热力学基本概念
热力学基本概念

热力学基本概念热力学是一门研究能量转化和相互转换的科学,它关注热量、能量和功的关系,以及物质在温度、压强和体积等条件下的相互作用。
在热力学中,有一些基本概念是我们必须了解和掌握的,本文将对热力学中的基本概念进行探讨。
1. 系统和环境在热力学中,我们将研究对象称为系统,而系统外部的一切都被称为环境。
系统可以是一个物体、一个化学反应器或者一个能量转换设备等等。
而环境则包括与系统相互作用的外部介质、周围的物体以及能与系统交换热量和做功的一切。
2. 状态函数和过程函数热力学的基本概念之一是状态函数与过程函数。
状态函数是系统的某一物理量,它只与系统的初始和末状态有关,与经历的过程无关。
例如温度、压强、体积、内能等都属于状态函数。
而过程函数则与系统经历的过程有关,例如热量、功等。
3. 热平衡与热力学平衡热平衡是指当两个物体接触时,它们之间没有净热量的传递。
在热平衡状态下,物体之间的温度是相等的。
而热力学平衡是指系统内部的各个部分之间达到平衡状态,它要求系统的各种宏观性质保持不变。
4. 等温过程与绝热过程等温过程是指系统与环境之间进行热交换的过程,过程中系统的温度保持不变。
绝热过程则是指系统与环境之间没有能量传递的过程,系统内部的能量不发生改变。
5. 内能和焓内能是指系统中分子和原子的热运动能量总和,它是一个状态函数。
焓是系统的内能与系统对外做的功之和,它是一个状态函数。
内能和焓在热力学中是非常重要的概念,它们描述了系统的能量转化和传递。
6. 熵和热力学第二定律熵是一个用来描述系统无序程度的物理量,它是表示分子混乱程度的度量。
热力学第二定律是关于熵变的定律,它表明一个孤立系统的熵只能增加或保持不变,而不能减小。
7. 等压、等体和等焓过程等压过程是指系统在恒定压力下发生的过程。
等体过程是指系统的体积保持不变的过程。
而等焓过程是指系统的焓保持不变的过程。
这些过程在热力学中有着重要的应用和意义。
8. 热容和热力学第一定律热容是指单位质量物质温度上升1度所需要的热量。
热力学的基本概念

热力学的基本概念热力学是研究能量转化和能量转移的学科,它旨在理解和描述物质中能量的行为。
以下是热力学的基本概念,帮助我们深入了解这个领域。
一、能量能量是热力学的核心概念之一。
简而言之,能量是物质的一种属性,它使物质能够产生变化、产生工作或产生热。
能量可以存在于不同的形式,包括热能、机械能、电能、化学能等。
根据能量守恒定律,能量不会被创造或销毁,只能从一种形式转化为另一种形式。
二、系统和周围环境在热力学中,我们将研究对象称为系统。
系统是我们所关注的物质或物体,可以是一个小的实验室装置、一个汽车引擎或者一个大型天体。
与系统相对应的是周围环境,它是系统外的一切。
系统和周围环境之间可以发生能量和物质的交换。
三、状态变量状态变量是用来描述系统状态的参数。
常见的状态变量有温度、压力、体积和物质的组成等。
状态变量的值决定了系统所处的状态,也决定了系统内能量与周围环境的交换方式。
四、热平衡和温度热平衡是指系统与周围环境之间没有能量交换的状态。
在热平衡状态下,系统和周围环境的温度相等。
温度是描述物质热运动强度的物理量,决定了热量在系统与周围环境之间的传递方式。
五、热力学循环和过程热力学循环是指系统经历一系列过程后回到初始状态的过程。
在热力学循环中,系统的状态变化会导致能量的转化和传递,从而实现一定的工作输出。
过程是系统从一个状态变化到另一个状态的过程。
六、热力学定律热力学定律是热力学研究的基石,它描述了能量在系统和环境之间的行为。
著名的热力学定律包括:1. 第一定律:能量守恒定律,能量不会被创造或销毁,只能从一种形式转化为另一种形式。
2. 第二定律:热力学不可逆定律,能量在自然界中总是朝着更高熵的方向转化,即能量的转化会产生不可逆的损失。
3. 第三定律:热力学温标定律,描述了温度与热量之间的关系,提供了温标的定义。
七、熵熵是热力学中一个重要的概念,表示系统的无序程度。
熵增加代表系统无序程度的增加,而熵减少则代表系统向有序状态靠近。
热力学基本概念

19
第一节 热力学基本概念
• 热力系统(热力系):人为分割出来作为 热力学分析对象的有限物质系统。 • 外 界:热力系统以外的部分。 • 边 界:系统与外界之间的分界面。
边界可以是实在的,也可以是假想的;可 以是固定的,也可以是移动的。
20
第一节 热力学基本概念
系统与边界:
系统
系统
以空间为系统,进、 出口边界均为假想 边 界,系统与外界 有物 质交换
48
第一节 热力学基本概念
容积功
气缸 飞轮
可 逆 过 程 的 容 积 功 在 p — v 图 中 的 表 示
49
热 源
左止点 右止点
p
1
2
w pdv
1
2
v
第一节 热力学基本概念
p 1 可 逆 过 程 的 容 积 功 在 p — v 图 中 的 表 示
50
2
w
2
1
pdv
v
*强调:1. p v 图上曲线下面的面积代表容积功
26
第一节 热力学基本概念
热力平衡状态满足: 热平衡:组成热力系统的各部分之间没有热量的 传递。 力平衡:组成热力系统的各部分之间没有相对位 移。 自然界的物质实际上都处于非平衡状态, 平衡只是一种极限的理想状态。工程热力学通 常只研究平衡状态。
27
第一节 热力学基本概念
1.3 基本状态参数
一. 温度
燃烧室
废 气
燃料泵
压 气 机 空 气
燃 料
燃 气 轮 机
17
第一节 热力学基本概念
压缩制冷装置系统简图
18
第一节 热力学基本概念
1.1 工质及热力系 • 工 质:实现热能和机械能相互转化的媒介 物质。 • 热源(高温热源) :工质从中吸取热能的 物系。 • 冷源(低温热源) :接受工质放出热能的 物系。 为了研究问题方便,热力学中常把分析 对象从周围物体中分割出来,研究它与周围 物体之间的能量和物质的传递。
热力学基本概念

准静态过程: 状态变化过程进行得非常缓慢, 以至于过 程中的每一个中间状态都近似于平衡态.
p
准静态过程的过程曲线可以用 p-V图来描述,图上的每一点分 别 表示系统的一个平衡态.
(pA,VA,TA) ( PC,VC,TC )
(pB,VB,TB)
O
V
➢ 理想气体状态方程
在任何情况下严格遵守“波-马定律” 、 “盖-吕定律”以 及“查理定律”的气体称为理想气体.
一般气体看作理想气体: 压力不太大(与大气压比较)
温度不太低(与室温比较)
由三定律:
p 1V1 = p 2V2 = … = 恒量
T1
T2
(质量不变)
p,V,T → p 0,V 0,T0 (标准状态)
标准状态: p 0 = 1.01325 ×105 Pa V mol = 22.4 × 10-3 m 3 • mol -1
一种基本的科学温标. 水三相点(气态、液态、固态的共存状态) 为273.16 K .
摄氏温标和绝对温标的换算: T = 273.15 + t
➢ 平衡态和准静态过程 平衡态: 在不受外界影响的条件下, 无论初始状态如何,
系统的宏观性质在经充分长时间后不再发生变化的状态.
热力学过程: 热力学系统的状态随时间发生变化的过程.
大学物理
热力学基础
第1讲 热力学的基本概念
➢ 热力学系统 在热力学中把有大量分子组成的宏观物体( 气体、
液 体、固体) 称为热力学系统, 简称系统.
系统以外与系统有着相互作用的环境称为外界.
孤立系统: 与外界不发生任何能量和物质交换 的热力学系统.
封闭系统: 与外界只有能量交换而没有物质交 换的系统. 绝热系统: 与外界没有热量交换的系统.
热力学基本概念

定温变化, T1 = T2, (ii) 定压过程
过程中温度可不恒定。
p1=p2=psu 过程中压力恒定。dp=0, p=0 。
定压变化, p1 = p2
(iii)定容过程 (iv) 绝热过程 (v) 循环过程 V1=V2 Q=0
过程中压力可不恒定。
过程中体积保持恒定。dV=0, V=0 。 仅可能有功的能量传递形式。
1 3 N 2 H 2 NH 3 2 2
1 3 1mol的意思是: 1mol N 2 和1mol H 2 反应,生成 1molNH3 。 2 2
8. 系统变化的途径与状态函数法 途径:始态 - - - - - 终态 系统所经历过程的总和。 途径I C
d
def
dnB
1 B
1 或 B nB
(1-3)
— 反应进度, 其单位为mol。
Δ =1mol,叫发生了1mol反应进度(若说成“发生了1mol 反应”,则是错误的)。应用反应进度概念时,必须指明相应的 计量方程。如: N2+3H2=2NH3 Δ =1mol 的意思是:1molN2 和 1mol(3H2) 反应,生成1mol (2NH3);
6.热力学平衡态
定义:系统在一定环境条件下,经足够长的时间,其各部分 可观测到的宏观性质都不随时间而变,此后将系统隔离,系统
的宏观性质仍不改变,此时系统所处的状态叫热力学平衡态。 热力学平衡态应同时有:
(i)热平衡:系统各部分T 相等;若不绝热,则T系统= T环境。 (ii)力平衡:系统各部分p 相等;边界不相对位移。
(i) 对于一定量组成不变的均相流体系统,系统的任意宏观
性质是另外两个独立的宏观性质的函数: Z=f(x,y),如 nRT V 理想气体 p (ii) 状态函数的改变量只决定于系统的始态和终态,而与
热力学基本概念

热力学基本概念热力学是研究热能与其他形式能量之间转化和传递规律的科学学科。
它涉及到一系列基本概念和定律,这些概念和定律是理解和应用热力学的基础。
本文将介绍热力学中的几个基本概念,包括热、温度、功、热容和熵。
一、热热是一种能量传递方式,当物体与外界存在温度差时,热就会从高温物体传递到低温物体。
热是热力学系统与外界之间的能量交换形式之一。
热的单位是焦耳(J)。
二、温度温度是表征物体热状态的物理量,它反映了物体中分子的平均热运动程度。
温度用开尔文(K)作为单位,也可以使用摄氏度(℃)或华氏度(℉)进行表示。
热力学中的零绝对温标是绝对零度,对应着开尔文的0K。
三、功功是热力学系统与外界相互作用过程中的能量传递形式之一。
当一个物体受到外力作用,同时沿着力的方向发生位移时,就会进行功的交换。
功的单位也是焦耳(J)。
四、热容热容描述了物体受热后温度变化的程度。
它是指单位质量物体温度升高1K(或1℃)所需要吸收或放出的热量。
热容的单位可以是焦耳/开尔文(J/K)、焦耳/摄氏度(J/℃)或卡路里/开尔文(cal/K)。
五、熵熵是用来描述系统无序程度的物理量。
它是热力学第二定律的核心概念,表示系统的混乱程度或无序程度。
熵的增加代表着系统趋于混乱,反之则代表着系统趋于有序。
熵的单位是焦耳/开尔文(J/K)。
在热力学中,这些基本概念相互联系、相互影响,通过热力学定律加以描述和解释。
例如,热力学第一定律表示能量守恒,即能量可以从一种形式转化为另一种形式,但总能量的数量保持不变。
热力学第二定律则说明了在孤立系统中热流只会从高温物体流向低温物体,并且系统的熵将不断增加。
通过对这些基本概念的理解和应用,我们可以更好地理解和研究能量的转化和传递过程。
热力学在能源、化学、物理等领域都有广泛的应用,并对相关工程和技术的发展起到了重要的推动作用。
总结起来,热力学基本概念包括热、温度、功、热容和熵。
这些概念相互联系、相互作用,通过热力学定律来描述和解释。
热力学基本概念

热力学基本概念
(2)强度性质。 强度性质是指与系统中物质的量无关的性 质,它们不具有加和性。上述分隔为两部分的容器,其气体的温度 T、压力p、密度ρ等都不具有加和性,故皆为强度性质。
应指出,在一定条件下,广度性质可转化成强度性质。例如, 摩尔体积(Vm=V/n)是物质的量为1 mol时物质所具有的体积,因 强调的是1 mol物质的量,故不具有加和性,亦即广度性质的摩尔值 应为强度性质。换言之ቤተ መጻሕፍቲ ባይዱ某些广度性质的比值往往是强度性质。
热力学基本概念
7. 可逆过程
可逆过程是热力学中一个重要的概念,指在系统状态变化的全 过程中,不仅系统内部任何瞬间都无限接近平衡态,而且系统与环 境间也无限接近平衡。例如,系统与环境间在无限小的温度差下发 生的热交换过程,即T(环)=T±dT(dT为具有正值的无限小量);又如 在无限小的压力差下发生的体积变化过程,即p(环)=p±dp(dp为具 有正值的无限小量)。上述在一系列无限接近平衡条件下进行的过程, 在热力学中称为可逆过程。可逆过程是一种理想化的过程。这种过 程实际上是不可能的,因为每个过程的发生都要引起状态的改变, 而状态的改变一定会破坏平衡。
热力学基本概念
热力学基本概念
(1)隔离系统。隔离系统与环境之间既无物质交换,亦无 任何形式的能量交换,所以系统完全不受环境的影响。
(2)封闭系统。封闭系统与环境之间只有能量交换而无物 质交换。
(3)敞开系统。敞开系统与环境之间既有能量交换,又有 物质交换。
热力学基本概念
二、 系统的性质
物质的性质可分为微观性质和宏 观性质两类,前者包括分子的极性、 偶极矩、磁矩等;后者包括温度T、 压力p、体积V、密度ρ、粘度η、表 面张力σ、热力学能U等。热力学研 究的是由极大量粒子构成的系统的宏 观性质,简称性质。微观性质不在热 力学讨论的范围内。
热力学基本概念

热力学基本概念
热力学是研究能量转化和物质变化规律的一门学科,它的基本概念
是我们理解热力学体系的基石。
在热力学中,有许多重要的基本概念,包括能量、热量、功、状态函数等。
本文将对这些基本概念进行详细
讨论,以帮助读者更好地理解热力学。
1. 能量
能量是热力学中最基本的概念之一。
能量可以存在于各种形式,包
括动能、势能、内能等。
在热力学中,我们关心的是系统所具有的能量,它可以通过热传递和功交换来改变。
能量守恒定律是热力学的基
本定律之一,它表明能量在闭合系统中是守恒的。
2. 热量
热量是热力学中的一个重要概念,它是能量的一种形式,是由系统
与外界之间的热传递而引起的能量变化。
热量可以通过传热的方式从
一个系统传递到另一个系统,是系统之间交换能量的一种方式。
3. 功
功是热力学中另一个重要的概念,它是系统通过外界做功而改变其
能量的过程。
功可以是机械功、电功、磁功等形式,是系统对外界做
功或外界对系统做功的过程。
4. 状态函数
状态函数是热力学中的一个重要概念,它是系统的状态量,只与系统的初始状态和最终状态有关,而与系统经过的具体过程无关。
常见的状态函数包括内能、焓、熵等,它们可以描述系统的状态和性质。
通过以上对热力学基本概念的讨论,我们可以更好地理解热力学系统的能量转化和物质变化规律。
热力学是一门复杂而重要的学科,掌握其基本概念是理解和应用热力学原理的基础。
希望本文的介绍能够帮助读者更好地理解热力学的基本概念,为进一步学习和研究热力学打下坚实的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热源
吸热
热机
作功
放热
冷源
A
9
§1-2 热力系统
1 系统与边界
热力系统(热力系): 人为分割出来作为热力学分析对象的有限物质
系统
外界:热力系统以外的部分 边界:系统与外界之间的分界面
边界可以是实在的,也可以是假想的; 可以是固定的,也可以是移动的
A
10
§1-2 热力系统 热力系统选取的人为性
过热器
热力过程:吸热、膨胀A 作功和排热。
7
名词定义:
工质: 实现热能和机械能相互转化的媒介物质。
热源(高温热源) : 工质从中吸取热能的物系。
冷源(低温热源) : 接受工质排出热能的物系。
A
8
热能动力装置的工作过程可概括成:
工质从高温热源吸热,将其中一部分转 化为机械能而作功,并把余下部分传给低温 热源。
A
41
§1-5 状态方程、状态参数坐标图
2、状态方程
• 温度、压力和比体积这三个基本状态参
数之间的函数关系是最基本的热力学函数
关系,称为状态方程
vf(p,T) f(p,v,T)0
状态方程式是平衡状态下基本状态参数p、 v、T之间的关系
状态方程式的具体形式取决于工质的性质
A
42
§1-5 状态方程、状态参数坐标图
•••
★ ★★ ★
★ ★ ★
★★
★
★
★
★
★
48
§1-7 过程功和热量
功的定义
1、力学定义: 力 在力方向上的位移 2、热力学定义
a、当热力系与外界发生能量传递时,如果对外界 的唯一效果可归结为取起重物,此即为热力系对 外作功。
b、功是系统与外界相互作用的一种方式,在力的 推动下,通过有序运动方式传递的能量。
2、平衡的充要条件:系统内部及系统与外界之间不 存在不平衡势
A
35
§1-4 平衡状态
3、平衡与稳定的比较
稳定:参数不随时间变化,但可能有外界作用。
稳定但存在不平衡势差 去掉外界影响,
则状态变化
稳定不一定平衡,但平衡一定稳定
A
36
§1-4 平衡状态
4、平衡与均匀的比较
平衡:时间上 均匀:空间上
平衡不一定均匀,单相平衡态则一定是均匀的
1 1,a 1,b
A
a
2 b
dz 0
22
§1-3 热力状态
二、基本状态参数
1、压力 p 气体分子撞击器壁的统计(平均)效果
物理中压强,单位: Pa , N/m2
常用单位:
1 bar = 105 Pa
1 MPa = 106 Pa
1 atm = 760 mmHg = 1.013105 Pa
1 mmHg = 133.3 Pa
热平衡
热力学第零定律
如果两个系统分别与 第三个系统处于
热平衡,则两个系统彼 此必然处于热平衡。
温度测量的理论基础
B 温度计
A
29
§1-3
温标:
温度的数值表示
基准点
热力状态
温标三要素
测温物质的性质
分度方法
绝对温标:符号T,单位K 新摄氏温标:符号t,单位℃
t(℃)=T(K)-273.15
A
31
5(F- 50º)= 9(C-10º)
• 作功后的乏汽从汽轮机进入冷凝器,被冷却 水冷凝成水,并由泵加压送入锅炉加热。
A
6
比较上述两种热机
不同点:构造和工作特性不同。 相同点: • 存在某一种媒介物质以获得能量;
(如内燃机中混合气,蒸汽机中的水) • 存在能提供热能的能量源; • 余下的热能排向环境介质。
结论:
各种形式的热机都存在以下几个相同的
1 at=735.6 mmHg = 9.80665104 Pa
A
23
§1-2 热力状态
压力p测量
一般是工质绝对压力与环境压力的相对值 ——相对 压力
注意:只有绝对压力 p 才是状态参数
A
24Leabharlann 当 p > pb 当 p < pb
绝对压力与相对压力
表压力 pe 真空度 pv
p pe pb p pb pv
非平衡状态
无法简单描述
A
44
§1-6 热力过程 准静态过程的工程条件
破坏平衡所需时间
恢复平衡所需时间
(外部作用时间) >> (驰豫时间)
有足够时间恢复新平衡 准静态过程
A
45
§1-6 热力过程
可逆过程
系统经历某一过程后,如果能使系统与外 界同时恢复到初始状态,而不留下任何痕迹, 则此过程为可逆过程。
A
49
§1-7 过程功和热量
功的一般表达式
wFdx w Fdx
热力学最常见的功 容积变化功
w pdv w pdv
A
50
§1-7 过程功和热量
可逆过程的功 p
1
W 2
V
p
p外
1
2
mkg工质:
W =pdV
2
W 1 pdV
1kg工质:
w =pdv
2
w 1 pdv
A
51
§1-7 过程功和热量
热量定义
放 耗
热 功
=
Q1 W
Q1
W
Q2
A
T0
59
理想气体状态 方程
A
60
研究对象
热现象 : 与温度有关的物理性质的变化。 热运动 : 构成宏观物体的大量微观粒子的永不 休止的无规运动 .
基准点 刻度
温标
A
33
§1-3 热力状态
温度测量方法
日常:水银温度计,酒精温度计, 水温度计
工业:热电偶,热敏电阻 计量:铂电阻温度计
A
34
§1-4 平衡状态
1、定义:在不受外界影响的条件下(重力场 除外),如果系统的状态参数不随时间变 化,则该系统处于平衡状态。
温差 — 热不平衡势 压差 — 力不平衡势 化学反应 — 化学不平衡势
• 针对纯物质——无化学反应的 组元一定的闭口系 系统
N=n+1
系统独立 状参个数
热 功的形式数
A
40
§1-5 状态方程、状态参数坐标图
独立参数数目N=不平衡势差数 =能量转换方式的数目 =各种功的方式+热量= n+1
n 容积变化功、电功、拉伸功、表面张力功等
简单可压缩系统:N = n + 1 = 2
只交换热量和一种准静态的容积变化功
容积变化功
A
压缩功 膨胀功
16
§1-2 热力系统
3 工质
• 定义:用来实现能量相互转换的媒介 物质
理想气体
气体
实际气体
蒸气
A
17
• 理想气体:忽略气体分子的自身体积,将分子看 成是有质量的几何点;假设分子间没有相互吸引 和排斥,分子之间及分子与器壁之间发生的碰撞 是完全弹性的,不造成动能损失。
热能动力装置:
从燃料燃烧中得到热能,并利用热能得到动力 的设备。
化学能
热能
机械能
热能动力装置分为两大类: 燃气动力装置(内燃机、燃气轮机) 蒸汽动力装置(蒸汽轮机)
A
3
内燃机(汽油机)
工作过程: 吸气 燃烧、膨胀 压缩 排气
工作物质:燃气
能量转换:
燃料 化学能
燃气 热能
机械能
排入大气
A
4
蒸汽动力装置
状态参数分类:
强度参数:无关
按与所含 工质的量
如压力 p、温度T
有关否分
广延参数:有关可加性
如 质量m、容积 V、内能 U、焓 H、熵S
A
19
§1-3 热力状态
比参数: v V
m
uU
h H
s S
m
m
m
比容 比内能 比焓
比熵
单位:/kg /kmol 具有强度量的性质
A
20
§1-3 热力状态
强度量与广延量
3、坐标图
简单可压缩系 N=2,平面坐标图
p 1
说明:
⑴系统任何平衡态可表示在 坐标图上
⑵过程线中任意一点为平衡态
2 v
常见p-v图和T-s图
⑶不平衡态无法在图上用 实线表示
A
43
§1-6 热力过程
1、准平衡过程 但平衡状态是死态,没有能量交换
⑴热力学引入准平衡过程?
平衡状态
状态不变化
能量不能转换
绝对K
373.15
摄氏℃
水沸点 100
常用温标
华氏F
朗肯R
212
671.67
273.16 273.15
37.8
0.01 水三相点 0 冰熔点
发烧 100 32
-17.8
盐水熔点
0
559.67 491.67 459.67
0
-273.15
A -459.67
0
32
§1-3 热力状态
温度的测量
温度计
物质 (水银,铂电阻) 特性 (体积膨胀,阻值)
速度 高度 温度
(强) (强) (强)
动能 位能 内能
(广) (广) (广)
A
21
§1-3 热力状态
按是否直 接或容易 测量分
基本状态参数
压力 p、温度 T、比容 v
非基本状态参数
内能U、焓 H、熵S
状态参数的数学特征: 1
状态确定,则状态参数也确定
Z (x, y)
2