2020届山东省潍坊市高三上学期期末考试数学试题(解析版)

合集下载

高考数学专题03数列求和问题(第二篇)(解析版)

高考数学专题03数列求和问题(第二篇)(解析版)

⾼考数学专题03数列求和问题(第⼆篇)(解析版)备战2020年⾼考数学⼤题精做之解答题题型全覆盖⾼端精品第⼆篇数列与不等式【解析版】专题03 数列求和问题【典例1】【福建省福州市2019-2020学年⾼三上学期期末质量检测】等差数列{}n a 的公差为2, 248,,a a a 分别等于等⽐数列{}n b 的第2项,第3项,第4项. (1)求数列{}n a 和{}n b 的通项公式;(2)若数列{}n c 满⾜12112n n nc c c b a a a ++++=L ,求数列{}n c 的前2020项的和.【思路引导】(1)根据题意同时利⽤等差、等⽐数列的通项公式即可求得数列{}n a 和{}n b 的通项公式; (2)求出数列{}n c 的通项公式,再利⽤错位相减法即可求得数列{}n c 的前2020项的和.解:(1)依题意得: 2324b b b =,所以2111(6)(2)(14)a a a +=++ ,所以22111112361628,a a a a ++=++解得1 2.a = 2.n a n ∴= 设等⽐数列{}n b 的公⽐为q ,所以342282,4b a q b a ==== ⼜2224,422.n n n b a b -==∴=?= (2)由(1)知,2,2.n n n a n b ==因为11121212n n n n nc c c c a a a a +--++++= ①当2n ≥时,1121212n n n c c c a a a --+++= ②由①-②得,2n n nc a =,即12n n c n +=?,⼜当1n =时,31122c a b ==不满⾜上式,18,12,2n n n c n n +=?∴=?≥ .数列{}n c 的前2020项的和34202120208223220202S =+?+?++?2342021412223220202=+?+?+?++?设2342020202120201222322019220202T =?+?+?++?+? ③,则34520212022202021222322019220202T =?+?+?++?+? ④,由③-④得:234202120222020222220202T -=++++-?2202020222(12)2020212-=-?-2022420192=--? ,所以20222020201924T =?+,所以2020S =202220204201928T +=?+.【典例2】【河南省三门峡市2019-2020学年⾼三上学期期末】已知数列{}n a 的前n 项和为n S ,且满⾜221n S n n =-+,数列{}n b 中,2+,对任意正整数2n ≥,113nn n b b -??+=.(1)求数列{}n a 的通项公式;(2)是否存在实数µ,使得数列{}3nn b µ+是等⽐数列?若存在,请求出实数µ及公⽐q 的值,若不存在,请说明理由;(3)求数列{}n b 前n 项和n T . 【思路引导】(1)根据n S 与n a 的关系1112n nn S n a S S n -=?=?-≥?即可求出;(2)假设存在实数µ,利⽤等⽐数列的定义列式,与题⽬条件1331n n n n b b -?+?=,⽐较对应项系数即可求出µ,即说明存在这样的实数;(3)由(2)可以求出1111(1)4312nn n b -??=?+?- ,所以根据分组求和法和分类讨论法即可求出.解:(1)因为221n S n n =-+,当1n =时,110a S ==;当2n ≥时,22121(1)2(1)123n n n a S S n n n n n -=-=-+-----=-.故*0,1 23,2,n n a n n n N =?=?-∈?…;(2)假设存在实数µ,使得数列{}3xn b µ?+是等⽐数列,数列{}n b 中,2133a b a =+,对任意正整数2n (113)n n b b -??+=.可得116b =,且1331n nn n b b -?+?=,由假设可得(n n n b b µµ--?+=-?+,即1334n n n n b b µ-?+?=-,则41µ-=,可得14µ=-,可得存在实数14µ=-,使得数列{}3nn b µ?+是公⽐3q =-的等⽐数列;(3)由(2)可得11111133(3)(3)444nn n n b b ---=-?-=?- ,则1111(1)4312nn n b -??=?+?- ,则前n 项和11111111(1)123643121212nn n T -=++?+?+-+?+?-?? ? ????????? 当n 为偶数时,111111*********n n n T ??- =+=- ???- 当n 为奇数时,11111115112311128312248313n n n nT ??- =+=-+=- ????- 则51,21248311,2883nn n n k T n k ?-=-=??-=(*k N ∈).【典例3】【福建省南平市2019-2020学年⾼三上学期第⼀次综合质量检查】已知等⽐数列{}n a 的前n 项和为n S ,且( )*21,nn S a a n =?-∈∈R N.(1)求数列{}n a 的通项公式;(2)设11n n n n a b S S ++=,求数列{}n b 的前n 项和n T .【思路引导】(1)利⽤临差法得到12n n a a -=?,再根据11a S =求得1a =,从⽽求得数列通项公式;(2)由题意得1112121n n n b +=---,再利⽤裂项相消法求和. 解:(1)当1n =时,1121a S a ==-.当2n ≥时,112n n n n a S S a --=-=?()*,因为{}n a 是等⽐数列,所以121a a =-满⾜()*式,所以21a a -=,即1a =,因此等⽐数列{}n a 的⾸项为1,公⽐为2,所以等⽐数列{}n a 的通项公式12n n a -=.(2)由(1)知21nn S =-,则11n n n n a b S S ++=,即()()1121121212121n n n n n n b ++==-----,所以121111111113377152121n n n n T b b b +?=++???+=-+-+-+???+- ? ? ? ?--?,所以11121n n T +=--.【典例4】【⼭东省⽇照市2019-2020学年上学期期末】已知数列{}n a 的⾸项为2,n S 为其前n 项和,且()120,*n n S qS q n +=+>∈N (1)若4a ,5a ,45a a +成等差数列,求数列{}n a 的通项公式;(2)设双曲线2221ny x a -=的离⼼率为n e ,且23e =,求222212323n e e e ne ++++L .【思路引导】(1)先由递推式()120,*n n S qS q n +=+>∈N 求得数列{}n a 是⾸项为2,公⽐为q 的等⽐数列,然后结合已知条件求数列通项即可;(2)由双曲线的离⼼率为求出公⽐q ,再结合分组求和及错位相减法求和即可得解. 解:解:(1)由已知,12n n S qS +=+,则212n n S qS ++=+,两式相减得到21n n a qa ++=,1n ≥.⼜由212S qS =+得到21a qa =,故1n n a qa +=对所有1n ≥都成⽴.所以,数列{}n a 是⾸项为2,公⽐为q 的等⽐数列. 由4a ,5a ,45+a a 成等差数列,可得54452=a a a a ++,所以54=2,a a 故=2q .所以*2()n n a n N =∈.(2)由(1)可知,12n n a q-=,所以双曲线2的离⼼率n e ==由23e ==,得q =.所以()()()()2122222123231421414n n e e e n e q n q -++++?=++++++ ()()()21214122n n n q nq -+=++++,记()212123n n T q q nq -=++++①()()2122221n n n q T q q n qnq -=+++-+②①-②得()()221222221111n n nnq q ---=++++-=-- 所以()()()()222222222211122121(1)111nn n n n n n n q nq q nq T n n q q q q --=-=-=-+?=-+----. 所以()()222212121242n n n n e e n e n +++++?=-++. 【典例5】已知数列{}n a 的各项均为正数,对任意*n ∈N ,它的前n 项和n S 满⾜()()1126n n n S a a =++,并且2a ,4a ,9a 成等⽐数列. (1)求数列{}n a 的通项公式;(2)设()111n n n n b a a ++=-,n T 为数列{}n b 的前n 项和,求2n T .【思路引导】(1)根据n a 与n S 的关系,利⽤临差法得到13n n a a --=,知公差为3;再由1n =代⼊递推关系求1a ;(2)观察数列{}n b 的通项公式,相邻两项的和有规律,故采⽤并项求和法,求其前2n 项和. 解:(1)Q 对任意*n ∈N ,有() ()1126n n n S a a =++,①∴当1a =时,有()()11111126S a a a ==++,解得11a =或2. 当2n ≥时,有()()1111126n n n S a a ---=++.②①-②并整理得()()1130n n n n a a a a --+--=. ⽽数列{}n a 的各项均为正数,13n n a a -∴-=.当11a =时,()13132n a n n =+-=-,此时2429a a a =成⽴;当12a =时,()23131n a n n =+-=-,此时2429a a a =,不成⽴,舍去.32n a n ∴=-,*n ∈N .(2)2122n n T b b b =+++=L 12233445221n n a a a a a a a a a a +-+-+-L()()()21343522121n n n a a a a a a a a a -+=-+-++-L242666n a a a =----L ()2426n a a a =-+++L246261862n n n n +-=-?=--.【典例6】【2020届湖南省益阳市⾼三上学期期末】已知数列{}n a 的前n 项和为112a =,()1122n n n S a ++=-. (1)求2a 及数列{}n a 的通项公式;(2)若()1122log n n b a a a =L ,11n n nc a b =+,求数列{}n c 的前n 项和n T . 【思路引导】(1)利⽤临差法将递推关系转化成2112n n a a ++=,同时验证2112a a =,从⽽证明数列{}n a 为等⽐数列,再利⽤通项公式求得n a ;(2)利⽤对数运算法则得11221nn c n n ??=+- ?+??,再⽤等⽐数列求和及裂项相消法求和,可求得n T 。

2020届山东省新高考高三优质数学试卷分项解析 专题05 三角函数与解三角形(原卷版)

2020届山东省新高考高三优质数学试卷分项解析 专题05 三角函数与解三角形(原卷版)

专题5 三角函数与解三角形1.近几年高考在对三角恒等变换考查的同时,对三角函数图象与性质的考查力度有所加强,往往将三角恒等变换与三角函数的图象和性质结合考查,先利用三角公式进行化简,然后进一步研究三角函数的性质.其中三角函数的定义域值域、单调性、奇偶性、周期性、对称性以及图象变换是主要考查对象,难度以中档以下为主.2.高考对正弦定理和余弦定理的考查较为灵活,题型多变,往往以小题的形式独立考查正弦定理或余弦定理,以解答题的形式综合考查定理的综合应用,多与三角形周长、面积有关;有时也会与平面向量、三角恒等变换等结合考查,试题难度控制在中等或以下,主要考查灵活运用公式求解计算能力、推理论证能力、数学应用意识、数形结合思想等.预测2020年将突出考查恒等变换与三角函数图象和性质的结合、恒等变换与正弦定理和余弦定理的结合.一、单选题1.(2020届山东省潍坊市高三上期中)sin 225︒= ( )A .12-B .2-C .D .1-2.(2020届山东省泰安市高三上期末)“1a <-”是“0x ∃∈R ,0sin 10+<a x ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.(2020届山东省潍坊市高三上期末)已知345sin πα⎛⎫-= ⎪⎝⎭,0,2πα⎛⎫∈ ⎪⎝⎭,则cos α=( )A .10B .10C .2 D .104.(2020届山东省枣庄市高三上学期统考)设函数2sin cos ()(,0)x x xf x a R a ax +=∈≠,若(2019)2f -=,(2019)f =( )A .2B .-2C .2019D .-20195.(2020届山东省枣庄市高三上学期统考)已知函数()cos()(0)f x x ωϕω=+>的最小正周期为π,且对x ∈R ,()3f x f π⎛⎫⎪⎝⎭…恒成立,若函数()y f x =在[0,]a 上单调递减,则a 的最大值是( ) A .π6 B .π3C .2π3D .5π66.(2020届山东省滨州市三校高三上学期联考)若π1sin 34α⎛⎫-= ⎪⎝⎭,则πcos 23α⎛⎫+= ⎪⎝⎭( ).A .78-B .14-C .14 D .787.(2020届山东省潍坊市高三上期中)已知函数()sin cos f x x x =+,则( ) A .()f x 的最小正周期为π B .()y f x =图象的一条对称轴方程为4x π=C .()f x 的最小值为2-D .()f x 的0,2π⎡⎤⎢⎥⎣⎦上为增函数8.(2020届山东省九校高三上学期联考)如图是一个近似扇形的鱼塘,其中OA OB r ==,弧AB 长为l (l r <).为方便投放饲料,欲在如图位置修建简易廊桥CD ,其中34OC OA =,34OD OB =.已知1(0,)2x ∈时,3sin 3!x x x ≈-,则廊桥CD 的长度大约为( )A .323432r r l - B .323432l l r - C .32324l l r-D .32324r r l-9.(2020·武邑县教育局教研室高三上期末(理))已知()cos 2cos 2παπα⎛⎫-=+ ⎪⎝⎭,且()1tan 3αβ+=,则tan β的值为() A .-7B .7C .1D .-110.(2020届山东师范大学附中高三月考)为了得函数23y sin x π⎛⎫=+ ⎪⎝⎭的图象,只需把函数2y sin x =的图象( ) A .向左平移6π个单位 B .向左平移3π单位 C .向右平移6π个单位 D .向右平移3π个单位11.(2020届山东省枣庄、滕州市高三上期末)将曲线()cos 2y f x x =上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移4π个单位长度,得到曲线cos 2y x =,则6f π⎛⎫= ⎪⎝⎭( )A .1B .-1C D .12.(2020届山东省济宁市高三上期末)在ABC ∆中,1,3,1AB AC AB AC ==⋅=-u u u r u u u r,则ABC ∆的面积为( )A .12B .1CD .213.(2020届山东省潍坊市高三上学期统考)将函数()πsin 23f x x ⎛⎫=+ ⎪⎝⎭的图像向右平移()0a a >个单位得到函数()πcos 24g x x ⎛⎫=+ ⎪⎝⎭的图像,则a 的值可以为( )A .5π12B .7π12C .19π24D .41π2414.(2020届山东省临沂市高三上期末)已知函数2()2cos 12f x x πω⎛⎫=- ⎪⎝⎭(0)>ω的图象关于直线4x π=对称,则ω的最小值为( ) A .13B .16C .43D .5615.(2020届山东省潍坊市高三上学期统考)已知△ABC 的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,2b =,则△ABC 面积的最大值是A .1B C .2D .416.(2020届山东省烟台市高三上期末)若x α=时,函数()3sin 4cos f x x x =+取得最小值,则sin α=( )A .35B .35-C .45D .45-17.(2020届山东实验中学高三上期中)在ABC △中,若 13,3,120AB BC C ==∠=o ,则AC =( ) A .1B .2C .3D .418.(2020届山东实验中学高三上期中)已知()cos 2cos 2παπα⎛⎫-=+ ⎪⎝⎭,且()1tan 3αβ+=,则tan β的值为( ) A .-7B .7C .1D .-119.(2020届山东省济宁市高三上期末)函数22cos cos 1y x x =-++,,22x ππ⎡⎤∈-⎢⎥⎣⎦的图象大致为( ) A . B .C .D .20.(2020届山东师范大学附中高三月考)泉城广场上矗立着的“泉标”,成为泉城济南的标志和象征.为了测量“泉标”高度,某同学在“泉标”的正西方向的点A 处测得“泉标”顶端的仰角为45︒,沿点A 向北偏东30︒前进100 m 到达点B ,在点B 处测得“泉标”顶端的仰角为30︒,则“泉标”的高度为( ) A .50 mB .100 mC .120 mD .150 m21.(2020届山东实验中学高三上期中)已知函数()sin 23f x a x x =的图象关于直线12x π=-对称,若()()124f x f x ⋅=-,则12a x x -的最小值为( ) A .4πB .2π C .πD .2π22.(2020届山东省滨州市高三上期末)已知函数()2sin(2)f x x ϕ=+的图象过点,26A π⎛⎫⎪⎝⎭,则( ) A .把()y f x =的图象向右平移6π个单位得到函数2sin 2y x =的图象B .函数()f x 在区间,02π⎛⎫- ⎪⎝⎭上单调递减C .函数()f x 在区间[]0,2π内有五个零点D .函数()f x 在区间0,3π⎡⎤⎢⎥⎣⎦上的最小值为1 二、多选题23.(2020届山东省滨州市三校高三上学期联考)设函数()sin 23f x x π⎛⎫=- ⎪⎝⎭,则下列结论正确的是( ) A .π-是()f x 的一个周期 B .()f x 的图像可由sin 2y x =的图像向右平移3π得到 C .()f x π+的一个零点为6x π=D .()y f x =的图像关于直线1712x π=对称 24.(2020届山东师范大学附中高三月考)在平面直角坐标系xOy 中,角α顶点在原点O ,以x 正半轴为始边,终边经过点()()1,0P m m <,则下列各式的值恒大于0的是( ) A .sin tan ααB .cos sin αα-C .sin cos ααD .sin cos αα+25.(2020·蒙阴县实验中学高三期末)关于函数()22cos cos(2)12f x x x π=-+-的描述正确的是( )A .其图象可由2y x =的图象向左平移8π个单位得到 B .()f x 在(0,)2π单调递增C .()f x 在[]0,π有2个零点D .()f x 在[,0]2π-的最小值为26.(2020·山东省淄博实验中学高三上期末)已知函数()sin cos f x x x =-,()g x 是()f x 的导函数,则下列结论中正确的是( )A .函数()f x 的值域与()g x 的值域不相同B .把函数()f x 的图象向右平移2π个单位长度,就可以得到函数()g x 的图象 C .函数()f x 和()g x 在区间,44ππ⎛⎫-⎪⎝⎭上都是增函数 D .若0x 是函数()f x 的极值点,则0x 是函数()g x 的零点27.(2020届山东省枣庄市高三上学期统考)将函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移2π个单位长度得到()g x 图象,则下列判断正确的是( ) A .函数()g x 在区间,122ππ⎡⎤⎢⎥⎣⎦上单调递增 B .函数()g x 图象关于直线712x π=对称 C .函数()g x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递减 D .函数()g x 图象关于点,03π⎛⎫⎪⎝⎭对称28.(2020届山东省潍坊市高三上期末)已知()()22210f x cos x x ωωω=->的最小正周期为π,则下列说法正确的有( ) A .2ω= B .函数()f x 在[0,]6π上为增函数C .直线3x π=是函数()y f x =图象的一条对称轴D .5π,012骣琪琪桫是函数()y f x =图象的一个对称中心29.(2020届山东省潍坊市高三上学期统考)在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若1tan A ,1tan B ,1tan C依次成等差数列,则下列结论中不一定成立.....的是( ) A .a ,b ,c 依次成等差数列B C .2a ,2b ,2c 依次成等差数列 D .3a ,3b ,3c 依次成等差数列30.(2020届山东省济宁市高三上期末)将函数()sin 2f x x =的图象向右平移4π个单位后得到函数()g x 的图象,则函数()g x 具有性质( )A .在0,4π⎛⎫⎪⎝⎭上单调递增,为偶函数 B .最大值为1,图象关于直线32x π=-对称 C .在3,88ππ⎛⎫-⎪⎝⎭上单调递增,为奇函数 D .周期为π,图象关于点3,04π⎛⎫⎪⎝⎭对称 31.(2020届山东实验中学高三上期中)己知函数()()()sin 0,023f x x f x ππωϕωϕ⎛⎫=+><<- ⎪⎝⎭,为的一个零点,6x π=为()f x 图象的一条对称轴,且()()0f x π在,上有且仅有7个零点,下述结论正确..的是( ) A .=6πϕB .=5ωC .()()0f x π在,上有且仅有4个极大值点D .()042f x π⎛⎫⎪⎝⎭在,上单调递增32.(2019·山东师范大学附中高三月考)在平面直角坐标系xOy 中,角α顶点在原点O ,以x 正半轴为始边,终边经过点()()1,0P m m <,则下列各式的值恒大于0的是( ) A .sin tan ααB .cos sin αα-C .sin cos ααD .sin cos αα+33.(2020届山东省烟台市高三上期末)已知函数()()sin 322f x x ππϕϕ⎛⎫=+-<< ⎪⎝⎭的图象关于直线4x π=对称,则( ) A .函数12f x π⎛⎫+⎪⎝⎭为奇函数 B .函数()f x 在,123ππ⎡⎤⎢⎥⎣⎦上单调递增 C .若()()122f x f x -=,则12x x -的最小值为3πD .函数()f x 的图象向右平移4π个单位长度得到函数cos3y x =-的图象 三、填空题34.(2020届山东省枣庄市高三上学期统考)已知1sin 4x =,x 为第二象限角,则sin 2x =______. 35.(2020届山东省日照市高三上期末联考)已知tan 3α=,则sin cos sin cos αααα-+的值为______.36.(2020届山东师范大学附中高三月考)已知1tan 3α=,则2sin 2sin 1cos 2ααα-+的值为________.37.(2020届山东省枣庄、滕州市高三上期末)在平面直角坐标系xOy 中,角α的顶点是O ,始边是x 轴的非负半轴,02απ<<,点1tan,1tan1212P ππ⎛⎫+- ⎪⎝⎭是α终边上一点,则α的值是________. 38.(2020·全国高三专题练习(文))已知sin cos 11cos 2ααα=-,1tan()3αβ-=,则tan β=________.39.(2020届山东实验中学高三上期中)在ABC ∆中,,,a b c 分别为内角,,A B C 的对边,若32sin sin sin ,cos 5B AC B =+=,且6ABC S ∆=,则b =__________. 40.(2020届山东省日照市高三上期末联考)已知函数()9sin 26f x x π⎛⎫=-⎪⎝⎭,当[]0,10x π∈时,把函数()()6F x f x =-的所有零点依次记为123,,,,n x x x x ⋅⋅⋅,且123n x x x x <<<⋅⋅⋅<,记数列{}n x 的前n 项和为n S ,则()12n n S x x -+=______.41.(2020届山东省德州市高三上期末)已知函数()()sin f x A x =+ωϕ0,0,||2A πωϕ⎛⎫>><⎪⎝⎭的最大值2π,且()f x 的图象关于直线3x π=-对称,则当,66x ππ⎡⎤∈-⎢⎥⎣⎦时,函数()f x 的最小值为______.42.(2020届山东省泰安市高三上期末)在△ABC 中,内角A ,B ,C 的对边分别为,,a b c ,若cos cos sin A B C a b c +=,22265b c a bc +-=,则tan B =______. 四、解答题43.(2020届山东省临沂市高三上期末)在①3cos 5A =,cos C =,②sin sin sin c C A b B =+,60B =o,③2c =,1cos 8A =三个条件中任选一个补充在下面问题中,并加以解答. 已知ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,若3a =,______,求ABC V 的面积S . 44.(2020届山东省泰安市高三上期末)在①函数()()1sin 20,22f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象向右平移12π个单位长度得到()g x 的图象,()g x图象关于原点对称;②向量),cos 2m x x ωω=u r,()11cos ,,0,24n x f x m n ωω⎛⎫=>=⋅ ⎪⎝⎭r u r r ;③函数()1cos sin 64f x x x πωω⎛⎫=+- ⎪⎝⎭()0ω>这三个条件中任选一个,补充在下面问题中,并解答.已知_________,函数()f x 的图象相邻两条对称轴之间的距离为2π. (1)若02πθ<<,且sin θ=()f θ的值; (2)求函数()f x 在[]0,2π上的单调递减区间.45.(2020届山东省枣庄市高三上学期统考)ABC ∆的内角A ,B ,C 的对边分别为,,a b c ,已知()2cos cos 0a c B b A ++=.(I )求B ;(II )若3,b ABC =∆的周长为3ABC +∆的面积.46.(2020届山东省滨州市三校高三上学期联考)已知函数()sin()f x A x ωϕ=+,其中0A >,0>ω,(0,)ϕπ∈,x ∈R ,且()f x 的最小值为-2,()f x 的图象的相邻两条对称轴之间的距离为2π,()f x 的图象过点,03π⎛-⎫ ⎪⎝⎭.(1)求函数()f x 的解析式和单调递增区间; (2)若[0,2]x πÎ函数()f x 的最大值和最小值.47.(2020届山东省潍坊市高三上期中)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知10a b +=,5c =,sin 2sin 0B B +=.(1)求a ,b 的值: (2)求sin C 的值.48.(2020届山东省烟台市高三上期末)在条件①()(sin sin )()sin a b A B c b C +-=-,②sin cos()6a Bb A π=+,③sinsin 2B Cb a B +=中任选一个,补充到下面问题中,并给出问题解答. 在ABC ∆中,角,,A B C 的对边分别为,,a bc ,6b c +=,a =, . 求ABC ∆的面积.49.(2020届山东省泰安市高三上期末)如图所示,有一块等腰直角三角形地块ABC ,90A ∠=o ,BC 长2千米,现对这块地进行绿化改造,计划从BC 的中点D 引出两条成45°的线段DE 和DF ,与AB 和AC 围成四边形区域AEDF ,在该区域内种植花卉,其余区域种植草坪;设BDE α∠=,试求花卉种植面积()S α的取值范围.50.(2020届山东省日照市高三上期末联考)在①ABC ∆面积2ABC S ∆=,②6ADC π∠=这两个条件中任选一个,补充在下面问题中,求AC . 如图,在平面四边形ABCD 中,34ABC π∠=,BAC DAC ∠=∠,______,24CD AB ==,求AC .51.(2020届山东省滨州市三校高三上学期联考)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,23sin 2cos02A CB +-=. (1)求角B 的大小;(2)若2sin 2sin sin B A C =,且ABC ∆的面积为3ABC ∆的周长.52.(2020届山东省德州市高三上期末)已知a ,b ,c 分别为ABC ∆内角A ,B ,C 的对边,若ABC ∆同时满足下列四个条件中的三个:①2633()b a ac c a b -+=+;②2cos 22cos 12A A +=;③6a =④2b =(1)满足有解三角形的序号组合有哪些?(2)在(1)所有组合中任选一组,并求对应ABC ∆的面积. (若所选条件出现多种可能,则按计算的第一种可能计分)53.(20203(cos )sin b C a c B -=;②22cos a c b C +=;③sin 3sin2A Cb A a += 这三个条件中任选一个,补充在下面问题中的横线上,并解答相应的问题.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足________________,23,b =4a c +=,求ABC ∆的面积.54.(2020届山东师范大学附中高三月考)ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足cos cos 2c A a C a +=.(1)求a b的值; (2)若1a =,7c =,求ABC V 的面积. 55.(2020·蒙阴县实验中学高三期末)在非直角ABC ∆中,a ,b ,c 分别是A ,B ,C 的对边.已知4a =,5AB AC ⋅=u u u r u u u r ,求:(1)tan tan tan tan A A B C+的值; (2)BC 边上的中线AD 的长.56.(2020届山东师范大学附中高三月考)设函数5()2cos()cos 2sin()cos 122f x x x x x ππ=++++. (1)设方程()10f x -=在(0,)π内有两个零点12,x x ,求12x x +的值;(2)若把函数()y f x =的图象向左平移6π个单位,再向下平移2个单位,得函数()g x 图象,求函数()g x 在[,]33ππ-上的最值. 57.(2020届山东省潍坊市高三上期末)在①34asinC ccosA =;②252B C bsinasinB +=这两个条件中任选-一个,补充在下面问题中,然后解答补充完整的题.在ABC V 中,角,,A B C 的对边分别为,,a b c ,已知 ,32a =.(1)求sinA ;(2)如图,M 为边AC 上一点,,2MC MB ABM π=∠=,求ABC V 的面积58.(2020·山东省淄博实验中学高三上期末)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知4cos cos cos a A c B b C =+.(1)若4a =,ABC ∆的面积为15,求b ,c 的值; (2)若()sin sin 0B k C k =>,且角C 为钝角,求实数k 的取值范围.59.(2020届山东省潍坊市高三上学期统考)已知函数()()23sin cos sin 10f x x x x ωωωω=-+>图象的相邻两条对称轴之间的距离为2π.(1)求ω的值及函数()f x 的单调递减区间;(2)如图,在锐角三角形ABC 中有()1f B =,若在线段BC 上存在一点D 使得2AD =,且6AC =,31CD =-,求三角形ABC 的面积.60.(2020届山东省济宁市高三上期末)已知()()23sin sin cos 2f x x x x ππ⎛⎫=-+- ⎪⎝⎭. (1)若1210f α⎛⎫= ⎪⎝⎭,求2cos 23πα⎛⎫+ ⎪⎝⎭的值; (2)在△ABC 中,角A ,B ,C 所对应的边分别,,a b c ,若有()2cos cos a c B b C -=,求角B 的大小以及()f A 的取值范围.61.(2020届山东省济宁市高三上期末)如图,某市三地A ,B ,C 有直道互通.现甲交警沿路线AB 、乙交警沿路线ACB 同时从A 地出发,匀速前往B 地进行巡逻,并在B 地会合后再去执行其他任务.已知AB =10km ,AC =6km ,BC =8km ,甲的巡逻速度为5km /h ,乙的巡逻速度为10km /h .(1)求乙到达C 地这一时刻的甲、乙两交警之间的距离;(2)已知交警的对讲机的有效通话距离不大于3km ,从乙到达C 地这一时刻算起,求经过多长时间,甲、乙方可通过对讲机取得联系.62.(2020·全国高三专题练习(文))在ABC V 中,a ,b ,c 分别为内角A ,B ,C 的对边,且满()(sin sin )(3sin sin )b a B A c B C -+=-.(1)求A 的大小;(2)再在①2a =,②4B π=,③3=c b 这三个条件中,选出两个使ABC V 唯一确定的条件补充在下面的问题中,并解答问题.若________,________,求ABC V 的面积.63.(2020届山东实验中学高三上期中)己知函数()23sin cos sin 244f x x x x a ππ⎛⎫⎛⎫=++++ ⎪ ⎪⎝⎭⎝⎭的最大值为1.(1)求实数a 的值;(2)若将()f x 的图象向左平移6π个单位,得到函数()g x 的图象,求函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.64.(2020届山东实验中学高三上期中)“我将来要当一名麦田里的守望者,有那么一群孩子在一块麦田里玩,几千万的小孩子,附近没有一个大人,我是说……除了我”《麦田里的守望者》中的主人公霍尔顿将自己的精神生活寄托于那广阔无垠的麦田.假设霍尔顿在一块成凸四边形ABCD 的麦田里成为守望者,如图所示,为了分割麦田,他将BD 连接,设ABD ∆中边BD 所对的角为A ,BCD ∆中边BD 所对的角为C ,经测量已知2AB BC CD ===,23AD =.(1)霍尔顿发现无论BD 3cos A C -为一个定值,请你验证霍尔顿的结论,并求出这个定值;(2)霍尔顿发现麦田的生长于土地面积的平方呈正相关,记ABD ∆与BCD ∆的面积分别为1S 和2S ,为了更好地规划麦田,请你帮助霍尔顿求出2212S S +的最大值.。

高三数学专题练习运用裂项相消法求和(新高考地区专用)

高三数学专题练习运用裂项相消法求和(新高考地区专用)

运用裂项相消法求和把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.常见的裂项技巧①1n (n +1)=1n -1n +1.②1n (n +2)=12⎝⎛⎭⎫1n -1n +2.③1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1.④1n +n +1=n +1-n .⑤1n (n +1)(n +2)=12⎝⎛⎭⎫1n (n +1)-1(n +1)(n +2).一、题型选讲例1、已知数列{}1n a +是等比数列,11a =且2a ,32a +,4a 成等差数列. (1)求数列{}n a 的通项公式; (2)设11n nn n n a a b a a ++-=,求数列{}n b 的前n 项和n S .例2、在①26,7753=+=a a a ;②63,371==S a ;③n n S n 22+=,这三个条件中任选一个,补充在下面问题中,然后解答补充完整的题目. 已知S n 为等差数列}{n a 的前n 项和,若. (1)求a n ; (2)令*)(112N n a b n n ∈-=,求数列}{n b 的前n 项和T n .注:如果选择多个条件分别解答,按第一个解答计分.例3、已知数列{}n a 的前n 项和n S2(2,)n n =≥∈N ,且14a =.(1)求数列{}n a 的前n 项和n S 及通项公式n a ; (2)记11n n n b a a +=⋅,n T 为{}n b 的前n 项和,求n T .例4、已知数列{}n a 的前n 项和为n S ,且0n a >,242n n n S a a =+.(1)求数列{}n a 的通项公式; (2)若11nn n S S b S S -=⋅,求数列{}n b 的前n 项和n T .例5、已知数列{}n a 的前n 项和n S2(2,)n n =+≥∈N ,且14a =.(1)求数列{}n a 的前n 项和n S ,及通项公式n a ; (2)记11n n n b a a +=⋅,n T 为{}n b 的前n 项和,求n T .例6、已知各项均不相等的等差数列{}n a 的前4项和为10,且124,,a a a 是等比数列{}n b 的前3项. (1)求,n n a b ; (2)设()11n n n n c b a a =++,求{}n c 的前n 项和n S .例7、已知等差数列{}n a 的前n 项和为254,12,16n S a a S +==.(1)求{}n a 的通项公式; (2)数列{}n b 满足141n n n b T S =-,为数列{}n b 的前n 项和,是否存在正整数m ,()1k m k <<,使得23k m T T =?若存在,求出m ,k 的值;若不存在,请说明理由.例8、在数列中,有.(1)证明:数列为等差数列,并求其通项公式; (2)记,求数列的前n 项和.二、达标训练1、已知数列{a n }的前n 项和为S n ,且a n >0,4S n =a n 2+2a n .(1)求数列{a n }的通项公式; (2)若b n =S 1−S n S n ⋅S 1,求数列{b n }的前n 项和T n .2、设*n N ∈,向量(31,3)AB n =+,(0,32)BC n =-,n a AB AC =⋅. (1)试问数列{}1n n a a +-是否为等差数列?为什么?(2)求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .{}n a ()2*1232n a a a a n n n +++⋯+=+∈N{}n a 11n n n b a a +=⋅{}n b n T3、已知等差数列{}n a 满足246a a +=,前7项和728S =. (1)求数列{}n a 的通项公式;(2)设()()122121n n nn a a b +=++,求数列{}n b 的前n 项和n T .4、已知等差数列{},n a 和等比数列{}n b 满足:311249351,*,3,330.n b a b b N a a a b a b ==∈++==- (I )求数列{}n a 和{}n b 的通项公式;(II )求数列21n n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和n S .5、等比数列{}n a 的前n 项和为()*234,2,,4n S n N S S S ∈-成等差数列,且2341216a a a ++=. (1)求数列{}n a 的通项公式;(2)若2(2)log n an b n =-+,求数列1{}nb 的前n 项和n T .6、已知数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S n 2=a n (S n -12).(1)求S n 的表达式;(2)设b n =S n2n +1,求数列{b n }的前n 项和T n .运用裂项相消法求和把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.常见的裂项技巧①1n (n +1)=1n -1n +1.②1n (n +2)=12⎝⎛⎭⎫1n -1n +2.③1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1.④1n +n +1=n +1-n .⑤1n (n +1)(n +2)=12⎝⎛⎭⎫1n (n +1)-1(n +1)(n +2).一、题型选讲例1、(2020届山东省九校高三上学期联考)已知数列{}1n a +是等比数列,11a =且2a ,32a +,4a 成等差数列.(1)求数列{}n a 的通项公式; (2)设11n nn n n a a b a a ++-=,求数列{}n b 的前n 项和n S .【解析】(1)设数列{}1n a +的公比为q ,∵112a +=,∴22334121212a q a q a q +=⎧⎪+=⎨⎪+=⎩,∴22334212121a q a q a q =-⎧⎪=-⎨⎪=-⎩, ∵()32422a a a +=+, ∴()232212121q q q +=-+-, ∴2342222q q q +=+-, 即:()()224121q q q +=+, 解得:2q.∴11222n nn a -+=⋅=, ∴21nn a =-.(2)()()1121121212121n nn n n n b ++==-----,∴1231n n n S b b b b b -=+++++122334111111212121212121⎛⎫⎛⎫⎛⎫=-+-+- ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭11111121212121n n n n -+⎛⎫⎛⎫++-+- ⎪ ⎪----⎝⎭⎝⎭11112212121n n n +++-=-=--. 例2、(华南师大附中2021届高三综合测试)在①26,7753=+=a a a ;②63,371==S a ;③n n S n 22+=,这三个条件中任选一个,补充在下面问题中,然后解答补充完整的题目. 已知S n 为等差数列}{n a 的前n 项和,若. (1)求a n ; (2)令*)(112N n a b n n ∈-=,求数列}{n b 的前n 项和T n .注:如果选择多个条件分别解答,按第一个解答计分. 【解析】:(1)若选择条件(1),在等差数列}{n a 中⎩⎨⎧=+=267753a a a ,⎩⎨⎧=+=+∴261027211d a d a ,解得⎩⎨⎧==231d a122)1(3)1(1+=-+=-+=∴n n d n a a n若选择条件(2),在等差数列}{n a 中⎪⎩⎪⎨⎧=⨯+==6326773171d a S a ,解得⎩⎨⎧==231d a 122)1(3)1(1+=-+=-+=∴n n d n a a n ;若选择条件(3),在等差数列}{n a 中a l =S l =3,当n ≥2时,a n =S n -S n-1=n 2+2n -[(n -l)2 +2(n -1)]= 2n +l ,a 1也符合, ∴a n =2n +1; (2)由(1)得)111(41)1(411)12(11122+-=+=-+=-=n n n n n a b n n ,)1(4)111(41)1113121211(4121+=+-=+-++-+-=+++=∴n n n n n b b b T n n例3、(江苏盐城中学2021届高三年级第三阶段检测数学试题)已知数列{}n a 的前n 项和nS 满足2(2,)n n =+≥∈N ,且14a =.(1)求数列{}n a 的前n 项和n S 及通项公式n a ; (2)记11n n n b a a +=⋅,n T 为{}n b 的前n 项和,求n T .【解析】(I)2=,∴数列为等差数列,2==,22(1)2n n =+-=,即24n S n =,当2n ≥时,22144(1)4(21)n n n a S S n n n -=-=--=-,又12a =也满足上式,∴4(21)n a n =-; (II)由(1)知,111116(21)(21)322121n b n n n n ⎛⎫==- ⎪-+-+⎝⎭,∴1111111323352121n T n n ⎛⎫=-+-++- ⎪-+⎝⎭, 111322116(21)n n n ⎛⎫=-= ⎪++⎝⎭ 例4、(2020届山东省德州市高三上期末)已知数列{}n a 的前n 项和为n S ,且0n a >,242n n n S a a =+.(1)求数列{}n a 的通项公式; (2)若11nn n S S b S S -=⋅,求数列{}n b 的前n 项和n T .【解析】(1)当1n =时,211142a a a =+,整理得2112a a =,10a >,解得12a =;当2n ≥时,242n n n S a a =+①,可得211142n n n S a a ---=+②,①-②得2211422n n n n n a a a a a --=-+-,即()()221120n n n n a a a a ----+=,化简得()()1120n n n n a a a a --+--=,因为0n a >,10n n a a -∴+>,所以12n n a a --=,从而{}n a 是以2为首项,公差为2的等差数列,所以()2212n a n n =+-=; (2)由(1)知()()()122122n n n a a n n S n n ++===+, 因为()11111111111212n n n n S S b S S S S n n n n -==-=-=--⋅++,1211111111112223212n n T b b b n n ⎛⎫⎛⎫⎛⎫∴=++⋅⋅⋅+=--+--+⋅⋅⋅+-- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭111111111112231212n n n n n ⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+--=-- ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭. 例5、(2020届山东省滨州市三校高三上学期联考)已知数列{}n a 的前n 项和n S满足2(2,)n n =+≥∈N ,且14a =.(1)求数列{}n a 的前n 项和n S ,及通项公式n a ; (2)记11n n n b a a +=⋅,n T 为{}n b 的前n 项和,求n T .【解析】(I2=,∴数列为等差数列,2==,22(1)2n n =+-=,即24n S n =,当2n ≥时,22144(1)4(21)n n n a S S n n n -=-=--=-,又12a =也满足上式,∴4(21)n a n =-; (II )由(1)知,111116(21)(21)322121n b n n n n ⎛⎫==- ⎪-+-+⎝⎭,∴1111111323352121n T n n ⎛⎫=-+-++- ⎪-+⎝⎭, 111322116(21)n n n ⎛⎫=-= ⎪++⎝⎭例6、(2020届山东省潍坊市高三上期末)已知各项均不相等的等差数列{}n a 的前4项和为10,且124,,a a a 是等比数列{}n b 的前3项. (1)求,n n a b ; (2)设()11n n n n c b a a =++,求{}n c 的前n 项和n S .【解析】 (1)设数列{}n a 的公差为d , 由题意知: ()1234114414+46102a a a a a d a d ⨯-+++==+=① 又因为124,,a a a 成等比数列, 所以2214a a a =⋅,()()21113a d a a d +=⋅+,21d a d =,又因为0d ≠, 所以1a d =. ② 由①②得11,1a d ==, 所以n a n =,111b a ==,222b a ==,212b qb ==, 12n n b -∴= .(2)因为()111112211n n n c n n n n --⎛⎫=+=+- ⎪++⎝⎭,所以0111111122 (2)12231n n S n n -⎛⎫=++++-+-+⋅⋅⋅+- ⎪+⎝⎭1211121n n -=+--+121n n =-+ 所以数列{}n c 的前n 项和121n n S n =-+.例7、(2020届山东省泰安市高三上期末)已知等差数列{}n a 的前n 项和为254,12,16n S a a S +==.(1)求{}n a 的通项公式;(2)数列{}n b 满足141n n n b T S =-,为数列{}n b 的前n 项和,是否存在正整数m ,()1k m k <<,使得23k m T T =?若存在,求出m ,k 的值;若不存在,请说明理由.【解析】(1)设等差数列{}n a 的公差为d ,由2541216a a S +=⎧⎨=⎩得112512238a d a d +=⎧⎨+=⎩,解得112a d =⎧⎨=⎩, ()*12121,n a n n n N ∴=+-=-∈;(2)()2122n n n S n n -=+⨯=, 211114122121n b n n n ⎛⎫∴==- ⎪--+⎝⎭,1211111111111123352321212122121n n n T b b b n n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=++⋅⋅⋅+=-+-+⋅⋅⋅+-+-=-= ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥---+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 若23k m T T =,则()2232121k m k m =++,整理得223412m k m m =+-, 又1k m >>,2234121m m m m m ⎧>⎪∴+-⎨⎪>⎩,整理得222104121m m m m m ⎧-->⎪+-⎨⎪>⎩,解得11m <<+, 又*m N ∈,2m ∴=,12k ∴=,∴存在2,12m k ==满足题意.例8、【2020届河北省衡水中学全国高三期末大联考】在数列中,有{}n a.(1)证明:数列为等差数列,并求其通项公式;(2)记,求数列的前n 项和. 【解析】(1)因为,所以当时,,上述两式相减并整理,得.又因为时,,适合上式,所以.从而得到,所以, 所以数列为等差数列,且其通项公式为. (2)由(1)可知,. 所以 .二、达标训练 1、【2020届中原金科大联考高三4月质量检测】已知数列{a n }的前n 项和为S n ,且a n >0,4S n =a n 2+2a n .(1)求数列{a n }的通项公式;(2)若b n =S 1−S nS n ⋅S 1,求数列{b n }的前n 项和T n .【解析】(1)当n =1时,4a 1=a 12+2a 1,整理得a 12=2a 1,∵a 1>0,解得a 1=2;当n ≥2时,4S n =a n 2+2a n ①,可得4S n−1=a n−12+2a n−1②,①-②得4a n =a n 2−a n−12+2a n −2a n−1,即(a n 2−a n−12)−2(a n +a n−1)=0,化简得(a n +a n−1)(a n −a n−1−2)=0,()2*1232n a a a a n n n +++⋯+=+∈N {}n a 11n n n b a a +=⋅{}n b n T ()2*1232n a a a a n n n +++⋯+=+∈N 2n ≥212312((11))n a a a a n n -+++⋯+=--+21(2)n a n n =+≥1n =211213a =+⨯=()*21n a n n =+∈N121n a n -=-12n n a a --={}n a ()*12n Na n n +∈=111111(21)(23)22123n n nb a a n n n n +⎛⎫===- ⎪⋅+⋅+++⎝⎭12311111111123557792123n n T b b b b n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=++++=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦11123233(23)n n n ⎛⎫=-= ⎪++⎝⎭因为a n >0,∴a n +a n−1>0,所以a n −a n−1=2,从而{a n }是以2为首项,公差为2的等差数列,所以a n =2+2(n −1)=2n ;(2)由(1)知S n =n (a 1+a n )2=n (2+2n )2=n (n +1), 因为b n =S 1−S nS n ⋅S 1=1S n −1S 1=1n (n+1)−12=1n −1n+1−12, ∴T n =b 1+b 2+⋅⋅⋅+b n =(11−12)−12+(12−13)−12+⋅⋅⋅+(1n −1n +1)−12=(11−12)+(12−13)+⋅⋅⋅+(1n −1n+1)−12n =1−1n+1−12n .2、(2020届山东省临沂市高三上期末)设*n N ∈,向量(31,3)AB n =+,(0,32)BC n =-,n a AB AC =⋅. (1)试问数列{}1n n a a +-是否为等差数列?为什么? (2)求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S . 【解析】(1)(31,31)AC AB BC n n =+=++,2(31)3(31)(31)(34)n a n n n n ∴=+++=++.1(34)(37)(31)(34)6(34)n n a a n n n n n +-=++-++=+,()()21118n n n n a a a a +++∴---=为常数,{}1n n a a +∴-是等差数列.(2)111133134n a n n ⎛⎫=- ⎪++⎝⎭, 1111111111347710313434341216n n S n n n n ⎛⎫⎛⎫∴=-+-++-=-= ⎪ ⎪++++⎝⎭⎝⎭. 3、(2020届山东省济宁市高三上期末)已知等差数列{}n a 满足246a a +=,前7项和728S =.(1)求数列{}n a 的通项公式;(2)设()()122121n n nn a a b +=++,求数列{}n b 的前n 项和n T . 【解析】 (1)设等差数列{}n a 的公差为d ,由246a a +=可知33a =,前7项和728S =.44a ∴=,解得11,1a d ==.()111n a n n ∴=+-=.(2)()()()()1112211212121212121n n n n n n n n n a a b +++===-++++++ {}n b ∴前n 项和12n n T b b b =+++……12231111111212121212121n n +⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭ 111321n +=-+. 4、(2020届浙江省温州市高三4月二模)已知等差数列{},n a 和等比数列{}n b 满足:311249351,*,3,330.n b a b b N a a a b a b ==∈++==-(I )求数列{}n a 和{}n b 的通项公式;(II )求数列21n n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和n S . 【解析】 (I ) 311249351,3,330b a b a a a b a b ==++==-,故()224312331130d q q d q ⎧+=⎪⎨⎡⎤+-=-⎪⎣⎦⎩, 解得23d q =⎧⎨=⎩,故21n a n =-,13n n b -=. (II )()()()()22221111212141442121n n n n n a a n n n n n +===+⋅-⋅+--⋅+ 1111482121n n ⎛⎫=+- ⎪-+⎝⎭,故()21114821221n n n n S n n +⎛⎫=+-= ⎪++⎝⎭. 5、(南通市2021届高三年级期中学情检测)等比数列{}n a 的前n 项和为()*234,2,,4n S n N S S S ∈-成等差数列,且2341216a a a ++=. (1)求数列{}n a 的通项公式;(2)若2(2)log n a nb n =-+,求数列1{}nb 的前n 项和n T . 【解析】(1)设等比数列{}n a 的公比为q ,由23424,,S S S -成等差数列知,423422S S S +-=,所以432a a =-,即12q =-.又2341216a a a ++=,所以231111216a q a q a q ++=,所以112a =-, 所以等差数列{}n a 的通项公式12n n a ⎛⎫=- ⎪⎝⎭. (2)由(1)知1()22(2)log (2)n n b n n n =-+=+ 所以11111(2)22n b n n n n ⎛⎫==- ⎪++⎝⎭所以数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和: 11111111111224511233n T n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 111112212n n ⎡⎤=+--⎢⎥++⎣⎦32342(1)(2)n n n +=-++ 所以数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和32342(1)(2)n n T n n +=-++ 6、(金陵中学2021届高三年级学情调研测试(一))已知数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S n 2=a n (S n -12). (1)求S n 的表达式;(2)设b n =S n 2n +1,求数列{b n }的前n 项和T n .【解析】:(1)因为S n 2=a n (S n -12),当n ≥2时,S n 2=(S n -S n -1)(S n -12),即2S n -1S n =S n -1-S n .①…………2分由题意得S n -1·S n ≠0,所以1S n -1S n -1=2, 即数列{1S n }是首项为1S 1=1a 1=1,公差为2的等差数列.…………5分 所以1S n =1+2(n -1)=2n -1,得S n =12n -1.…………………………………………7分(2)易得b n =S n 2n +1=1(2n -1)(2n +1)……………………………8分=12(12n -1-12n +1),……………………………10分所以T n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=12(1-12n +1) =n 2n +1。

2020届山东省新高考高三优质数学试卷分项解析-专题03-函数及其应用(解析版)

2020届山东省新高考高三优质数学试卷分项解析-专题03-函数及其应用(解析版)

专题3 函数及其应用1.关于函数图象的考查: (1)函数图象的辨识与变换;(2)函数图象的应用问题,运用函数图象理解和研究函数的性质,数形结合思想分析与解决问题的能力; 2.关于函数性质的考查:以考查能力为主,往往以常见函数(二次函数、指数函数、对数函数)为基本考察对象,以绝对值或分段函数的呈现方式,与不等式相结合,考查函数的基本性质,如奇偶性、单调性与最值、函数与方程(零点)、不等式的解法等,考查数学式子变形的能力、运算求解能力、等价转化思想和数形结合思想.其中函数与方程考查频率较高.涉及函数性质的考查;3.常见题型,除将函数与导数相结合考查外,对函数独立考查的题目,不少于两道,近几年趋向于稳定在选择题、填空题,易、中、难的题目均有可能出现.,预测2020年将保持对数形结合思想的考查,主要体现在对函数图象、函数性质及其应用的考查,客观题应特别关注分段函数相关问题,以及与数列、平面解析几何、平面向量、立体几何的结合问题.主观题依然注意与导数的结合.一、单选题1.(2019·山东师范大学附中高三月考)函数()312xf x x ⎛⎫=- ⎪⎝⎭的零点所在区间为( )A .()1,0-B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .()1,2【答案】C 【解析】311(1)(1)()302f --=--=-<,301(0)0(102f =-=-<,@13211112()()()02228f =-=-<,31111(1)1()10222f =-=-=>,321115(2)2()80222f =-=-=>,由()1102f f ⎛⎫⋅< ⎪⎝⎭. 故选:C2.(2020届山东省泰安市高三上期末)函数()3ln xf x x=的部分图象是( ) A . B .C .D .【答案】A 【解析】:()()()33ln ln ,x xf x f x f x x x=-==--, ()f x 为奇函数,排除B 当1x >时,()3ln 0xf x x=>恒成立,排除CD 故答案选A3.(2020·河南高三月考(理))已知(2)f x +是偶函数,()f x 在(]2-∞,上单调递减,(0)0f =,则(23)0f x ->的解集是( )A .2()(2)3-∞+∞,,B .2(2)3, C .22()33-,D .22()()33-∞-+∞,, 【答案】D 【解析】》因为(2)f x +是偶函数,所以()f x 关于直线2x =对称; 因此,由(0)0f =得(4)0f =;又()f x 在(]2-∞,上单调递减,则()f x 在[)2,+∞上单调递增;所以,当232x -≥即0x ≤时,由(23)0f x ->得(23)(4)f x f ->,所以234x ->, 解得23x <-; 当232x -<即0x >时,由(23)0f x ->得(23)(0)f x f ->,所以230x -<, 解得23x >; 因此,(23)0f x ->的解集是22()()33-∞-+∞,,. 》4.(2020·全国高三专题练习(文))函数()()22log ,1,1,1,x x f x f x x ≥⎧=⎨+<⎩,若方程()2f x x m =-+有且只有两个不相等的实数根,则实数m 的取值范围是 ( ) A .(),4-∞ B .(],4-∞C .()2,4-D .(]2,4-【答案】A 【解析】令()2g x x m =-+,画出()f x 与()g x 的图象,平移直线,当直线经过()1,2时只有一个交点,此时4m =,向右平移,不再符合条件,故4m < 故选:A$5.(2020届山东省烟台市高三上期末)设0.5log 3a =,30.5b =,0.513c -⎛⎫= ⎪⎝⎭,则,,a b c 的大小关系为( )A .a b c <<B .a c b <<C .b a c <<D .b c a <<【答案】A 【解析】由题,因为0.5log y x =单调递减,则0.50.5log 3log 10a =<=;因为0.5xy =单调递减,则3000.50.51b <=<=;因为3xy =单调递增,则0.50.5013313c -⎛⎫==>= ⎪⎝⎭,所以01a b c <<<<,—故选:A6.(2020届山东省潍坊市高三上期中)函数ln ()xf x x x=-的大致图象为( )A .B .C .D .【答案】A 【解析】函数的定义域为(,0)(0,)-∞+∞,||||()()()ln x ln x f x x x f x x x--=--=--=--,则函数()f x 是奇函数,图象关于原点对称,排除B ,D ,"当0x >且0x →,()f x →+∞,排除C . 故选:A.7.(2020届山东省潍坊市高三上期中)已知3log 2a =,143b =,2ln 3c =,则a ,b ,c 的大小关系为( ) A .a b c >> B .b a c >> C .c b a >>D .c a b >>【答案】B 【解析】因为3log 2(0,1)a =∈,1431b =>,203c ln =<,则a ,b ,c 的大小关系:b a c >>.|故选:B.8.(2020届山东省泰安市高三上期末)若()33log 21log a b ab +=+2+a b 的最小值为( )A .6B .83C .3D .163【答案】C 【解析】∵()3log 21a b +=+∴()33log 21log a b ab +=+()3log 3ab =, ∴23a b ab +=,且0a >,0b >,《∴123a b+=, ∴()112223a b a b a b ⎛⎫+=++ ⎪⎝⎭122143b a a b ⎛⎫=+++ ⎪⎝⎭5233b a a b ⎛⎫=++ ⎪⎝⎭5233≥+⋅3=, 当且仅当b aa b =且123a b+=即1a b ==时,等号成立; 故选:C .9.(2020届山东省日照市高三上期末联考)三个数0.87,70.8,0.8log 7的大小顺序是( )A .70.80.8log 70.87<< B .0.870.8log 770.8<<C .70.80.80.87log 7<<D .0.870.870.8log 7<<,【答案】A 【解析】0.871>,700.81<<,0.8log 70<,故70.80.8log 70.87<<.故选A.10.(2020届山东省济宁市高三上期末)若0.1212,ln 2,log 5a b c ===,则( ) A .b c a >> B .b a c >> C .c a b >> D .a b c >>【答案】D 【解析】,0.10221a =>=;0ln1ln 2ln 1b e =<=<=;221log log 105c =<=,即a b c >> 故选:D11.(2020·山东省淄博实验中学高三上期末)“0x <”是“ln(1)0x +<”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】由题意得,ln(1)001110x x x +<⇔<+<⇔-<<,故是必要不充分条件,故选B .)12.(2020届山东省滨州市三校高三上学期联考)若a ,b ,c ,满足2log 3a =,25b =,3log 2c =,则( )A .b c a <<B .c a b <<C .a b c <<D .c b a <<【答案】B 【解析】2221log log 3log 242=<<=,故12a <<;又22542b =>=,故2b >; 33log 2log 31c =<=,c a b ∴<<,)故选:B.13.(2020届山东省九校高三上学期联考)若函数()y f x =的大致图像如图所示,则()f x 的解析式可以为( )A .()22x xxf x -=+B .()22x xxf x -=-C .()22x xf x x-+=D .()22x xf x x--=【答案】C 【解析】对四个选项解析式分析发现B ,D 两个均为偶函数,图象关于y 轴对称,与题不符,故排除;(极限思想分析,0,222,022xxx x xx +--→+→→+,A 错误;220,222,x xx xx x-+-+→+→→+∞,C 符合题意.故选:C14.(2020届山东省枣庄、滕州市高三上期末)函数()y f x =是R 上的奇函数,当0x <时,()2xf x =,则当0x >时,()f x =( ) A .2x - B .2x - C .2x -- D .2x【答案】C 【解析】`0x <时,()2xf x =.当0x >时,0x -<,()2xf x --=,由于函数()y f x =是奇函数,()()2xf x f x -∴=--=-,因此,当0x >时,()2xf x -=-,故选C.15.(2020届山东省德州市高三上期末)已知1232a b -=⋅,()212log 23c b x x -=++,则实数a ,b ,c 的大小关系是( ) A .a b c >> B .b a c >> C .c b a >> D .a c b >>【答案】A 【解析】…1232a b -=⋅,1232a b -+∴=>,11a b ∴-+>,则a b >.()2223122x x x ++=++≥,()21122log 23log 21c b x x ∴-=++≤=-,b c ∴>.因此,a b c >>. 故选:A.16.(2020·山东省淄博实验中学高三上期末)已知定义在[]5,12m m --上的奇函数()f x ,满足0x >时,()21x f x =-,则()f m 的值为( )A .-15B .-7C .3D .15【答案】A 【解析】?因为奇函数的定义域关于原点中心对称 则5120m m -+-=,解得4m =-因为奇函数()f x 当0x >时,()21xf x =-则()()()4442115f f -=-=--=-故选:A17.(2020届山东省临沂市高三上期末)函数()22xf x =-(0x <)的值域是( )A .1,2B .(),2-∞C .()0,2D .1,【答案】A$【解析】0x <,021x ∴<<, 120x ∴-<-<1222x ∴<-<. 即()()2221,xf x =-∈故选:A18.(2020届山东实验中学高三上期中)若,a b 是任意实数,且a b >,则( ))A .22a b >B .1b a<C .()10g a b ->D .1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭【答案】D 【解析】a 、b 是任意实数,且a b >,如果0a =,2b =-,显然A 不正确;如果0a =,2b =-,显然B 无意义,不正确; 如果0a =,12b =-,显然C ,102lg <,不正确;因为指数函数12xy ⎛⎫= ⎪⎝⎭在定义域上单调递减,且a b >,1122ab⎛⎫⎛⎫∴< ⎪ ⎪⎝⎭⎝⎭满足条件,正确.故选:D .~19.(2020届山东省滨州市高三上期末)已知x ∈R ,则“121x⎛⎫ ⎪⎭>⎝”是“21x -<<-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】由121x⎛⎫ ⎪⎭>⎝解得0x <,所以由“21x -<<-”能推出“0x <”,反之,不能推出; 因此“121x⎛⎫ ⎪⎭>⎝”是“21x -<<-”的必要不充分条件. 故选:B.~20.(2020届山东省济宁市高三上期末)已知奇函数()f x 在R 上单调,若正实数,a b 满足()()490f a f b +-=,则11a b+的最小值是( ) A .1B .92C .9D .18【答案】A 【解析】奇函数()f x 在R 上单调,()()490f a f b +-=,则()()()499f a f b f b =--=- 故49a b =-即49a b +=()()11111141452451999b a a b a b a b a b ⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭当4b a a b =即3,32a b ==时等号成立 ~故选:A21.(2020届山东省枣庄、滕州市高三上期末)已知ln ,1()(2),1x x f x f x k x ≥⎧=⎨-+<⎩若函数()1y f x =-恰有一个零点,则实数k 的取值范围是( ) A .(1,)+∞ B .[1,)+∞C .(,1)-∞D .(,1]-∞【答案】B 【解析】1x ≥时,()ln 1f x x ==,x e =,所以函数()1y f x =-在1x ≥时有一个零点,从而在1x <时无零点,即()1f x =无解.而当1x <时,21x ->,()(2)f x f x k =-+ln(2)x k =-+,它是减函数,值域为(,)k +∞, 要使()1f x =无解.则1k.|故选:B.22.(2020届山东省潍坊市高三上期末)函数()y f x =与()y g x =的图象如图所示,则()()y f x g x =⋅的部分图象可能是( )A .B .C .D .【答案】A 【解析】由图象可知()y f x =的图象关于y 轴对称,是偶函数,()y g x =的图象关于原点对称,是奇函数,并且定义域{}0x x ≠,$()()y f x g x ∴=⋅的定义域是{}0x x ≠,并且是奇函数,排除B ,又0,2x π⎛⎫∈ ⎪⎝⎭时,()0f x >,()0g x <,()()0f x g x ∴⋅<,排除C,D.满足条件的只有A. 故选:A23.(2020届山东省滨州市高三上期末)已知31log 3aa ⎛⎫= ⎪⎝⎭,133log bb =,131log 3cc ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是( ) A .c b a << B .a b c << C .b c a << D .b a c <<【答案】C 【解析】/在同一直角坐标系内,作出函数13x y⎛⎫= ⎪⎝⎭,3logy x=,3xy=,13logy x=的图像如下:因为31log3aa⎛⎫=⎪⎝⎭,133logb b=,131log3cc⎛⎫=⎪⎝⎭,所以a是13xy⎛⎫= ⎪⎝⎭与3logy x=交点的横坐标;b是3xy=与13logy x=交点的横坐标;c是13xy⎛⎫= ⎪⎝⎭与13logy x=交点的横坐标;由图像可得:b c a<<.故选:C.24.(2020届山东师范大学附中高三月考)函数()312xf x x⎛⎫=- ⎪⎝⎭的零点所在区间为()A.()1,0-B.10,2⎛⎫⎪⎝⎭C.1,12⎛⎫⎪⎝⎭D.()1,2(【答案】C【解析】311(1)(1)()302f--=--=-<,301(0)0()102f=-=-<,13211112()()()022282f=-=-<,31111(1)1()10222f=-=-=>,321115(2)2()80222f =-=-=>,由()1102f f ⎛⎫⋅< ⎪⎝⎭. 故选:C25.(2020届山东省德州市高三上期末)已知()f x 为定义在R 上的奇函数,当0x ≥时,有()()1f x f x +=-,且当[)0,1x ∈时,()()2log 1f x x =+,下列命题正确的是( )A .()()201920200f f +-=B .函数()f x 在定义域上是周期为2的函数{C .直线y x =与函数()f x 的图象有2个交点D .函数()f x 的值域为[]1,1-【答案】A 【解析】函数()y f x =是R 上的奇函数,()00f ∴=,由题意可得()()100f f =-=, 当0x ≥时,()()()21f x f x f x +=-+=,()()()()()()2019202020192020100f f f f f f ∴+-=-=-=,A 选项正确;当0x ≥时,()()1f x f x +=-,则2616log 555f f ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,2449log 555f f ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,4462555f f f ⎛⎫⎛⎫⎛⎫∴-≠-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则函数()y f x =不是R 上周期为2的函数,B 选项错误; 若x 为奇数时,()()10f x f ==,%若x 为偶数,则()()00f x f ==,即当x ∈Z 时,()0f x =,当0x ≥时,()()2f x f x +=,若n N ∈,且当()2,21x n n ∈+时,()20,1x n -∈,()()()20,1f x f x n =-∈,当()1,2x ∈时,则()10,1x -∈,()()()11,0f x f x ∴=--∈-,当()21,22x n n ∈++时,()21,2x n -∈,则()()()21,0f x f x n =-∈-, 所以,函数()y f x =在[)0,+∞上的值域为()1,1-,由奇函数的性质可知,函数()y f x =在(),0-∞上的值域为()1,1-, 由此可知,函数()y f x =在R 上的值域为()1,1-,D 选项错误;|如下图所示:由图象可知,当11x -<<时,函数y x =与函数()y f x =的图象只有一个交点, 当1x ≤-或1x ≥时,()()1,1f x ∈-,此时,函数y x =与函数()y f x =没有交点, 则函数y x =与函数()y f x =有且只有一个交点,C 选项错误. 故选:A.26.(2020届山东实验中学高三上期中)已知函数()()221,0log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若方程()f x a =有四个不同的解12341234,,,,x x x x x x x x <<<且,则()3122341x x x x x ⋅++⋅的取值范围是( ) A .(]1,1-B .[]1,1-C .[)1,1- D .()1,1-'【答案】A 【解析】先作()f x 图象,由图象可得12343121,1.2x x x x x ⎡⎫+=-=∈⎪⎢⎣⎭,,因此()31232343112x x x x x x x ⋅++=-+⋅为1,12⎡⎫⎪⎢⎣⎭单调递减函数,从而()(] 31223411,1x x xx x⋅++∈-⋅,选A.二、多选题27.(2020届山东省临沂市高三上期末)若104a=,1025b=,则()…A.2a b+=B.1b a-=C.281g2ab>D.lg6b a->【答案】ACD【解析】由104a=,1025b=,得lg4a=,lg25b=,则lg4lg25lg1002a b∴+=+==,25lg25lg4lg4b a∴-=-=,25lg101lg lg64=>>lg6b a∴->)24lg2lg54lg2lg48lg2ab∴=>=,故正确的有:ACD故选:ACD.28.(2020届山东省日照市高三上期末联考)已知定义在R上的函数()y f x=满足条件()()2f x f x+=-,且函数()1y f x=-为奇函数,则()A.函数()y f x=是周期函数B.函数()y f x=的图象关于点()1,0-对称C .函数()y f x =为R 上的偶函数D .函数()y f x =为R 上的单调函数【答案】ABC 【解析】、因为()()2f x f x +=-,所以()()()42f x f x f x +=-+=,即4T=,故A 正确;因为函数()1y f x =-为奇函数,所以函数()1y f x =-图像关于原点成中心对称,所以B 正确; 又函数()1y f x =-为奇函数,所以()()11f x f x --=--,根据()()2f x f x +=-,令1x -代x 有()()11f x f x +=--,所以()()11f x f x +=--,令1x -代x 有()()f x f x -=,即函数()f x 为R 上的偶函数,C 正确;因为函数()1y f x =-为奇函数,所以()10f -=,又函数()f x 为R 上的偶函数,()10f =,所以函数不单调,D 不正确. 故选:ABC.29.(2020届山东省潍坊市高三上期中)已知函数22,0()(2),0x x x f x f x x ⎧--<=⎨-≥⎩,以下结论正确的是( )A .(3)(2019)3f f -+=-B .()f x 在区间[]4,5上是增函数》C .若方程() 1f x k x =+恰有3个实根,则11,24k ⎛⎫∈-- ⎪⎝⎭D .若函数()y f x b =-在(,4)-∞上有6个零点(1,2,3,4,5,6)i x i =,则()61iii x f x =∑的取值范围是()0,6【答案】BCD 【解析】函数()f x 的图象如图所示:对A ,(3)963f -=-+=-,(2019)(1)(1)1f f f ==-=,所以(3)(2019)2f f -+=-,故A 错误; 对B ,由图象可知()f x 在区间[]4,5上是增函数,故B 正确;对C ,由图象可知11,24k ⎛⎫∈-- ⎪⎝⎭,直线() 1f x k x =+与函数图象恰有3个交点,故C 正确; ]对D ,由图象可得,当函数()y f x b =-在(,4)-∞上有6个零点(1,2,3,4,5,6)i x i =,则01b <<,所以当0b →时,()610i i i x f x =→∑;当1b →时,()616i i i x f x =→∑,所以()61i i i x f x =∑的取值范围是()0,6,故D 正确. 故选:BCD.30.(2020届山东省枣庄、滕州市高三上期末)如图所示,一座小岛距离海岸线上最近的P 点的距离是2km ,从P 点沿海岸正东12km 处有一个城镇.假设一个人驾驶的小船的平均速度为3/km h ,步行的速度为5/km h ,时间t (单位:h )表示他从小岛到城镇的时间,x (单位:km )表示此人将船停在海岸处距P 点的距离.设24,u x x =++24v x x =+-,则( )A .函数()v f u =为减函数B .15432t u v --=C .当 1.5x =时,此人从小岛到城镇花费的时间最少D .当4x =时,此人从小岛到城镇花费的时间不超过3h?【答案】AC 【解析】A.∵,u x =v x =,22u v u vx +-==, 由题意4uv =,4v u=在(0,)+∞上是减函数,A 正确.B.125x t -=+126510u v u v+-=+-,整理得15436t u v =++,B 错误;C.由A 、B 得1615363644t u u =++≥=,16u u =即4u =时取等号,4x =,解得31.52x ==,C 正确;D.4x =时,85t =+,7305t -===>,3t >,D 错. :故选:AC.31.(2020届山东省枣庄市高三上学期统考)下列函数既是偶函数,又在(),0-∞上单调递减的是( ) A .2xy = B .23y x-=C .1y x x=- D .()2ln 1y x =+【答案】AD 【解析】对于A 选项,2xy =为偶函数,且当0x <时,122xx y -==为减函数,符合题意. 对于B 选项,23y x -=为偶函数,根据幂函数单调性可知23y x -=在(),0-∞上递增,不符合题意. 对于C 选项,1y x x=-为奇函数,不符合题意. {对于D 选项,()2ln 1y x =+为偶函数,根据复合函数单调性同增异减可知,()2ln 1y x =+在区间(),0-∞上单调递减,符合题意. 故选:AD.32.(2020届山东省潍坊市高三上期末)把方程1169x x y y+=-表示的曲线作为函数()y f x =的图象,则下列结论正确的有( )A .()y f x =的图象不经过第一象限B .()f x 在R 上单调递增C .()y f x =的图象上的点到坐标原点的距离的最小值为3D .函数()()43g x f x x =+不存在零点 【答案】ACD;【解析】当0,0x y >>,方程是221169x y +=-不表示任何曲线,故A 正确;当0,0x y ≥≤ ,方程是221169x y -=-,即221916y x -= ,当0,0x y ≤≥ ,方程是221169x y -+=- ,即221169x y -=,当0,0x y ≤≤ ,方程是221169x y --=-,即221169x y+= ,如图画出图象由图判断函数在R 上单调递减,故B 不正确;、由图判断()y f x =图象上的点到原点距离的最小值点应在0,0x y ≤≤的图象上,即满足221169x y += ,设图象上的点(),P x y2222279191616x PO x y x x ⎛⎫=+=+-=+ ⎪⎝⎭当0x =时取得最小值3,故C 正确; 当()430f x x += ,即()34f x x =-, 函数()()43g x f x x =+的零点,就是函数()y f x = 和34y x =-的交点, 而34y x =-是曲线221916y x -=,0,0x y ≥≤和221169x y -=0,0x y ≤≥的渐近线,所以没有交点,由图象可知34y x =-和221169x y +=,0,0x y ≤≤没有交点,所以函数()()43g x f x x =+不存在零点,故D 正确.<故选:ACD33.(2020届山东省滨州市高三上期末)在平面直角坐标系xOy 中,如图放置的边长为2的正方形ABCD 沿x 轴滚动(无滑动滚动),点D 恰好经过坐标原点,设顶点(),B x y 的轨迹方程是()y f x =,则对函数()y f x =的判断正确的是( )A .函数()y f x =是奇函数B .对任意的x ∈R ,都有()()44f x f x +=-C .函数()y f x =的值域为0,22⎡⎣D .函数()y f x =在区间[]6,8上单调递增【答案】BCD 【解析】由题意,当42x -≤<-时,顶点(),B x y 的轨迹是以点(2,0)A -为圆心,以2为半径的14圆; ,当22x -≤<时,顶点(),B x y 的轨迹是以点(0,0)D 为圆心,以214圆;当24x ≤<时,顶点(),B x y 的轨迹是以点(2,0)C 为圆心,以2为半径的14圆; 当46x ≤<,顶点(),B x y 的轨迹是以点(4,0)A 为圆心,以2为半径的14圆,与42x -≤<-的形状相同,因此函数()y f x =在[]4,4-恰好为一个周期的图像; 所以函数()y f x =的周期是8; 其图像如下:A 选项,由图像及题意可得,该函数为偶函数,故A 错;B 选项,因为函数的周期为8,所以(8)()f x f x +=,因此(4)(4)f x f x +=-;故B 正确;·C 选项,由图像可得,该函数的值域为0,22⎡⎣;故C 正确;D 选项,因为该函数是以8为周期的函数,因此函数()y f x =在区间[]6,8的图像与在区间[]2,0-图像形状相同,因此,单调递增;故D 正确; 故选:BCD.34.(2020届山东师范大学附中高三月考)下列函数中,既是偶函数,又在(0,)+∞上单调递增的是( ) A .3y x = B .2yxC .xy e =D .2lg y x =【答案】CD 【解析】本题主要考查函数的单调性和函数的奇偶性.|A 项,对于函数3y x =,因为()33()()f x x x f x -=-=-≠,所以函数3y x =不是偶函数.故A 项不符合题意.B 项,对于函数2yx ,因为当1x =时,1y =,当2x =,14y =,所以函数2y x 在区间(0,)+∞上不是单调递增的.故B 项不符合题意.C 项,对于函数x y e =,因为定义域为R ,()()x x g x g x e e --===,所以函数xy e =为偶函数,因为函数xy e =,当0x >时,xx y e e ==,而1e >,函数x y e =在R 上单调递增,所以函数xy e =在区间(0,)+∞上为增函数.故C 项符合题意.D 项,对于函数2lg y x =,因为函数()22lg )(l ()g h x x x h x -=-==,所以函数2lg y x =是偶函数.而2yx 在(0,)+∞上单调递增,lg y x =在(0,)+∞上单调递增,所以函数2lg y x =在(0,)+∞上单调递增.故D 项符合题意. 故选:CD.35.(2020届山东实验中学高三上期中)设定义在R 上的函数()f x 满足()()2f x f x x -+=,且当0x ≤时,()f x x '<.己知存在()()()220111122x x f x x f x x ⎧⎫∈-≥---⎨⎬⎩⎭,且0x 为函数()x g x e a =-(,a R e ∈为自然对数的底数)的一个零点,则实数a 的取值可能是( )A .12B .2C .2e D【答案】BCD—【解析】令函数21()()2T x f x x =-,因为2()()f x f x x -+=,22211()()()()()()()022T x T x f x x f x x f x f x x ∴+-=-+---=+--=,()T x ∴为奇函数,当0x 时,()()0T x f x x '='-<, ()T x ∴在(],0-∞上单调递减, ()T x ∴在R 上单调递减.存在0{|()(1)}x x T x T x ∈-,/∴得00()(1)T x T x -,001x x -,即012x ,()x g x e a =-;1()2x, 0x 为函数()y g x =的一个零点;当12x时,()0x g x e '=-, ∴函数()g x 在12x 时单调递减,由选项知0a >,取12x =<,又0g ee ⎛-=> ⎝,∴要使()g x 在12x时有一个零点,.只需使102g a ⎛⎫= ⎪⎝⎭, 解得e a, a ∴的取值范围为⎡⎫+∞⎪⎢⎪⎣⎭, 故选:BCD . 三、填空题36.(2020届山东省枣庄市高三上学期统考)若()3,0{1,0x x f x x x≤=>,则()()2f f -=__________. 【答案】9 【解析】《因为21(2)309f --==>,所以1((2))()99f f f -==,应填答案9. 37.(2020届山东省潍坊市高三上期中)已知函数()f x 是定义在R 上的偶函数,且在[)0,+∞上是减函数,10,3f ⎛⎫-= ⎪⎝⎭则不等式18log 0f x ⎛⎫> ⎪⎝⎭的解集为__________.【答案】1,22⎛⎫ ⎪⎝⎭【解析】()f x 是定义在R 上的偶函数,且在[0,)+∞上是减函数,1()03f -=,11()()033f f ∴=-=,则不等式18(log )0f x >等价为不等式181(|log |)()3f x f >,即181|log |3x <⇒1811log 33x -<<⇒122x <<,{即不等式的解集为1(,2)2, 故答案为:1(,2)2.38.(2020届山东省九校高三上学期联考)已知[]x 表示不超过x 的最大整数,如[]33=,[]1.51=,[]1.72-=-.令()2x f x x =⋅,[]()()g x f x x =-,则下列说法正确的是__________.①()g x 是偶函数 ②()g x 是周期函数③方程()0g x -=有4个根④()g x 的值域为[]0,2 【答案】②③|【解析】1111()([])()33333g f f =-==,1112()([])()33333g f f -=---== 显然11()()33g g -≠,所以()g x 不是偶函数,所以①错误;[][](1)(11)()()g x f x x f x x g x +=+-+=-=,所以()g x 是周期为1的周期函数,所以②正确; 作出函数y x =的图象和()g x 的图象:根据已推导()g x 是周期为1的周期函数,只需作出()g x 在[0,1)x ∈的图象即可,当[0,1)x ∈时[]()()()2x g x f x x f x x =-==⋅,根据周期性即可得到其余区间函数图象,如图所示:》可得()g x 值域为[0,2),函数y x =()g x 的图象一共4个交点,即方程()0g x x =有4个根, 所以③正确,④错误; 故答案为:②③39.(2020届山东省滨州市三校高三上学期联考)已知定义在R 上的函数满足(3)(3)f x f x -=-+,且()f x 图像关于1x =对称,当(1,2]x ∈时,2()log (21)f x x =+,则8252f ⎛⎫= ⎪⎝⎭________. 【答案】-2 【解析】因为()f x 图像关于1x =对称,则()(2)f x f x =-,()(2)(31)(31)(4)(8)f x f x f x f x f x f x =-=--=-++=-+=+,)故()f x 是以8为周期的周期函数,82511113851443131222222f f f f ff⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=⨯++=+=++=---=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭23log (21)22=-⨯+=-故答案为:2-.40.(2020届山东师范大学附中高三月考)已知函数()f x 是定义在R 上的奇函数,当12x x ≠时,有1212[()()]()0f x f x x x --<恒成立,若(31)(2)0f x f ++>,则x 的取值范围是________.【答案】(,1)-∞- 【解析】根据已知条件:当12x x ≠时,有1212[()()]()0f x f x x x --<恒成立,得函数()f x 是定义在R 上的减函数,…又因为函数()f x 是定义在R 上的奇函数,所以(2)(2)f f -=-,故(31)(2)0f x f ++>等价于(31)(2)(2)f x f f +>-=-,所以312x +<-,即1x <-. 故答案为:(),1-∞-.41.(2020届山东省济宁市高三上期末)2019年7月,中国良渚古城遗址获准列入世界遗产名录,标志着中华五千年文明史得到国际社会认可.良渚古城遗址是人类早期城市文明的范例,实证了中华五千年文明史.考古科学家在测定遗址年龄的过程中利用了“放射性物质因衰变而减少”这一规律.已知样本中碳14的质量N 随时间t (单位:年)的衰变规律满足573002tN N -=⋅(0N 表示碳14原有的质量),则经过5730年后,碳14的质量变为原来的________;经过测定,良渚古城遗址文物样本中碳14的质量是原来的12至35,据此推测良渚古城存在的时期距今约在________年到5730年之间.(参考数据:22log 3 1.6,log 5 2.3≈≈) 【答案】124011 【解析】当5730t =时,100122N N N -=⋅=∴经过5730年后,碳14的质量变为原来的12令035N N =,则5730325t-= 2223log log 3log 50.757305t ∴-==-≈- 。

2022年高考数学函数的微专题复习专题01 函数图象的识别与辨析(解析版)

2022年高考数学函数的微专题复习专题01 函数图象的识别与辨析(解析版)

2022年高考数学函数的微专题复习专题01函数图象的识别与辨析题型一、由函数的解析式识别图象函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项例1、【2020年天津卷】.函数241xy x =+的图象大致为()A.C.变式1、【2020年浙江卷】.函数y =x cos x +sin x 在区间[–π,+π]的图象大致为()A. B.C. D.变式2、(江苏省连云港市2021届高三调研)函数3ln |2|()(2)-=-x f x x 的部分图象大致为().A .B .C .D .变式3、(2021·山东德州市·高三期末)函数22sin 3()cos x xf x x x +=+在[,]-ππ的图象大致为()A .B .C .D .题型二、由函数的图象辨析函数的解析式由函数的图象确定解析式,首先要观察函数的图象,可以从以下几个方面入手:(1)观察函数的对称性,判断函数的奇偶性;(2)观察图象所在象限,判断函数的定义域和值域;(3)从图象中观察一些特殊位置以及图象的发展趋势;结合上面的信息进行对函数解析式的排除。

(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项例2、(山东省2020-2021学年高三调研)已知函数()y f x =的图象如图所示,则此函数可能是()A .()2e e 2x xf x x x --=+-B .()2e e 2x xf x x x --=+-C .()22e e x xx x f x -+-=-D .()22e e x xx x f x -+-=-变式1、(2021·江苏苏州市·高三期末)在数学的研究性学习中,常利用函数的图象研究函数的性质,也利用函数的解析式研究函数的性质,下列函数的解析式(其中 2.71828e =⋅⋅⋅为自然对数的底数)与所给图象最契合的是()A .22sin 1x y x =+B .221xy x =+C .x xxx e e y e e ---=+D .x xxxe e y e e --+=-变式2、(山东省青岛市2020-2021学年高三模拟)已知函数()f x 的部分图象如下所示,则()f x 可能为()A .cos 1()22x xx f x -+=+B .cos sin ()22x xx x x f x -+=+C .cos sin ()22x xx x x f x -+=-D .cos sin ()22x xx x x f x -+=+题型三、情景问题中解析式情景问题中的解析式问题关键要从问题情景中挖掘有用的信息,从情景中理解所给的函数解析式所具有的特点,然后再结合具体的解析式研究性质等问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020届山东省潍坊市高三上学期期末考试数学试题一、单选题1.已知集合{}{}2230,21A x x x B x x x Z =--≤=-≤<∈且,则A B =I ( ) A .{}2,1-- B .{}1,0-C .{}2,0-D .{}1,1-【答案】B分别求集合,A B ,再求A B I . 解:2230x x --≤解得:13x -≤≤ ,{}13A x x ∴=-≤≤,{}2,1,0B =--,{}1,0A B ∴=-I .故选:B本题考查解一元二次不等式和求集合的交集,意在考查计算能力,属于基础题型. 2.设(1)1i x yi +=+,其中x ,y 是实数,则||x yi +=( )A .1 BC D .2【答案】B根据复数相等求得,x y 的值,进而求得复数x yi +的模.解:由已知得1x xi yi +=+,根据两复数相等可得:1x y ==,所以|||1|x yi i +=+=故选:B.本题考查复数相等、模的计算,考查对概念的理解与应用,属于基础题. 3.已知随机变量ξ服从正态分布()21,N σ,若(4)0.9P ξ<=,则1()2P ξ-<<=( ) A .0.2 B .0.3C .0.4D .0.6【答案】C由题意可知曲线关于1x =对称,利用曲线的对称性求1()2P ξ-<<.解:由题意可知1μ=,正态分布曲线关于1x =对称, ()()4140.1P P ξξ>=-<=, 根据对称性可知,()()240.1P P ξξ<-=>=,()()210.520.50.10.4P P ξξ-<<=-<-=-=.故选:C本题考查正态分布在指定区间的概率,正态分布下两类常见的概率计算(1)利用正态分布密度曲线的对称性研究相关概率问题,涉及的知识主要是正态曲线关于直线x μ=对称,及曲线与x 轴之间的面积为1.(2)利用3σ原则求概率问题时,要注意把给出的区间或范围与正态变量的,μσ进行对比联系,确定它们属于(),μσμσ-+,()2,2μσμσ-+,()3,3μσμσ-+中的哪一个.4.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一.该术相当于给出了有圆锥的底面周长L 与高h ,计算其体积V 的近似公式21.36v L h ≈它实际上是将圆锥体积公式中的圆周率π近似取为 3.那么近似公式2275v L h ≈相当于将圆锥体积公式中的π近似取为( )A .227B .258C .15750D .355113【答案】B试题分析:设圆锥底面圆的半径为r ,高为h ,依题意,r L π2=,h r h r 22)2(75231ππ=,所以275831ππ=,即π的近似值为258,故选B.【考点】《算数书》中π的近似计算,容易题.5.函数()y f x =与()y g x =的图象如图所示,则()()y f x g x =⋅的部分图象可能是( )A .B .C .D .【答案】A由函数()y f x =与()y g x =的图象可知两个函数的性质,可知()()y f x g x =⋅的定义域和奇偶性,以及函数在0,2x π⎛⎫∈ ⎪⎝⎭时,()()y f x g x =⋅的正负,从而得到答案. 解:由图象可知()y f x =的图象关于y 轴对称,是偶函数,()y g x =的图象关于原点对称,是奇函数,并且定义域{}0x x ≠,()()y f x g x ∴=⋅的定义域是{}0x x ≠,并且是奇函数,排除B ,又0,2x π⎛⎫∈ ⎪⎝⎭时,()0f x >,()0g x <,()()0f x g x ∴⋅<,排除C,D. 满足条件的只有A. 故选:A本题考查函数图象的识别,意在考查函数的基本性质,属于基础题型.6.已知某超市为顾客提供四种结账方式:现金、支付宝、微信、银联卡.若顾客甲只会用现金结账,顾客乙只会用现金和银联卡结账,顾客丙与甲.乙结账方式不同,丁用哪种结账方式都可以若甲乙丙丁购物后依次结账,那么他们结账方式的组合种数共有( ) A .36种 B .30种C .24种D .20种【答案】D分乙使用现金和银联卡两种方法,分类求结账方法的组合数.解:当乙用现金结算时,此时甲和乙都用现金结算,所以丙有3种方法,丁有4种方法,共有3412⨯=种方法;当乙用银联卡结算时,此时甲用现金结算,丙有2种方法,丁有4种方法,共有248⨯=种方法, 综上,共有12820+=种方法. 故选:D本题考查分类和分步计数原理,意在考查分析问题和解决问问他的能力,属于基础题型. 7.已知345sin πα⎛⎫-= ⎪⎝⎭,0,2πα⎛⎫∈ ⎪⎝⎭,则cos α=( )A .10 B .10C .2D .10【答案】A利用角的变换cos cos 44ππαα⎡⎤⎛⎫=-+⎪⎢⎥⎝⎭⎣⎦化简,求值. 解:0,2πα⎛⎫∈ ⎪⎝⎭Q ,,444πππα⎛⎫-∈- ⎪⎝⎭4cos 45πα⎛⎫-== ⎪⎝⎭,cos cos cos cos sin sin 444444ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=-+=--- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦43525210=⨯-⨯=. 故选:A本题考查三角函数给值求在值,意在考查转化与变形,计算能力,属于基础题型.8.已知点P 为双曲线()2222:10,0x y C a b a b-=>>右支上一点,12,F F 分别为C 的左,右焦点,直线1PF 与C 的一条渐近线垂直,垂足为H ,若114PF HF =,则该双曲线的离心率为( )A B C .53D .73【答案】C取1PF 的中点M ,连接2MF ,由条件可证明11MF PF ⊥,说明22PF c =,利用点到直线的距离求OH a =,1OHF ∆中,根据勾股定理可得2222a c a c +⎛⎫+= ⎪⎝⎭,整理为223250c ac a --=,再求双曲线的离心率.解:取1PF 的中点M ,连接2MF ,由条件可知1111142HF PF MF ==, Q O 是12F F 的中点,2//OH MF ∴又1OH PF ⊥Q ,21MF PF ∴⊥1222F F PF c ∴==,根据双曲线的定义可知122PF a c =+,12a cHF +∴=, 直线1PF 的方程是:()ay x c b=+ ,即0ax by ac -+= , 原点到直线的距离22ac OH a a b==+,1OHF ∴∆中,2222a c a c +⎛⎫+= ⎪⎝⎭, 整理为:223250c ac a --= , 即23250e e --= , 解得:53e = ,或1e =-(舍) 故选:C本题考查求双曲线的离心率,意在考查转化和化归,计算能力,属于中档题型,一般求双曲线离心率的方法是1.直接法:直接求出,a c,然后利用公式cea=求解;2.公式法:cea===,3.构造法:根据条件,可构造出,a c的齐次方程,通过等式两边同时除以2a,进而得到关于e的方程.二、多选题9.等腰直角三角形直角边长为1 ,现将该三角形绕其某一边旋转一周,则所形成的几何体的表面积可以为()AB.(1πC.D.(2π+【答案】AB分2种情况,一种是绕直角边,一种是绕斜边,分别求形成几何体的表面积.解:如果是绕直角边旋转,形成圆锥,圆锥底面半径为1,高为1,母线就是直角三角所以所形成的几何体的表面积是)22111S rl rπππππ=+=⨯⨯=.如果绕斜边旋转,形成的是上下两个圆锥,圆锥的半径是直角三角形斜边的高2,两个圆锥的母线都是直角三角形的直角边,母线长是1,所以写成的几何体的表面积2212S rlππ=⨯=⨯⨯=.综上可知形成几何体的表面积是)1π.故选:AB本题考查旋转体的表面积,意在考查空间想象能力和计算能力,属于基础题型. 10.已知()()22210f x cos x xωωω=->的最小正周期为π,则下列说法正确的有()A.2ω=B.函数()f x在[0,]6π上为增函数C.直线3xπ=是函数()y f x=图象的一条对称轴D .5π,012骣琪琪桫是函数()y f x =图象的一个对称中心 【答案】BD首先化简函数()2sin 26f x x πω⎛⎫=+ ⎪⎝⎭,根据周期求1ω=,然后再判断三角函数的性质.解:()cos 222sin 26f x x x x πωωω⎛⎫==+⎪⎝⎭, 22ππω=,1ω∴= ()2sin 26f x x π⎛⎫∴=+ ⎪⎝⎭ ,故A 不正确;当0,6x π⎡⎤∈⎢⎥⎣⎦时,2,662x πππ⎡⎤+∈⎢⎥⎣⎦ 是函数sin y x =的单调递增区间,故B 正确; 当3x π=时,52366πππ⨯+=,51sin162π=≠±,所以不是函数的对称轴,故C 不正确;、 当512x π=时,52126πππ⨯+=,sin 0π=,所以5,012π⎛⎫⎪⎝⎭是函数()y f x =的一个对称中心,故D 正确. 故选:BD本题考查三角函数的化简和三角函数的性质,本题的思路是整体代入的思想,属于基础题型.11.已知等比数列{}n a 的公比23q =-,等差数列{}n b 的首项112b =,若99a b >且1010a b >,则以下结论正确的有( )A .9100a a ⋅<B .910a a >C .100b >D .910b b >【答案】AD由等比数列的公比0q <,可知9100a a <,又由条件99a b >且1010a b >,判断9b 和10b 中至少有一个数是负数,公差0d <,再判断其他选项. 解:Q 等比数列{}n a 的公比23q =-,9a ∴和10a 异号,9100a a ∴< ,故A 正确;但不能确定9a 和10a 的大小关系;故B 不正确;9a Q 和10a 异号,且99a b >且1010a b >, 9b ∴和10b 中至少有一个数是负数,又1120b =>Q ,0d ∴< 910b b ∴> ,故D 正确,10b ∴一定是负数,即100b < ,故C 不正确;故选:AD本题考查等差和等比数列的性质的判断和综合应用,意在考查推理和判断能力,属于中档题型. 12.把方程1169x x y y+=-表示的曲线作为函数()y f x =的图象,则下列结论正确的有( )A .()y f x =的图象不经过第一象限B .()f x 在R 上单调递增C .()y f x =的图象上的点到坐标原点的距离的最小值为3D .函数()()43g x f x x =+不存在零点 【答案】ACD首先讨论去掉绝对值,并画出函数的图象,直接判断AB ,然后数形结合,并结合椭圆和双曲线的性质判断CD 选项.解:当0,0x y >>,方程是221169x y +=-不表示任何曲线,故A 正确;当0,0x y ≥≤ ,方程是221169x y -=-,即221916y x -= ,当0,0x y ≤≥ ,方程是221169x y -+=- ,即221169x y -=,当0,0x y ≤≤ ,方程是221169x y --=-,即221169x y+= ,如图画出图象由图判断函数在R 上单调递减,故B 不正确;由图判断()y f x =图象上的点到原点距离的最小值点应在0,0x y ≤≤的图象上,即满足221169x y += ,设图象上的点(),P x y2222279191616x PO x y x x ⎛⎫=+=+-=+ ⎪⎝⎭当0x =时取得最小值3,故C 正确; 当()430f x x += ,即()34f x x =-, 函数()()43g x f x x =+的零点,就是函数()y f x = 和34y x =-的交点, 而34y x =-是曲线221916y x -=,0,0x y ≥≤和221169x y -=0,0x y ≤≥的渐近线,所以没有交点,由图象可知34y x =-和221169x y +=,0,0x y ≤≤没有交点,所以函数()()43g x f x x =+不存在零点,故D 正确. 故选:ACD本题考查判断函数的性质,意在考查数形结合分析问题和解决问题的能力,本题的关键是画出函数的图象,因为函数图象是椭圆和双曲线的一部分,还需结合曲线的性质做出判断.三、填空题13.向量()(),4,1,a x b x =-=-r r ,若a r 与b r共线,则实数x =__________.【答案】2±根据两向量共线的坐标表示直接求实数x . 解://a b rrQ()40x x ∴⋅-+=,解得:2x =±. 故答案为:2±本题考查向量共线的坐标表示,属于简单题型.14.已知圆()()22212x y -+-=关于直线()10,0ax by a b +=>>对称,则21a b+的最小值为__________. 【答案】9由题意可知直线过圆心,即21a b +=,()21212a b ab a b ⎛⎫+=++ ⎪⎝⎭,利用基本不等式求最值.解:由题意可知直线过圆心,即21a b +=()2121222559b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭ 当且仅当22a bb a=时,又()0,0a b >> 即a b =时等号成立, 故21a b+的最小值为9. 故答案为:9本题考查圆的性质和基本不等式求最值,意在考查基本计算能力,属于基础题型. 15.已知P 是抛物线24y x =上的动点,点P 在y 轴上的射影是M ,点A 的坐标为()2,3,则PA PM+的最小值是__________.1首先根据抛物线的定义转化1PA PM PA PF +=+-,再根据数形结合分析PA PF +的最小值.解:设抛物线的焦点是()1,0F ,根据抛物线的定义可知1PM PF=-1PA PM PA PF∴+=+-,PA PF AF+≥Q,当,,A P F三点共线时,等号成立,PA PM∴+的最小值是1AF-,()()22213010AF=-+-=,PA PM∴+的最小值是101-.故答案为:101-本题考查抛物线的定义和抛物线内距离的最值问题,意在考查数形结合分析问题和解决问题的能力,本题的关键是根据抛物线的定义转化1PM PF=-.16.正方体1111ABCD A B C D-的棱长为1,点K在棱11A B上运动,过,,A C K三点作正方体的截面,若K为棱11A B的中点,则截面面积为_________,若截面把正方体分成体积之比为2:1的两部分,则11A KKB=_______【答案】9851-(1)首先作出截面ACMK ,再求截面的面积;(2)取11B C 上的点M ,11B K B M x ==,连接,KM MC ,由题意可知11111133B MK BCA A B CD ABCD V V --==,利用体积公式求x ,再求11A K KB 的比值.解:(1)取11B C 的中点M ,连接KM ,MC ,11//KM AC Q ,而11A C //AC ,//KM AC ∴,,,A C M K ∴四点共面,且AK MC = ∴四边形ACMK 是等腰梯形,如图,22KM =,2AC =2215122AK ⎛⎫=+= ⎪⎝⎭, 222224AH ==, 22225232244KH AK AH ⎛⎫⎛⎫∴=-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 1232922248ACKM S ⎛∴=⨯⨯= ⎝; (2)设1B K x =,取11B C 上的点M ,11B K B M x ==,连接,KM MC , 由(1)知,,,A C M K 四点共面, 由图象可知11111133B MK BCA A B CD ABCD V V --==12111113223B MK BCA V x -⎛∴=⨯++⨯= ⎝, 即210x x +-=,解得:x =即1B K =,11A K ==,此时11312A K KB -==. 故答案为:98本题考查截面面积和几何体的体积,意在考查空间想象能力,和计算能力,属于中档题型,本题的关键作出过点,,A C K 的平面.四、解答题17.已知各项均不相等的等差数列{}n a 的前4项和为10,且124,,a a a 是等比数列{}n b 的前3项. (1)求,n n a b ; (2)设()11n n n n c b a a =++,求{}n c 的前n 项和n S .【答案】(1)1,2n n n a n b -==.(2)121nn S n =-+ (1)首先设等差数列的首项1a ,公差为d ,根据条件建立关于1,a d 的方程组,再求数列{}n a ,{}n b 的通项公式;(2)由(1)可知()1121n n c n n -=++,数列{}12n -是等比数列,按等比数列求和,数列()11n n ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭按照裂项相消法求和.解:解:(1)设数列{}n a 的公差为d ,由题意知: ()1234114414+46102a a a a a d a d ⨯-+++==+= ① 又因为124,,a a a 成等比数列, 所以2214a a a =⋅,()()21113a d a a d +=⋅+,21d a d =,又因为0d ≠, 所以1a d =. ② 由①②得11,1a d ==, 所以n a n =,111b a ==,222b a == ,212b qb ==, 12n n b -∴= .(2)因为()111112211n n n c n n n n --⎛⎫=+=+- ⎪++⎝⎭,所以0111111122 (21223)1n n S n n -⎛⎫=++++-+-+⋅⋅⋅+- ⎪+⎝⎭1211121n n -=+--+ 121n n =-+ 所以数列{}n c 的前n 项和121nn S n =-+.本题考查等差,等比数列和数列的求和,意在考查基本方法和计算能力,属于基础题型,一般数列的求和方法包括1.公式法求和2.错位相减法求和;3.裂项相消法求和;4.分组转化法求和;5.倒序相加法求和.18.在底面为正方形的四棱锥P ABCD -中,平面PAD ⊥平面,,,ABCD PA PD E F =分别为棱PC 和AB 的中点.(1)求证://EF 平面PAD ;(2)若直线PC 与AB 所成角的正切值为5,求平面PAD 与平面PBC 所成锐二面角的大小.【答案】(1)见解析(2)4π (1)要证明线面平行,需先证明面面平行,取CD 的中点M ,连接,EM FM ,证明平面//EFM 平面PAD ;(2)分别取AD 和BC 的中点,O N ,连,PO ON ,由条件可证明,,OP ON OA 三条线两两垂直,以O 为原点建立空间直角坐标系,分别求两个平面的法向量,m n r r ,利用公式cos ,m n <>r r求值.解:(1)证明:取CD 的中点M ,连接,EM FM ,因为,E F 分别为PC 和AB 的中点,四边形ABCD 为正方形, 所以//, //EM PD FM AD ,因为,EM FM ⊂平面,,EFM PD AD ⊂平面PAD , 所以平面//EFM 平面PAD , 因为EF ⊂平面EFM , 所以//EF 平面PAD .(2)因为平面PAD ⊥平面ABCD ,平面PAD I 平面,ABCD AD CD AD =⊥CD ⊂平面ABCD所以CD ⊥平面PAD , 所以CD PD ⊥, 因为//AB CD ,所以PCD ∠就是直线PC 与AB 所成的角,所以PD tan PCD DC ∠==,设2PD CD ==,分别取AD 和BC 的中点,O N ,连,PO ON , 因为PA PD =, 所以PO AD ⊥,因为平面PAD ⊥平面ABCD ,平面PAD I 平面,ABCD AD PO =⊂平面PAD , 所以PO ⊥平面ABCD如图,建立空间直角坐标系O xyz -, 则()()()0,0,2,1,2,0,1,2,0P C B -,所以()()2,0,0,1,2,2CB CP ==-u u u r u u u r,设(),,m x y z =u r 是平面BPC 的一个法向量,则2200x y z x -+=⎧⎨=⎩取1y =,则1z =,所以()0,1,1m =u r()0,1,0n =r是平面PAD 的一个法向量,所以,2m n cos m n m n ⋅<>===u r ru r r u r r ,,4m n π<>=u r r所以所求二面角的大小为4π本题考查证明线面平行和空间坐标法求二面角,意在考查空间想象能力和计算能力,证明线面平行的方法一,可以证明线线平行,证明线面平行,二也可以证明面面平行,证明线面平行,第二问的关键是确定原点,并证明三条线两两垂直,建立空间直角坐标系. 19.在①34asinC ccosA =;②22B Cbsin+=这两个条件中任选-一个,补充在下面问题中,然后解答补充完整的题.在ABC V 中,角,,A B C 的对边分别为,,a b c ,已知 ,32a =. (1)求sinA ;(2)如图,M 为边AC 上一点,,2MC MB ABM π=∠=,求ABC V 的面积【答案】(1)见解析(2)见解析(1)结合正弦定理,条件选择①3sin 4cos a C c A =,则34sinAsinC sinCcosA =,再利用公式22sin cos 1A A +=求sin A ;若选择条件②,由正弦定理和诱导公式可得252AsinBcos sinAsinB =,再根据二倍角公式求得25A sin=,再根据sin 2sin cos 22A A A =求解. (2)解法1:设BM MC m ==,在BMC △中由余弦定理,解得5m =,再由(1)4sin 5A =,解得AB 边长,最后求得到ABC ∆的面积;解法2:由MB MC = 可知,3225sin C sin A cosA π⎛⎫⎭=⎪⎝=-=,,再根据正弦定理和面积公式ABC S ∆=4545sin cos sin 244C C C ==. 解:解:若选择条件①,则答案为:(1)在ABC V 中,由正弦定理得34sinAsinC sinCcosA =, 因为sin 0C ≠,所以2234,916sinA cosA sin A cos A ==, 所以22516sin A =,因为0sinA >,所以4=5sinA . (2)解法1:设BM MC m ==,易知45cos BMC cos BMA sinA ∠=-∠=-=-在BMC △中由余弦定理得:22418225m m ⎛⎫=-⋅- ⎪⎝⎭,解得m =所以2113352252BMC S m sin BMC =∠=⨯⨯=V 在Rt ABM V 中,4,52sinA BM ABM π==∠=所以4AB =,所以158ABM S =V ,所以31527288ABC S =+=V 解法2:因为MB MC =,所以MBC C ∠=∠, 因为,2ABM π∠=所以2,222A C C A ππ∠+∠=∠=-∠,所以22sin C sin A cosA π⎛⎫⎪⎝⎭=-= 因为A 为锐角,所以325sin C cosA ==又sin sin sin 4b c a B C A ===所以sin ,4b B =,4c C =所以11445sin sin sin sin 2244542ABC S bc A B C C C π⎛⎫==⨯⨯⨯=+ ⎪⎝⎭V 454527sin cos sin 2448C C C === 若选择条件②,则答案为:(1)因为22B C bsin +=,所以22Absin π-=,由正弦定理得22AsinBcos =,因为0sinB ≠,所以2,2A cos =222A A Acos cos =,因为02Acos≠,所以2A sin =,则2A cos=,所以4sin 2sin cos 225A A A ==. (2)同选择①本题考查正余弦定理,面积公式解三角形,意在考查转化与化归的思想,和计算能力,属于中档题型,本题属于开放性试题,需先选择条件,再求解.20.读书可以使人保持思想活力,让人得到智慧启发,让人滋养浩然正气书籍是文化的重要载体,读书是承继文化的重要方式某地区为了解学生课余时间的读书情况,随机抽取了n 名学生进行调查,根据调查得到的学生日均课余读书时间绘制成如图所示的频率分布直方图,将日均课余读书时间不低于40分钟的学生称为“读书之星”,日均课余读书时间低于40分钟的学生称为“非读书之星”:已知抽取的样本中日均课余读书时间低于10分钟的有10人(1)求,n p 的值;(2)根据已知条件完成下面的22⨯列联表,并判断是否有95%以上的把握认为“读书之星”与性别有关? 非读书之星 读书之星 总计 男女 1055总计(3)将上述调查所得到的频率视为概率,现从该地区大量学生中,随机抽取3名学生,每次抽取1名,已知每个人是否被抽到互不影响,记被抽取的“读书之星”人数为随机变量X ,求X 的分布列和期望()E X附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥0.100.05 0.025 0.010 0.005 0.001【答案】(1)0.01P =,n =100,(2)表见解析,没有95%以上的把握认为“读书之星”与性别有关(3)分布列见解析,()34E X =(1)首先根据频率和为1求P ,再根据频率,频数和样本容量的关系求n ; (2)首先计算“读书之星”的人数,然后再依次填写22⨯列联表;并根据公式计算2K 和3.841比较大小,做出判断;(3)从该地区学生中抽取一名学生是“读书之星”的概率为14,由题意可知1~3,4X B ⎛⎫ ⎪⎝⎭并求分布列和数学期望.解:(1)()0.0050.0180.0200.0220.025101P +++++⨯= 解得:0.01P =, 所以100.1010n ==. (2)因为100n =,所以“读书之星”有1000.2525⨯= 从而22⨯列联表如下图所示:将22⨯列联表中的数据代入公式计算得()2210030101545100 3.0304555752533K ⨯⨯-⨯==≈⨯⨯⨯因为3.030 3.841<,所以没有95%以上的把握认为“读书之星”与性别有关(3)将频率视为概率,即从该地区学生中抽取一名学生是“读书之星”的概率为14. 由题意可知1~3,4X B ⎛⎫⎪⎝⎭所以()3031127041464P X C ⎛⎫⎛⎫⨯ ⎪ ⎪⎝⎭-=⎝⎭== ()3211271146414P X C ⎛==-=⎫⨯ ⎪⎝⎭, ()223192146414P X C ⎛⎫⎛⎫⨯ ⎪ ⎪⎝⎭⎝⎭==-= ()333413641P X C ⎛⎫ ⎪⎭=⎝== 所以X 的分布列为故()13344E X =⨯=. 本题考查频率分布直方图的应用,独立性检验,二项分布,意在考查利用所给数据,分析问题和解决问题的能力,属于中档题型.21.在平面直角坐标系中,()()1 ,0,1,0A B -,设ABC V 的内切圆分别与边,,AC BC AB 相切于点,,P Q R ,已知1CP =,记动点C 的轨迹为曲线E .(1)求曲线E 的方程; (2)过()2,0G 的直线与y 轴正半轴交于点S ,与曲线E 交于点,H HA x ⊥轴,过S 的另一直线与曲线E 交于M N 、两点,若6SMG SHN S S =V V ,求直线MN 的方程.【答案】(1)221(0)43x y y +=≠(2)1y x =+或1y x =+. (1)由内切圆的性质可知CP CQ =,AP AR =,BQ BR =,转化4CA CB AB +=>,利用椭圆定义求椭圆方程;(2)先求点,H S 的坐标,判断2SG SH =,再由6SMG SHN S S =V V ,求得3SM SN =,所以3SM SN =-u u u r u u u r ,求得123x x =-,再分斜率存在和斜率不存在两种情况,当斜率存在时,设直线1y kx =+与椭圆方程联立,得到根与系数的关系,并且根据123x x =-求斜率.解:解:(1)由内切圆的性质可知CP CQ =,AP AR =,BQ BR =, ∴CA CB CP CQ AP BQ +=+++24CP AB AB =+=>.所以曲线E 是以,A B 为焦点,长轴长为4的椭圆(除去与x 轴的交点). 设曲线2222:1(0,0)x y E a b y a b+=>>≠则1,24c a ==, 即2222,3a b a c ==-= 所以曲线E 的方程为221(0)43x y y +=≠. (2)因为HA x ⊥轴,所以31,2H ⎛⎫- ⎪⎝⎭,设()00,S y , 所以03223y --=-,所以01y =,则()0,1S 因为2a c =,所以2SG SH =, 所以1sin 2261sin 2SMGSMN SM SG MSG SM S S SN SN SH NSH ∠===∠V V 所以3SM SN=,所以3SM SN =-u u u r u u u r 设()()1122,, ,,M x y N x y 则()11,1SM x y =-u u u r()22,1SN x y =-u u u r ,所以123x x =-①直线MN 斜率不存在时, MN 方程为0x =此时2SM SN ==+. ②直线MN 的斜率存在时,设直线MN 的方程为1y kx =+. 联立221143y kx x y =+⎧⎪⎨+=⎪⎩,得()2234880,k x kx ++-= 所以122122834834k x x k k x x k -⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩, 将123x x =-代入得222228348334k x k k x k -⎧=⎪⎪+⎨⎪=⎪+⎩,所以2224833434k k k k ⎛⎫=⎪⎭+ ⎝+.所以23,2k k == 所以直线MN的方程为1y x =+或1y x =+.本题考查定义法求椭圆方程和直线与椭圆的位置关系求直线方程,意在考查转化与化归的思想和计算能力,第二问中设而不求的基本方法也使得求解过程变得简单,在解决圆锥曲线与动直线问题中,韦达定理,弦长公式都是解题的基本工具.22.已知函数()()2(,)1x f x ae x a R g x x =--∈=. (1)讨论函数()f x 的单调性;(2)当0a >时,若曲线()1:1C y f x x =++与曲线()2:C y g x =存在唯一的公切线,求实数a 的值;(3)当1,0a x =≥时,不等式()()1f x kxln x ≥+恒成立,求实数k 的取值范围.【答案】(1)见解析(2)24a e =(3)1,2⎛⎤-∞ ⎥⎝⎦(1)()1x f x ae '=-,分0a ≤和0a >讨论函数的单调性;(2)曲线1:x C y ae =,曲线()22:C g x x =,设该公切线与12,C C 分别切于点()()12122,,,x x ae x x ,显然12x x ≠,利用导数的几何意义和两点间的斜率公式求得11222122x x ae x ae x x x -==-,解得()111214(2 1)1x x x x a x e e -==>,()()1 4()1x x F x x e =>- 问题等价于直线y a =与曲线()y F x =在1x >时有且只有一个公共点,利用导数求()F x 的值域;(3)问题等价于不等式()11xe x kxln x --≥+,当0x ≥时恒成立,设()()110()x h x e x kxln x x =---+≥,先求()m x =()h x ',再求()()211'11xm x e k x x ⎡⎤=-+⎢⎥++⎢⎥⎣⎦,分12k ≤和12k >两种情况讨论函数的最小值,判断()0h x ≥是否成立.解:解:(1)()1xf x ae '=-, 当0a ≤时,()'0f x <恒成立,()f x 在()-∞+∞,上单调递减, 当0a >时,由()'0f x =,解得x lna =-,由于0a >时,导函数()1x f x ae '=-单调递增,故 ()x lna ∈-∞-,,()()0,f x f x '<单调递减, ()()(),,0,x lna f x f x '∈-+∞>单调递增.综上,当0a ≤时()f x 在()-∞+∞,上单调递减; 当0a >时, ()f x 在()lna -∞-,上单调递减,在,()lna -+∞上单调递增. . (2)曲线11:x C y ae =与曲线222:C y x =存在唯一公切线,设该公切线与12,C C 分别切于点()()12122,,,x x ae x x ,显然12x x ≠.由于12','2x y ae y x ==, 所以11222122x x ae x ae x x x -==-, 1222212222222x x x x ae x x x -=-=- ,2122222x x x x ∴-=由于0a >,故20x >,且21220x x =->因此11x >, 此时()111214(2 1)1x x x x a x e e -==>, 设()()1 4()1x x F x x e =>- 问题等价于直线y a =与曲线()y F x =在1x >时有且只有一个公共点, 又()4(2 )xx F x e -'=,令()'0F x =,解得2x =, 则()F x 在()1,2上单调递增,(2,)+∞上单调递减,而()()242,10F F e==,当x →+∞时,()0F x → 所以()F x 的值域为240,e ⎛⎤ ⎥⎝⎦. 故24a e =. (3)当1a =时,()1x f x e x =--,问题等价于不等式()11x e x kxln x --≥+,当0x ≥时恒成立.设()()110()xh x e x kxln x x =---+≥,()00h =, 又设()()()' 1 11) 0(x x m x h x e k ln x x x ⎡⎤==--++≥⎢⎥+⎣⎦则()()211'11xm x e k x x ⎡⎤=-+⎢⎥++⎢⎥⎣⎦ 而()'012m k =-.(i)当120k -≥时,即12k ≤时, 由于0,1x x e ≥≥,()()2211111112111k x x x x ⎡⎤⎡⎤+≤+≤⎢⎥⎢⎥++++⎢⎥⎢⎥⎣⎦⎣⎦此时()()'0,m x m x ≥在[0,)+∞上单调递增.所以()()00m x m ≥=即()'0h x ≥,所以()h x 在[0,)+∞上单调递增所以()()00h x h ≥=,即()110xe x kxln x ---+≥, 故12k ≤适合题意. (ii)当12k >时,()'00m <, 由于()()21111xm x e k x x ⎡⎤'=-+⎢⎥++⎢⎥⎣⎦在[0,)+∞上单调递增, 令()20x ln k =>,则()()211'222201ln 21ln 2m ln k k k k k x x ⎡⎤=-+>-=⎢⎥++⎢⎥⎣⎦, 故在()0,ln 2k 上存在唯一o x ,使()'0o m x =,因此当()00,x x ∈时,()()'0,m x m x <单调递减,所以()()00m x m <=,即()()'0,h x h x ≤在()00,x 上单调递减,故()()00h x h <=,亦即()1 10xe x hxln x ---+<, 故12k >时不适合题意, 综上,所求k 的取值范围为1,2⎛⎤-∞ ⎥⎝⎦.本题考查利用导数求函数的单调性,以及根据函数的零点和利用不等式恒成立求参数的取值范围,意在考查转化与化归,推理能力 ,和计算能力,解决零点问题好恒成立问题常用方法还有:分离参数、构造函数、数形结合.。

相关文档
最新文档