作的电量信号(干扰电压和干扰电流),称为“噪声”, 或者“干扰” 或者“干扰”。 通常,以干扰电量为对象进行研究时,多使用“噪声” 通常,以干扰电量为对象进行研究时,多使用“噪声”这 个词;以干扰电量所造成的危害作用为对象进行研究时, 个词;以干扰电量所造成的危害作用为对象进行研究时,多使用 干扰”这个词。 “干扰”这个词。 我们把设备或系统中除去有用信号以外的所有电磁信号称 为电磁噪声(简称噪声)。由电磁噪声引发不期望得到的结果, )。由电磁噪声引发不期望得到的结果 为电磁噪声(简称噪声)。由电磁噪声引发不期望得到的结果, 称为电磁干扰(简称干扰)。 称为电磁干扰(简称干扰)。 噪声是原因,干扰是后果。 噪声是原因,干扰是后果。
第1章微弱信号检测与噪声(有补充)

ωC ω
L H
|H(ω )| A
-ω H
-ω c
-ω L
0
ωL
ωc
ωH
ω
乘法器
*结构
x(t)
y(t)
c(t)
本地振荡器
*频谱搬移作用
X(f) Y(f) 下边带 上边带
f(kHz) -3.4ຫໍສະໝຸດ f(kHz)-0.3
0.3
3.4
16.6
19.7
20
20.3
23.4
LC集中选择性滤波器
C 0( Z 1) + Rs Vs L 2Z2 (b) C L RL V o –
④ 修正法。仪表的修正值已知时,将测量结果的 指示值加上修正值,就可以得到被测量的实际值。 此法可削弱测量中的系统误差。 ⑤ 对称观测法(交叉读数法)。许多复杂变化的 系统误差,在短时间内可近似看做线性系统误差。 在测量过程中,合理设计测量步骤以获取对称的 数据,配以相应的数据处理程序,从而得到与该 影响无关的测量结果。这是消除线性系统误差的 有效方法。 ⑥ 半周期偶数观测法。周期性系统误差的特点是 每隔半个周期所产生的误差大小相等、符号相反。
m
| x |m 100% = m
(1.5)
最大引用误差又称满度(引用)相对误差或 仪表的基本误差,是仪表的主要质量指标。 基本误差去掉百分号(%)后的数值定义为仪 表的精度等级,规定取一系列标准值,通常用阿 拉伯数字标在仪表的刻度盘上,等级数字外有一 圆圈。 精度等级数值越小,测量精确度越高,仪表 价格越贵。
2. 石英晶体的等效电路和振荡频率
当石英晶体不振动时,可等效为一个平 板电容C0,称为静态电容;其值决定于晶片 的几何尺寸和电极面积,一般约为几~几十 pF。 当晶片产生振动时,机械振动的惯性等 效为电感Lq,其值为几mH~几十H。
微弱信号检测

5、离散量的计数统计(适合符合统计的离散信号)
随被检测信号中,有时是随机的或按概率 分布的离散信息。例:光子 需要分辨离散信号,减小噪声。
在弱光检测中主要的噪声源是大量的二次电子发 射、热激发和放大器噪声,它们都有很高的计数 概率,所以要求光电器件对二次电子发射等的输 出脉冲幅度要低,对要求检测的光子脉冲幅度尽 可能的要趋于一致,对宇宙射线要尽量屏蔽防止 进入。
依据功率谱对噪声的分类
白噪声: 如果噪声在很宽的频率范围内具有恒定功 率谱密度,这种噪声称白噪声 (注意:功率谱不包 括相位信息)。 有色噪声:反之,若噪声功率谱密度不是常数则称 为有色噪声 谱密度随频率的减小而上升,称为红噪声 谱密度随频率的升高而增加,则称为蓝噪声 这些都是以光的颜色与频率的关系来比拟的。
微弱信号检测技术进步的标志是仪器检测 灵敏度的提高。更确切地说,应是信噪比 (SNlR)改善。 它的定义为 ,是输出信噪比 与输入信噪比之比。SNIR越大,表示处理 噪声的能力越强,检测的水平越高。
一方面,如果分辨率要求高,或光谱扫描速度要求快,则 信噪比必然降低。 另—方面,如果利用微弱信号检测技术将传感器降温到液 He温度(4.2K),而使S/N提高20倍。这时,若要求测量的S /N不变,却可使光谱扫描速度提高400倍,或分辨率提 高3.3倍。 因此,应尽力降低传感器的噪声。
2 i11 2KTg f 11
(3)闪烁噪声(1/f噪声):由于材料生产过程中的 非均匀性造成的晶体缺陷,引起载流子迁移过程 中局部的不规则行为产生的噪声。其频率近似与 fn(n=0.9~1.35),通常取为1。 其形式与频率有关,属于红噪声。 对于有源器件,此种噪声是最重要的。
三、信噪比的改善
PMT不是理想的光电转换传感器,它不仅接受光信息, 其输出还因杂散光、漏电流和暗电流的存在而使总电流增 加,真正的信号电流却被淹没在其中。
微弱信号

微弱信号检测与处理关于本课程:检测技术,研究内容,信息提取与处理的理论,方法和技术。
信息提取:指从自然界中,社会中,生产过程中和科学实验中获取需要的信息信息处理:把获取的信息进行加工,运算,分析或综合,以便进行预报,检测,计量,保护,控制和管理等等。
目的:预防自然灾害,预报事故,正确计量,改善产品质量,顺利科学实验,文明生产和科学管理等。
因此,检测技术是一门综合性很强的技术。
微弱信号检测:采用物理学,电子学,信息论以及数理统计等分方法,利用有关技术对淹没于噪声中的微弱信号进行检测。
课程内容主要包括:1.噪声理论与噪声检测技术2.微弱信号的检测理论课时:36学时第一章:概述§1-1 微弱信号检测的背景,意义检测技术,人们获取信息的方式,常规手段,方法:传感器技术问题:科学发展需要检测微弱信号(淹没于噪声中),传统方法不能解决,因此,微弱信号检测技术应运而生,顺应了检测技术发展的需要。
归纳:①科学发展对检测技术提出新的要求。
②科学发展为微弱信号检测技术开展提供了保证§1-2 微弱信号检测技术的概念,方法一.微弱信号检测的概念1.微弱信号检测检测被噪声淹没的微弱有用信号任务:研究从噪声中提取有用信号的理论、方法、技术有用信号:能传递信息的信号。
如压力、流量、温度等。
对于本课程,指电信号。
2.微弱信号的概念两个方面理解1)相对性10-信号幅值相对于噪声很微弱,如输入信噪比≤12)绝对性信号幅值极小,如nV,甚至更小。
3.微弱信号检测的目的提高检测灵敏度和系统信噪比。
二. 微弱信号检测基本方法主要有:1)利用相关技术提取信号的振幅或相位信息2)利用取样积分方法提取或恢复信号波形3)利用锁相技术检测调制信号相关知识:物理学、数学、电路理论、电子技术、传感器技术、数理统计等。
第二章:噪声特性微弱信号检测:从噪声中提取有用信号的技术为了有效实现这一目的,需对噪声特性进行研究,以便找到抑制噪声的方法。
第一部份 微弱信号检测-基础PPT课件

微弱信号检测—基础
实例一、深空探测
微弱信号检测—基础
实例二、生命探测仪
生命探测仪是借着感应人体 所发出超低频电波产生之电场(由 心脏产生)来找到"活人"的位置。 配备特殊电波过滤器可将其它动 物,诸如狗、猫、牛、马、猪等 不同于人类的频率加以过滤去除, 使生命探测仪只会感应到人类所 发出的频率产生之电场。
微弱信号检测—基础
第1节 微弱信号检测绪论
1.1 微弱信号检测概述 1.2 课程内容安排及要求 1.3 常规小信号检测方法 1.4 微弱信号检测的基本方法 1.5 微弱信号检测的应用成效
微弱信号检测—基础
1.1 微弱信号检测方法概述
(1) 当今科学技术的进步对测量技术提出了更高的要求。 极端条件下的测量,是当今科学技术的前沿课题。
微弱信号检测—基础
1.1 微弱信号检测方法概述
(5) “微弱信号”的含义 2
0
y(t) 2Asin(t ) n(t) -2 0
SNRV S / N A /
5
A 1
0
0.1 SNRV 10
-5
0
1.0 SNRV 1
50
10 SNRV 0.1
0
50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500
微弱信号检测—基础
1.2 课程内容安排及要求
(1)课程内容和学时分配
微弱信号检测 (36学时)
课堂讲授 (24学时)
实验 (9学时)
研讨课 (3学时)
基础理论 (12学时)
检测方法 (9学时)
案例教学 (3学时)
演示课件微弱信号检测.ppt

精选文档
25
4.3.2 相关检测原理
精选文档
26
一. 引言
为了将被噪声所淹没的信号检测出来,人们研 究各种信号及噪声的规律,发现信号与信号的 延时相乘后累加的结果可以区别于信号与噪声 的延时相乘后累加的结果,从而提出了“相关” 的概念。
由于相关的概念涉及信号的能量及功率,因此 先给出功率信号和能量信号的相关函数。
R( ) f (t) f (t )d t f (t ) f (t)d t
R( ) R( )τ的偶函数
精选文档
29
(2) f1(t)与f2(t)为复函数:
互相关函数:
R12( )
f1 (t )
f
* 2
(t
)dt
f1(t
)
f
* 2
(t
)
d
t
R21( )
f1* (t
)
等效噪声带宽 频率表示
14
时间常数相同的RC网络等效噪声带宽比3dB带宽要宽: 对于一阶低通滤波器, fn 1 4RC
f 1 2RC 2 对于二阶低通滤波器,~1.22 对于三阶低通滤波器,~1.15
对于四阶低通滤波器,~1.13
对于五阶低通滤波器,~1.11
滤波器的阶次越高,Δfn和Δf的比值越来越接近于1,其幅频响
f2(t)d t
f1* (t )
f2(t
)d t
自相关函数:
R( ) f (t) f *(t )d t f (t ) f (t)* d t
4.3 微弱信号检测
4.3.0 概述 4.3.1 信噪比改善(SNIR) 4.3.2 相关检测原理 4.3.3 锁定放大器 4.3.4 取样积分器
精选文档
微弱信号检测技术

微弱信号检测技术科学技术发展到现阶段,极端条件下的物理实验已成为深化认识自然的重要手段.这些实验中要测量的物理量往往都是一些非常弱的量,如弱光、弱磁、弱声、微小位移、徽温差、微电导及微弱振动等等。
由于这些微弱的物理量一般都是通过各种传感器进行电量转换.使检测的弱物理量变换成电学量。
但由于弱物理量本身的涨落、传感器的本底和测量仪器的噪声的影响,被测的有用的电信号往往是淹没在数千倍甚至数十万倍的噪声中的微弱信号.为了要得到这一有用的微弱电信号,就产生了微弱信号检测技术。
因此.微弱信号检测技术是一种与噪声作斗争的技术.它利用了物理学、电子学和信息论的方法.分析噪声的原因和规律.研究信号的特征及相关性.采用必要的手段和方法将淹没在噪声中有用的微弱信号检测出来.目前.微弱信号检测主要有以下几种方法:‘1、相干检测相干检测是频域信号的窄带化处理方法.是一种积分过程的相关测量.它利用信号和外加参考信号的相干特性,而这种特性是随机噪声所不具备的,典型的仪器是以相敏检波器(PSD)为核心的锁相放大器。
2、重复信号的时域平均这种方法适用于信号波形的恢复测量。
利用取样技术.在重复信号出现的期间取样.并重复n次,则测量结果的信噪比可改善n倍。
代表性的仪器有Boccar 平均器或称同步(取样)积分器,这类仪器取样效率低,不利低重复率的信号的恢复.随着微型计算机的应用发展.出现了信号多点数字平均技术,可最大限度地抑制噪声和节约时间,并能完成多种模式的平均功能.3、离散信号的统计处理在微弱光检测中,由于微弱光的量子化,光子流具有离散信号的特征.使得利用离散信息处理方法检测微弱光信号成为可能。
微弱光检测又分为单道(Single-Channel)和多道(MuIti.-Channel)两类。
前者是以具有单电子峰的光电倍增管作传感器,采用脉冲甄别和计数技术的光子计数器;后者是用光导摄象管或光电二极管列阵等多路转换器件作传感嚣.采用多道技术的光学多道分析器(OMA)。
微弱信号检测第二版教学设计

微弱信号检测第二版教学设计
介绍
微弱信号检测作为一项非常重要的技术,广泛应用于医学、化学、物理、生物等领域。
对于微弱信号检测的掌握,对于以上领域的研究非常有帮助。
本次教学设计包含微弱信号检测的基础知识和实操技巧,让学生能够更好地掌握微弱信号检测技术。
教学目标
1.理解微弱信号检测的基本原理和技术。
2.了解微弱信号检测的常用仪器和设备。
3.掌握微弱信号检测的实操技能。
4.能够分析和解决微弱信号检测实际问题。
教学内容
第一章微弱信号检测的概述
1.1 微弱信号检测的定义
1.2 微弱信号检测的应用
1.3 微弱信号检测的原理
1.4 微弱信号检测的分类与方法
第二章微弱信号检测的仪器和设备
2.1 放大器
2.2 滤波器
2.3 数字信号处理器
第三章微弱信号检测的实操技巧
3.1 信号采集和处理
3.2 处理结果分析和评价
3.3 实际问题分析和解决
教学方法
本课程采用理论与实践相结合的教学方法,通过讲解理论知识和进行实际操作来掌握微弱信号检测的技能。
教学评估
通过考察学生对微弱信号检测的理解和实操技能的掌握情况来评估教学效果。
评估方式采用若干选择题、解答题、实验报告等形式。
总结
本教学设计旨在让学生学会微弱信号检测的基本原理、懂得微弱信号检测的应用、掌握微弱信号检测常用仪器和设备、熟练运用微弱信号检测的实操技能以及解决实际微弱信号检测问题。
希望在此过程中能够提高学生的实践能力和创新意识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应具备的知识
1、 数理统计 2、 信号与系统 3、 信息论
学习方法及考试方式
该课程理论性比较强,也比较抽象, 因此学习这们课程应注意: 1、 有因果关系 2、 经常复习 考试方式:闭卷考试 题型:简答题和计算题
主要参考书
教材: 微弱信号检测方法及仪器 戴逸松著 国防 工业出版社 参考书: 1. 统计信号处理基础---估计与检测理论 [美] Steven M. Kay 著,罗鹏飞等译,电 子工业出版社 2. 噪声中信号检测 惠勒 科学出版社 3. 信号检测理论导论 鞠德航等 科学出版 社
4. 信号检测与估值 许树声 国防工业出版社 5. 检测、估计和调制理论 卷Ⅰ、Ⅱ 【美】H.L.范特里斯著 毛士艺等译 国防工业出版社 6. 估计理论及其在通讯与控制中的应用 【美】A.P.塞奇;J.L.梅尔萨著 科学出 版社
检测微弱量,如:弱光、小位移、微振动、微 温差、小电容、弱磁、弱声、微电导、微电流等。 检测方法应用在物理、化学、生物医学、地质、 磁学等领域。如:噪声中正弦信号振幅及相位检 测;噪声中周期脉冲信号波形恢复。 20世纪60年代出现第一台微弱信号检测仪器(锁 定放大器及取样积分器),目前国内介绍此类图书 较少。
第一章 绪论
本章主要内容 1-1 研究目的 1-2 信号与噪声 1-3 研究内容
1-1 研究目的 信息论的一个分支,噪声中提取信号 的方法,可靠的准确恢复信号。属信号处理 范畴。
1-2 信号与噪声 1、 信号:有用的信息 信息:传送有用的内容。如声音,图象等 确知信号:具有确定波形的信号
ቤተ መጻሕፍቲ ባይዱ
s(t ) = A sin(ωt + θ ) , A 、 ω 、 θ 为常数
** 外来干扰一般来说可以避免的,如屏蔽, 隔离,接地等。内部噪声通过低频噪声技术可 以减少,降低。如弱信号(卫星、导弹、物理、 化学实验)
1-3 研究内容 理论----从噪声中提取信号的一般方法,规律 性,不涉及具体电路,设备。 1、 信号滤波理论 用滤波器(算法)消除噪声,恢复信号,是 针对随机过程进行最佳滤波。 20世纪40年代:维纳滤波理论(Winner) 20世纪60年代:卡尔曼滤波理论(Kalman) 自适应滤波理论 匹配滤波(用于雷达、数据通信)
国内外在信号处理领域中已有很多著作,其内 容包括信号判决、参数估计、谱估计、最佳滤波 等。这类著作强调理论严密性,但理论及方法过 于复杂,对被处理的信号及噪声性质有很多限制, 往往与实际情况有较大的差距,而且也很难在实 际中应用。所以这些方法最终停留在计算机仿真 阶段,很难形成有实用价值的仪器。
主要内容
2、 信号检测与估计理论 信号检测:噪声中信号判决(用于雷达) 信号参量估计:估计理论,噪声中估计信号某些参量。 如雷达测速。
微弱信号检测技术
北京理工大学光电学院 刘越 2010-09-28
前言
课程的主要研究内容:从强背景噪声中提取微 弱信号。 微弱信号检测技术是一门新兴的技术学科,它 适用近年来迅速发展起来的电子学、信息论和物 理方法,分析噪声产生的原因和规律,研究被测 信号和噪声的统计特征及其差别,采用一系列信 号处理方法,达到检测被强背景噪声覆盖的微弱 信号。
随机信号:具有随机参量的信号
s(t ) = A sin(ωt + θ ) , A 或 ω 或 θ 为随机变量
2、 噪声:混于信号中间无用成分。 a. 外来干扰:如雷电干扰,汽车点火干扰, 工业干扰 特点:具有形状----脉冲,某一频率干扰, 仍有随机性 b. 元器件内部噪声:纯随机过程,波形没 有规律性。属本文重点研究内容