高三上学期期末考试(数学)(含答案)

合集下载

北京市丰台区2023-2024学年高三上学期期末练习数学试卷含答案

北京市丰台区2023-2024学年高三上学期期末练习数学试卷含答案

丰台区2023~2024学年度第一学期期末练习高三数学(答案在最后)2024.01本试卷共6页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分选择题(共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{3,2,1,0,1,2}U =---,{1,0,1}A =-,{1,2}B =,则()U A B ⋃=ð()A.{3,2}-- B.{3,2,1,2}--C.{3,2,1,0,1}--- D.{3,2,1,0,2}---【答案】A【解析】【分析】由补集和并集的定义求解即可.【详解】因为{3,2,1,0,1,2}U =---,{1,0,1}A =-,{1,2}B =,所以{}1,0,1,2A B ⋃=-,U ð(){}3,2A B ⋃=--.故选:A .2.若(1i)1i z -=+,则||z =()A.iB.1C. D.2【答案】B【解析】【分析】根据复数的运算法则进行运算,继而直接求模即可.【详解】因为(1i)1i z -=+,所以()()()()1i 1i 1i 2i i 1i 1i 1i 2z +++====-+-,所以i 1z z =-=,,故选:B .3.在6(2)x y -的展开式中,42x y 的系数为()A.120- B.120C.60- D.60【答案】D【解析】【分析】求出6(2)x y -的通项,令2r =即可得出答案.【详解】6(2)x y -的通项为:()()66166C 2C 2r rr r r r r r T x y x y --+=-=-,令2r =可得:42x y 的系数为()226C 215460-=⨯=.故选:D .4.在中国文化中,竹子被用来象征高洁、坚韧、不屈的品质.竹子在中国的历史可以追溯到远古时代,早在新石器时代晚期,人类就已经开始使用竹子了.竹子可以用来加工成日用品,比如竹简、竹签、竹扇、竹筐、竹筒等.现有某饮料厂共研发了九种容积不同的竹筒用来罐装饮料,这九种竹筒的容积129,,,a a a L (单位:L )依次成等差数列,若1233a a a ++=,80.4a =,则129a a a +++= ()A.5.4B.6.3C.7.2D.13.5【答案】B【解析】【分析】利用等差数列的性质及求和公式求解.【详解】∵129,,,a a a L 依次成等差数列,1233a a a ++=,∴233a =,即21a =,又80.4a =,则()()()81912299910.49 6.3222a a a a a a a +⨯+⨯+⨯+++==== .故选:B.5.已知直线y kx =与圆221x y +=相切,则k =()A.1± B.C. D.2±【答案】B【解析】【分析】根据题意可得圆心(0,0)O 到0-=kx y 的距离等于半径1,即可解得k 的值.【详解】直线y kx =+即0-=kx y ,由已知直线y kx =+与圆221x y +=相切可得,圆221x y +=的圆心(0,0)O 到0kx y -=的距离等于半径1,1=,解得k =,故选:B .6.如图,函数()f x 的图象为折线ACB ,则不等式π()tan 4f x x >的解集是()A.{|20}x x -<< B.{|01}x x <<C.{|21}x x -<< D.{|12}x x -<<【答案】C【解析】【分析】利用正切型函数的图象与性质结合分段函数性质即可得到解集.【详解】设()πtan4h x x =,令π242k x k ππππ-<<+,且k ∈Z ,解得4242k x k -<<+,k ∈Z ,令0k =,则22x -<<,则()h x 在()2,2-上单调递增,()00h =1,1BC AC k k =-=,则2,02()2,20x x f x x x -+≤<⎧=⎨+-<<⎩,则当20x -<≤时,()0h x ≤,()0f x >,则满足()()f x h x >,即π()tan 4f x x >,当02x <<时,()11f =,且()f x 单调递减,()11h =,且()h x 单调递增,则()0,1x ∈时,()()f x h x >,即π()tan4f x x >;()1,2x ∈时,()()f x h x <,即()πtan 4f x x <;综上所述:π()tan4f x x >的解集为()2,1-,故选;C.7.在某次数学探究活动中,小明先将一副三角板按照图1的方式进行拼接,然后他又将三角板ABC 折起,使得二面角A BC D --为直二面角,得图2所示四面体ABCD .小明对四面体ABCD 中的直线、平面的位置关系作出了如下的判断:①CD ⊥平面ABC ;②AB ⊥平面ACD ;③平面ABD ⊥平面ACD ;④平面ABD ⊥平面BCD .其中判断正确的个数是()A.1B.2C.3D.4【答案】C【解析】【分析】根据题意,结合线面位置关系的判定定理和性质定理,逐项判定,即可求解.【详解】对于①中,因为二面角A BC D --为直二面角,可得平面ABC ⊥平面BCD ,又因为平面ABC ⋂平面BCD BC =,DC BC ⊥,且DC ⊂平面BCD ,所以DC ⊥平面ABC ,所以①正确;对于②中,由DC ⊥平面ABC ,且AB ⊂平面ABC ,可得AB CD ⊥,又因为AB AC ⊥,且AC CD C = ,,AC CD ⊂平面ACD ,所以AB ⊥平面ACD ,所以②正确;对于③中,由AB ⊥平面ACD ,且AB ⊂平面ABD ,所以平面ABD ⊥平面ACD ,所以③正确;对于④,中,因为DC ⊥平面ABC ,且DC ⊂平面BCD ,可得平面ABC ⊥平面BCD ,若平面ABD ⊥平面BCD ,且平面ABD ⋂平面ABC AB =,可得AB ⊥平面BCD ,又因为BC ⊂平面BCD ,所以AB BC ⊥,因为AB 与BC 不垂直,所以矛盾,所以平面ABD 和平面BCD 不垂直,所以D 错误.8.已知,a b 是两个不共线的单位向量,向量c a b λμ=+r r r (,λμ∈R ).“0λ>,且0μ>”是“()0c a b ⋅+> ”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】【分析】举例验证必要性,通过向量的运算来判断充分性.【详解】当0λ>,且0μ>时,()()()()()22cos ,c a b a b a b a a b b a b λμλλμμλμλμ⋅+=+⋅+=++⋅+=+++ ()0λμλμ>+-+=,充分性满足;当()0c a b ⋅+> 时,()()cos ,c a b a b λμλμ⋅+=+++ ,当0λ>,0μ=时,()cos ,c a b a b λλ⋅+=+ 是可以大于零的,即当()0c a b ⋅+> 时,可能有0λ>,0μ=,必要性不满足,故“0λ>,且0μ>”是“()0c a b ⋅+>”的充分而不必要条件.故选:A .9.在八张亚运会纪念卡中,四张印有吉祥物宸宸,另外四张印有莲莲.现将这八张纪念卡平均分配给4个人,则不同的分配方案种数为()A.18B.19C.31D.37【答案】B【分析】设吉祥物宸宸记为a ,莲莲记为b ,将这八张纪念卡分为四组,共有3种分法,再分给四个人,分别求解即可.【详解】设吉祥物宸宸记为a ,莲莲记为b①每人得到一张a ,一张b ,共有1种分法;②将这八张纪念卡分为()()()(),,,,,,,a a a a b b b b 四组,再分给四个人,则有2242C C 6=种分法③将这八张纪念卡分为()()()(),,,,,,,a b a a a b b b 四组,再分给四个人,则有2142C C 12=种分法共有:161219++=种.故选:B .10.已知函数2()||2||f x x a x =++,当[2,2]x ∈-时,记函数()f x 的最大值为()M a ,则()M a 的最小值为()A.3.5B.4C.4.5D.5【答案】C【解析】【分析】先利用函数的奇偶性,转化为求()f x 在[]0,2上的最大值;再根据a 的取值范围的不同,讨论函数()f x 在[]0,2上的单调性,求函数()f x 的最大值.【详解】易判断函数()f x 为偶函数,根据偶函数的性质,问题转化为求函数()22f x x a x =++,[]0,2x ∈上的最大值()M a .当0a ≥时,()22f x x x a =++,二次函数的对称轴为1x =-,函数在[]0,2上单调递增,所以()()288M a f a ==+≥;当10a -≤<时,()222,022x x a x f x x x ax ⎧-+-≤≤⎪=⎨++≤⎪⎩,1≤,所以()f x在⎡⎣上递增,在2⎤⎦上也是递增,所以()()287M a f a ==+≥;当41a -<<-时,()222,022x x a x f x x x ax ⎧-+-≤≤⎪=⎨++≤⎪⎩,因为12<<,所以()f x 在[]0,1上递增,在(上递减,在2⎤⎦上递增,所以()()11M a f a ==-或()()28M a f a ==+,若18a a -≥+⇒742a -≤≤-,则()()9112M a f a ==-≥;若18a a -<+⇒712a -<<-,则()()9282M a f a ==+>;当4a ≤-时,()22f x x x a =-+-,[]0,2x ∈2≥),所以函数()f x 在[]0,1上递增,在(]1,2上递减,所以()()115M a f a ==-≥.综上可知:()M a 的最小值为92.故选:C【点睛】关键点点睛:问题转化为二次函数在给定区间上的最值问题,然后讨论函数在给定区间上的单调性,从而求最大值.认真分析函数的单调性是关键.第二部分非选择题(共110分)二、填空题共5小题,每小题5分,共25分.11.双曲线2214x y -=的渐近线方程________.【答案】12y x =±【解析】【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.【详解】∵双曲线2214x y -=的a=2,b=1,焦点在x 轴上而双曲线22221x y a b-=的渐近线方程为y=±b x a ∴双曲线2214x y -=的渐近线方程为y=±12x故答案为y=±12x 【点睛】本题考查了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想12.已知()44x x f x -=-,则11(()22f f -+=___.【答案】0【解析】【分析】由解析式直接代入求解即可.【详解】因为1122113()442222f -=-=-=,1122113()442222f --=-=-=-,所以11((022f f -+=.故答案为:0.13.矩形ABCD 中,2AB =,1BC =,且,E F 分为,BC CD 的中点,则AE EF ⋅= ___.【答案】74-##-1.75【解析】【分析】以A 为坐标原点,建立如下图所示的平面直角坐标系,求出,AE EF ,由数量积的坐标表示求解即可.【详解】以A 为坐标原点,建立如下图所示的平面直角坐标系,()()()()()10,0,2,0,2,1,0,1,2,,1,12A B C D E F ⎛⎫ ⎪⎝⎭,所以112,,1,22AE EF ⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭ ,()11172122244AE EF ⋅=⨯-+⨯=-+=- .故答案为:74-.14.如图,在平面直角坐标系xOy 中,角(0π)αα<<的始边为x 轴的非负半轴,终边与单位圆O 交于点P ,过点P 作x 轴的垂线,垂足为M .若记点M 到直线OP 的距离为()f α,则()f α的极大值点为___,最大值为___.【答案】①.π4或3π4②.12##0.5【解析】【分析】根据三角函数的概念得(cos ,sin )P αα及,,OP OM MP ,利用面积法求得()f α,根据α的范围及三角函数的性质讨论()f α的单调性,进而求得答案.【详解】由题意(cos ,sin )P αα,1,cos ,sin OP OM MP αα===,由()1122OP f OM MP α⋅=⋅,得()1πsin 2,0122cos sin sin cos sin 21π2sin 2,π22f αααααααααα⎧<<⎪⎪=⋅===⎨⎪-<<⎪⎩,∴当π04α<<时,()f α单调递增;当ππ42α<<时,()f α单调递减;当π3π24α<<时,()f α单调递增;当3ππ4α<<时,()f α单调递减,则()f α的极大值点为π4或3π4,∵0πα<<,022πα<<,∴当sin 21α=±,即π4α=或3π4α=时,()f α取最大值为12.故答案为:π4或3π4;12.15.在平面直角坐标系内,动点M 与定点(0,1)F 的距离和M 到定直线:3l y =的距离的和为4.记动点M 的轨迹为曲线W ,给出下列四个结论:①曲线W 过原点;②曲线W 是轴对称图形,也是中心对称图形;③曲线W 恰好经过4个整点(横、纵坐标均为整数的点);④曲线W 围成区域的面积大于则所有正确结论的序号是___.【答案】①③④【解析】【分析】根据题目整理方程,分段整理函数,画出图象,可得答案.【详解】设(),M x y ,则MF =,M 到直线l 的距离3d y =-,34y +-=,222(1)(43)x y y +-=--,22221168369x y y y y y +-+=--+-+,224483x y y =---,当3y ≥时,2214812412x y y x =-=-+,,则2214312,12x x x -+≥≤-≤≤,当3y <时,22144x y y x ==,,则2134x <,212x <,x -<<可作图如下:由图可知:曲线W 过原点,且是轴对称图形,但不是中心对称图形,故①正确,②错误;曲线W 经过()()()()0,02,10,42,1O A C E -,,,4个点,没有其它整点,故③正确;由()B ,()D -,()0,3F ,四边形AFEO 的面积113462S =⨯⨯=,122ABF EFD S S ==⨯= ,112BCD S =⨯⨯= ,多边形ABCDEO 的面积626S =+⨯=+曲线W 围成区域的面积大于,故④正确.故答案为:①③④.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.在△ABC 中,a =,2π3A =.(1)求C 的大小;(2)在下列三个条件中选择一个作为已知,使ABC 存在且唯一确定,并求出AC 边上的中线的长度.条件①:2a b =;条件②:△ABC 的周长为4+ABC 注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.【答案】(1)π6(2【解析】【分析】(1)由正弦定理可解得;(2)条件②由余弦定理可得;条件③由三角形的面积公式和余弦定理可得.【小问1详解】在ABC 中,因为sin sin a cA C=,又a =,所以sin A C =.因为2π3A =,所以1sin 2C =.因为π03C <<,所以π6C =.【小问2详解】选择条件②:因为ABC 中,2π3A =,π6C =,πA B C ++=,所以π6B =,即ABC 为等腰三角形,其中b c =.因为a =,所以24a b c b ++=+=+.所以2b =.设点D 为线段AC 的中点,在ABD △中,1AD =.因为ABD △中,2222cos BD AB AD AB AD BAD=+-⋅∠22221221cos73π=+-⨯⨯⨯=,所以7BD =AC 7.选择条件③:因为ABC 中,2π3A =,π6C =,πA B C ++=,所以π6B =,即ABC 为等腰三角形,其中b c =.因为ABC 的面积为312πsin 323ABC S bc ∆==,所以2b c ==.设点D 为线段AC 的中点,在ABD △中,1AD =.因为ABD △中,2222cos BD AB AD AB AD BAD=+-⋅∠22221221cos73π=+-⨯⨯⨯=,所以7BD =AC 7.由题可知3a b =,故①不合题意.17.如图,四棱锥P ABCD -的底面为正方形,PA ⊥底面ABCD ,AD PA =,点E 为PA 中点.(1)求证:AD //平面BCE ;(2)点Q 为棱BC 上一点,直线PQ 与平面BCE 所成角的正弦值为515,求BQ BC 的值.【答案】(1)证明见解析(2)12BQ BC =【解析】【分析】(1)根据线面平行的判定定理证明即可;(2)建立空间直角坐标系,利用线面角的向量求法可得Q 的坐标,即可得解.【小问1详解】因为正方形ABCD 中,//BC AD .因为BC ⊂平面BCE ,AD ⊄平面BCE ,所以//AD 平面BCE .【小问2详解】因为PA ⊥底面ABCD ,正方形ABCD 中AB AD ⊥,分别以,,AB AD AP的方向为,,x y z 轴正方向,建立空间直角坐标系A xyz -,如图不妨设2PA =,因为AD PA =,点E 为PA 的中点,点Q 为棱BC 上一点,则(0,0,0)A ,(2,0,0)B ,(2,2,0)C ,(0,0,1)E ,(0,0,2)P ,(2,,0)Q m (02)m ≤≤.所以(0,2,0)BC = ,(2,0,1)BE =- ,(2,,2)PQ m =-.设(,,)n x y z =为平面BCE 的法向量,则BCn ⊥ ,BE n ⊥.所以2020BC n y BE n x z ⎧⋅==⎪⎨⋅=-+=⎪⎩,令1x =,得102x y z =⎧⎪=⎨⎪=⎩,所以(1,0,2)n = .设直线PQ 与平面BCE 所成角为θ,则sin cos ,15PQ n PQ n PQ n θ⋅==== ,解得21m =,因为02m ≤≤,所以1m =,所以12BQ BC =.18.2023年冬,甲型流感病毒来势汹汹.某科研小组经过研究发现,患病者与未患病者的某项医学指标有明显差异.在某地的两类人群中各随机抽取20人的该项医学指标作为样本,得到如下的患病者和未患病者该指标的频率分布直方图:利用该指标制定一个检测标准,需要确定临界值a ,将该指标小于a 的人判定为阳性,大于或等于a 的人判定为阴性.此检测标准的漏诊率是将患病者判定为阴性的概率,记为()p a ;误诊率是将未患病者判定为阳性的概率,记为()q a .假设数据在组内均匀分布,用频率估计概率.(1)当临界值20a =时,求漏诊率()p a 和误诊率()q a ;(2)从指标在区间[20,25]样本中随机抽取2人,记随机变量X 为未患病者的人数,求X 的分布列和数学期望;(3)在该地患病者占全部人口的5%的情况下,记()f a 为该地诊断结果不符合真实情况的概率.当[20,25]a ∈时,直接写出使得()f a 取最小值时的a 的值.【答案】(1)(20)0.1p =,(20)0.05q =(2)分布列见解析;期望为65(3)20a =【解析】【分析】(1)由频率分布直方图计算可得;(2)利用超几何分布求解;(3)写出()f a 的表达式判单调性求解.【小问1详解】由频率分布直方图可知(20)0.0250.1p =⨯=,(20)0.0150.05q =⨯=.【小问2详解】样本中患病者在指标为区间[20,25]的人数是200.0252⨯⨯=,未患病者在指标为区间[20,25]的人数是200.0353⨯⨯=,总人数为5人.X 可能的取值为0,1,2.202325C C 1(0)10C P X ===,112325C C 3(1)C 5P X ===,022325C C 3(2)10C P X ===.随机变量X 的分布列为X012P11035310随机变量X 的期望为1336()012105105E X =⨯+⨯+⨯=.【小问3详解】由题,()()()95%5%f a q a p a =⨯+⨯,[20,25]a ∈时,令()20,0,1,2,3,4,5a t t =+=()()50.010.03,50.020.0255t t q a p a ⎛⎫⎛⎫=⨯+⨯=⨯-⨯ ⎪ ⎪⎝⎭⎝⎭所以()()50.010.0395%50.020.025%55t t f a g t ⎛⎫⎛⎫==⨯+⨯⨯+⨯-⨯⨯ ⎪ ⎪⎝⎭⎝⎭,关于t 的一次函数系数为()50.0319%0.021%0⨯-⨯>,故()g t 单调递增,则0=t 即20a =时()f a 取最小值19.已知函数2()e ()x f x x ax a =--.(1)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求实数a 的值;(2)求函数()f x 的单调区间.【答案】(1)1(2)答案见解析【解析】【分析】(1)先求函数()f x 的导函数,若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,只需保证()01f '=,求实数a 的值即可;(2)求得()0f x '=有两个根“2x =-和x a =”,再分2a <-、2a =-和2a >-三种情况分析函数()f x 的单调性即可.【小问1详解】由题可得2()e [(2)2]x f x x a x a '=+--,因为()f x 在点(1,(1))f 处的切线平行于x 轴,所以()01f '=,即e(33)0a -=,解得1a =,经检验1a =符合题意.【小问2详解】因为2()e [(2)2]x f x x a x a '=+--,令()0f x '=,得2x =-或x a =.当2a <-时,随x 的变化,()f x ',()f x 的变化情况如下表所示:x(,)a -∞a(,2)a -2-(2,)-+∞()f 'x +-+()f x 单调递增()f a 单调递减(2)f -单调递增所以()f x 在区间(,)a -∞上单调递增,在区间(,2)a -上单调递减,在区间(2,)-+∞上单调递增.当2a =-时,因为2()e (2)0x f x x '=+≥,当且仅当2x =-时,()0f x '=,所以()f x 在区间(,)-∞+∞上单调递增.当2a >-时,随x 的变化,()f x ',()f x 的变化情况如下表所示:x(,2)-∞-2-(2,)a -a(,)a +∞()f 'x +-+()f x 单调递增(2)f -单调递减()f a 单调递增所以()f x 在区间(,2)-∞-上单调递增,在区间(2,)a -上单调递减,在区间(,)a +∞上单调递增.综上所述,当2a <-时,()f x 的单调递增区间为(,)a -∞和(2,)-+∞,单调递减区间为(,2)a -;当2a =-时,()f x 的单调递增区间为(,)-∞+∞,无单调递减区间;当2a >-时,()f x 的单调递增区间为(,2)-∞-和(,)a +∞,单调递减区间为(2,)a -.20.已知椭圆22:143x y E +=.(1)求椭圆E 的离心率和焦点坐标;(2)设直线1:l y kx m =+与椭圆E 相切于第一象限内的点P ,不过原点O 且平行于1l 的直线2l 与椭圆E 交于不同的两点A ,B ,点A 关于原点O 的对称点为C .记直线OP 的斜率为1k ,直线BC 的斜率为2k ,求12k k 的值.【答案】(1)离心率为12,焦点坐标分别为(1,0)-,(1,0)(2)121k k =【解析】【分析】(1)根据椭圆方程直接求出离心率与焦点坐标;(2)根据直线1l 与椭圆E 相切求出P 坐标并得到134k k=-,法一:设直线2l 的方程为y kx n =+,由韦达定理求出234k k=-证得结论.法二:记1122(,),(,)A x y B x y ,由点差法求2k k ⋅可证得结论.【小问1详解】由题意得2222243a b c a b ⎧=⎪=⎨⎪=-⎩,解得21a b c =⎧⎪=⎨⎪=⎩.所以椭圆E 的离心率为12c e a ==,焦点坐标分别为(1,0)-,(1,0).【小问2详解】由22,143y kx m x y =+⎧⎪⎨+=⎪⎩消去y 并整理得:222()4384120k x kmx m +++-=①其判别式Δ0=得222(8)4(43)(412)0km k m -+-=,化简为2243m k =+.此时方程①可化为2228160m x kmx k ++=,解得4kx m=-,(由条件知,k m 异号).记00(,)P x y ,则04k x m=-,所以220443()k m k y k m m m m -=-+==,即点43(,)k P m m -.所以OP 的斜率13344m k k k m==--.法一:因为12//l l ,所以可设直线2l 的方程为(0,)y kx n n n m =+≠≠.由22,143y kx n x y =+⎧⎪⎨+=⎪⎩消去y 并整理得:222(43)84120k x knx n +++-=.当其判别式大于零时,有两个不相等的实根,设1122(,),(,)A x y B x y ,则21212228412,4343kn n x x x x k k -+=-=++.因为C 是A 关于原点O 的对称点,所以点C 的坐标为11(,)C x y --.所以直线BC 的斜率22121221212122243384443y y kx n kx n n n k k k k k kn x x x x x x k k k +++++===+=+=-=-+++-+.所以121k k =.法二:记1122(,),(,)A x y B x y ,因为点C 与点A 关于原点对称,所以11(,)C x y --.因为12//l l ,所以直线AB 的斜率为k ,所以22212121222212121y y y y y y k k x x x x x x -+-⋅=⋅=-+-.因为点,A B 在椭圆上,所以2211143x y +=,2222143x y+=.两式相减得:22222121043x x y y --+=.所以2221222134y yx x-=--,即234k k⋅=-,所以234kk=-.所以121kk=.【点睛】方法点睛:将P视为1l与椭圆相交弦中点,由中点弦定理得212bk ka⋅=-,设AB中点为M,由中点弦定理得22OMbk ka⋅=-,由2OMk k=得222bk ka⋅=-,故12k k=.21.对于数列{}n a,如果存在正整数T,使得对任意*()n n∈N,都有n T na a+=,那么数列{}na就叫做周期数列,T叫做这个数列的周期.若周期数列{}n b,{}n c满足:存在正整数k,对每一个*(,)i i k i∈N≤,都有i ib c=,我们称数列{}n b和{}n c为“同根数列”.(1)判断下列数列是否为周期数列.如果是,写出该数列的周期,如果不是,说明理由;①sinπna n=;②121,1,3,2,, 3.nn nnb nb b n--=⎧⎪==⎨⎪-≥⎩(2)若{}n a和{}n b是“同根数列”,且周期的最小值分别是3和5,求证:6k≤;(3)若{}n a和{}n b是“同根数列”,且周期的最小值分别是2m+和4m+*()m∈N,求k的最大值.【答案】(1){}n a、{}n b均是周期数列,数列{}n a周期为1(或任意正整数),数列{}n b周期为6(2)证明见解析(3)答案见解析【解析】【分析】(1)由周期数列的定义求解即可;(2)由“同根数列”的定义求解即可;(3)m是奇数时,首先证明25k m+≥不存在数列满足条件,其次证明24k m=+存在数列满足条件.当m 是偶数时,首先证明24k m+≥时不存在数列满足条件,其次证明23k m=+时存在数列满足条件.【小问1详解】{}n a 、{}n b 均是周期数列,理由如下:因为1sin (1)π0sin πn n a n n a +=+===,所以数列{}n a 是周期数列,其周期为1(或任意正整数).因为32111n n n n n n n b b b b b b b +++++=-=--=-,所以63n n n b b b ++=-=.所以数列{}n b 是周期数列,其周期为6(或6的正整数倍).【小问2详解】假设6k ≤不成立,则有7k ≥,即对于17i ≤≤,都有i i a b =.因为71a a =,722b b a ==,所以12a a =.又因为63a a =,611b b a ==,所以13a a =.所以123a a a ==,所以1=n n a a +,与1T 的最小值是3矛盾.所以6k ≤.【小问3详解】当m 是奇数时,首先证明25k m +≥不存在数列满足条件.假设25k m +≥,即对于125i m +≤≤,都有i i a b =.因为()54m t m t a b t m ++=≤≤+,所以()24454t t t a b a t m ---==≤≤+,即1352m a a a a +==== ,及2461m a a a a +==== .又5t m =+时,12(2)12511m m m m a a b b a +++++====,所以1=n n a a +,与1T 的最小值是2m +矛盾.其次证明24k m =+存在数列满足条件.取(2)31,=21(1)212,2(1)2m l im i k k a m i k k +++⎧-≤≤⎪⎪=⎨+⎪=≤≤⎪⎩()l ∈N及()431,=21(1)212,2(1)21,32,4m l i m i k k m i k k b i m i m +++⎧-≤≤⎪⎪+⎪=≤≤=⎨⎪=+⎪⎪=+⎩()l ∈N ,对于124i m +≤≤,都有i i a b =.当m 是偶数时,首先证明24k m +≥时不存在数列满足条件.假设24k m +≥,即对于124i m +≤≤,都有i i a b =.因为()53m t m t a b t m ++=≤≤+,所以()24453t t t a b a t m ---==≤≤+,即1351m a a a a +==== ,及246m a a a a ==== .又4t m =+时,2m m m a b a +==,所以2=n n a a +,与1T 的最小值是2m +矛盾.其次证明23k m =+时存在数列满足条件.取()221,=21(1)22,2(1)23,2m l i m i k k a m i k k i m +++⎧-≤≤⎪⎪=⎨=≤≤⎪⎪=+⎩()l ∈N 及()421,=21(1)22,2(1)23,21,32,4m l im i k k m i k k b i m i m i m +++⎧-≤≤⎪⎪⎪=≤≤⎪=⎨⎪=+⎪=+⎪⎪=+⎩()l ∈N ,对于123i m +≤≤,都有i i a b =.综上,当m 是奇数时,k 的最大值为24m +;当m 是偶数时,k 的最大值为23m +.【点睛】关键点睛:本题(3)的突破口是利用“同根数列”的定义分类讨论,当m 是奇数时,首先证明25k m +≥不存在数列满足条件,其次证明24k m =+存在数列满足条件.当m 是偶数时,首先证明24k m +≥时不存在数列满足条件,其次证明23k m =+时存在数列满足条件.。

山东省威海市2023-2024学年高三上学期期末考试 数学含答案

山东省威海市2023-2024学年高三上学期期末考试  数学含答案

高三数学(答案在最后)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{||1|}A x x =-≥1,2{|20}B x x x =--<,则A B = A.(20)-, B.(10)-, C.(20]-, D.(10]-,2.已知向量(22)=,a ,(1)x =,b ,若∥a b ,则||=b A.1D.23.若复数z 满足(1i)|1|z -=+,则z =A .1i- B.1i+ C.22i- D.22i+4.cos 28cos73cos62cos17︒︒︒︒+=A.2B.2-C.2D.2-5.若正实数a ,b ,c 满足235a b c ==,则A.a b c<< B.b a c<< C.b c a<< D.c b a<<6.已知函数()y f x =的图象是连续不断的,且()f x 的两个相邻的零点是1,2,则“0(12)x ∃∈,,0()0f x >”是“(12)x ∀∈,,()0f x >”的A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件7.已知1F ,2F 分别为双曲线22221(00)x y a b a b -=>>,的左、右焦点,过点1F 的直线与圆222x y a +=相切于点P ,且与双曲线的右支交于点Q ,若2||||PQ QF =,则该双曲线的离心率为A.2B.3C.2D.58.在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,2PA PD ==,二面角P AD B --为60︒,则该四棱锥外接球的表面积为A.163πB.283π C.649π D.20π二、选择题:本题共4小题,每小题5分,共20分。

河南省郑州市2023-2024学年高三上学期1月期末考试 数学含解析

河南省郑州市2023-2024学年高三上学期1月期末考试 数学含解析

绝密★启用前2023—2024学年郑州市高三(上)期末考试数学(答案在最后)考生注意:1.答题前,考生务必用黑色签字笔将自己的姓名、准考证号、座位号在答题卡上填写清楚;2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,在试卷上作答无效;3.考试结束后,请将本试卷和答题卡一并交回。

一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知各项均为正数的等比数列{}n a 满足10986a a a +=.若存在两项m a ,n a ,使得14a =,则14m n+的最小值为()A.4 B.23C.32D.92.已知函数()()223x x f x a bx -=-++,且0ab ≠.若()2019f h =-,则()f h -=()A.2024B.2023C.2022D.20253.已知函数()sin()f x x ωϕ=+在区间2,63ππ⎛⎫⎪⎝⎭上单调递增,直线6x π=和23x π=为函数()y f x =的图像的两条相邻对称轴,则512f π⎛⎫-= ⎪⎝⎭()A.32-B.12-C.12D.324.在ABC △中,下列各式正确的是()A.sin sin a B b A=B.sin sin a C c B=C.2222cos()c a b ab A B =+-+D.sin()sin a A B c A+=5.满足下列条件的两条直线1l 与2l ,其中可以推出12//l l 的条件是()①1l 的斜率为2,2l 过点(1,2)A ,(4,8)B ;②1l 经过点(3,3)P ,(5,3)Q -,2l 平行于x 轴,但不经过P 点;③1l 经过点(1,0)M -,(5,2)N --,2l 经过点(4,3)R -,(0,5)S .A.①②B.②③C.①③D.①②③6.在三棱锥P ABC -中,CP ,CA ,CB 两两互相垂直,1AC CB ==,2PC =,建立如图所示的空间直角坐标系,则平面PAB 的法向量可以是()A.11,1,2⎛⎫ ⎪⎝⎭B.C.(1,1,1)D.(2,2,1)-7.已知数列{}n a 满足:6(3)3,7,,7n n a n n a a n ---≤⎧=⎨>⎩()n +∈N ,且数列{}n a 是递增数列,则实数a 的取值范围是()A.9,34⎛⎫⎪⎝⎭B.9,34⎡⎫⎪⎢⎣⎭C.(1,3)D.(2,3)8.一个物体做直线运动,位移s (单位:m)与时间t (单位:s )之间的函数关系为()25s t t mt =+,且这一物体在23t ≤≤这段时间内的平均速度为26m /s ,则实数m 的值为()A.2B.1C.1- D.6二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.设一元二次方程220x ax a ++=的两个实根为,1x ,()212x x x ≠,则()A.1216x x >B.当17a >时,12117x x a +-的最小值为34+C.1211x x +为定值D.当21127x x x x +=时,16a =10.水车在古代是进行灌溉引水的工具,是人类的一项古老的发明,也是人类利用自然和改造自然的象征,如图是一个半径为R的水车,一个水斗从点3)A -出发,沿圆周按逆时针方向匀速旋转,且旋转一周用时60秒,经过t 秒后,水斗旋转到点P ,设点P 的坐标为(),x y ,其纵坐标满足()sin()y f t R t ωϕ==+(0t ≥,0ω>,π||2ϕ<),则下列叙述正确的是()A.6R =,π30ω=,π6ϕ=-B.当[35,55]t ∈时,点P 到x 轴的距离的最大值为6C.当[10,25]t ∈时,函数()y f t =单调递减D.当20t =时,||PA =三、填空题:本大题共4个小题,每小题5分,共20分.13.已知样本数据1x ,2x ,…,2022x 的平均数与方差分别是m 和n ,若i i 2(i 1,2,,2022)y x =-+= ,且样本数据的1y ,2y ,…,2022y 平均数与方差分别是n 和m ,则222122022x x x +++= ________.14.已知过不同两点()222,3A m m +-,()23,2B m m m --的直线l 的一个方向向量(1,1)=a ,则实数m =_________.15.若直线l 的斜率k 的取值范围是,则该直线的倾斜角α的取值范围是__________.16.商场对某种产品的广告费用支出x (元)与销售额y (元)之间的关系进行调查,通过回归分析,求得x 与y 之间的关系式为ˆ 6.517.5yx =+,则当广告费用支出为10元时,销售额y 的预报值为________.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)如图的形状出现在南宋数学家杨辉所著的《详解九章算法·商功》中,后人称为“三角垛”.“三角垛”的最上层有1个球,第二层有3个球,第三层有6个球, .球数构成一个数列{}n a ,满足1n n a a n -=+,1n >且*n ∈N .(1)求数列{}n a 的通项公式;(2)求证:121112na a a +++< .(1)求sin ABD ∠的值;(2)求ABD △的面积.19.(12分)已知函数()cos )sin f x x x =+-,在ABC △中,AB =,()f C =ABC △的面积为2.(1)求C 的值;(2)求sin sin A B +的值.20.(12分)“现值”与“终值”是利息计算中的两个基本概念,终值是现在的一笔钱按给定的利息率计算所得到的在未来某个时间点的价值.现值是未来的一笔钱按给定的利息率计算所得到的现在的价值.例如,在复利计息的情况下,设本金为A ,每期利率为r ,期数为n ,到期末的本利和为S ,则()1n S A r =+其中,S 称为n 期末的终值,A 称为n 期后22.(12分)已知0a >,设函数()(2)ln f x x a x x =-+,()f x '是()f x 的导函数.(1)若2a =,求曲线()f x 在点(1,(1))f 处的切线方程;(2)若()f x 在区间(1,)+∞上存在两个不同的零点1x ,()212x x x <.①求实数a 的取值范围;②证明:()222e 2e 2a ax f x '<--.2023—2024学年郑州市高三(上)期末考试数学参考答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.答案:C解析:设等比数列{}n a 的公比为(0)q q >.由各项均为正数的等比数列{}n a 满足10986a a a +=,可得28886a q a q a +=,即260q q +-=,解得2q =或3q =-(舍).14a =,2216m n +-∴=,6m n ∴+=,141141413()5(56662n m m n m n m n m n ⎛⎫⎛⎫∴+=++=++≥+= ⎪⎪⎝⎭⎝⎭,当且仅当4n m m n =,即2m =,4n =时,等号成立.故14m n +的最小值为32.故选C.2.答案:D解析:由()()223x x f x a bx -=-++,得()()223x x f x a bx --=--+,()()6f x f x -+∴=,()()62025f h f h ∴-=-=.故选:D.3.答案:D解析:由题意得122236ωπππ⨯=-,解得2ω=,易知6x π=是()f x 的最小值点,所以322()62k k ϕππ⨯+=+π∈Z ,得72()6k k ϕπ=+π∈Z ,于是77()sin 22sin 266f x x k x ππ⎛⎫⎛⎫=++π=+ ⎪ ⎪⎝⎭⎝⎭,则557sin 2sin 1212632f ππππ⎛⎫⎛⎫-=-⨯+== ⎪ ⎪⎝⎭⎝⎭,故选D.4.答案:D解析:对于选项A:由正弦定理有sin sin sin a b c A B C ==,故sin sin a Ab B=,故选项A 错误;对于选项B :因为sin sin a c A C=,故sin sin a C c A =,故选项B 错误;对于选项C:()cos cos A B C +=-,由余弦定理2222cos c a b ab C =+-得()2222cos c a b ab A B =+++;故选项C 错误;对于选项D:由正弦定理可得sin sin a c A C=,再根据诱导公式可得:()sin sin a c A A B =+,即()sin sin a A B c A +=,故选项D 正确;故选:D 5.答案:B解析:根据两点间的斜率公式知①中2l 的斜率为2,但是不能保证12//l l ,因为有可能直线1l 与2l 重合;②③中的两条直线斜率相等但不重合,可以保证12//l l .故选B.6.答案:A解析:由题意,得(1,0,0)A ,(0,1,0)B ,(0,0,2)P ,则(1,1,0)AB =- ,(1,0,2)AP =-,设平面PAB 的一个法向量是(,,)x y z =n ,则0,0,AB AP ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,20,x y x z -+=⎧⎨-+=⎩令1x =,则1y =,12z =,所以11,1,2⎛⎫= ⎪⎝⎭n ,故选A.7.答案:D解析:根据题意,6(3)3,7,,7n n a n n a a n ---≤⎧=⎨>⎩()n +∈N ,要使{}n a 是递增数列,必有8630,1,(3)73,a a a a -->⎧⎪>⎨⎪-⨯-<⎩即3,1,29,a a a a <⎧⎪>⎨⎪><-⎩或可得23a <<.故选D.8.答案:B 解析:由已知,得()()322632s s -=-,()()2253352226m m ∴⨯+-⨯+=,解得1m =,故选:B.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.答案:BC解析:因为方程220x ax a ++=的两个实根为1x ,()212x x x ≠,所以280a a ∆=->,解得()(),08,a ∈-∞+∞ ,由12x x a +=-,122x x a =,所以()()12,016,x x ∈-∞+∞ ,所以A 错误;则()1211123421734342171717x x a a a a a ⋅+=+=+-+++--- ,当172a =+时,等号成立,所以12117x x a +-的最小值为34+B 正确;由1212121112x x x x x x ++==-,所以C 正确;当21127x x x x +=时,()22221212121212242722x x x x x x a a a x x x x a +-+-===-=,得18a =,所以D 错误.故选:BC.10.答案:ABD解析:由题意可知60T =,所以2π60ω=,解得π30ω=,又从点3)A -出发,所以6R =,6sin 3ϕ=-,又π||2ϕ<,所以π6ϕ=-,A 正确;ππ6sin()306y t =-,当[35,55]t ∈时,ππ5π[π,]3063t -∈,则ππsin([1,0]306t -∈-,[6,0]y ∈-,点P 到x 轴的距离为||y ,所以点P 到x 轴的距离的最大值为6,B 正确;当[10,25]t ∈时,πππ2π[,30663t -∈,所以函数ππ6sin(306y t =-在[10,25]上不单调,C 不正确;当20t =时,πππ3062t -=,则π6sin 62y ==,且π6cos 02x ==,所以()0,6P ,则||PA ==正确.故选ABD.三、填空题:本大题共4个小题,每小题5分,共20分.解析:分析知2223m m m +≠--,即1m ≠-且12m ≠.又由题意,得()()222231132m m m m m --=---+,所以2m =-.15.答案:0,3π⎡⎫⎪⎢⎣⎭解析:0k ≤< 0tan α∴≤<.又[0,)α∈π,0,3απ⎡⎫∴∈⎪⎢⎣⎭.16.答案:82.5解析:x 与y 之间的关系式为ˆ 6.517.5yx =+,则当广告费用支出为10元时,销售额的预报值为6.51017.582.5⨯+=.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.答案:(1)π3A =(2)见解析解析:(1)因为1n n a a n -=+,1n >,所以1n n a a n --=,1n >,所以当1n >时,()()()112211n n n n n a a a a a a a a ---=-+-+-+()()11212n n n n +=+-+++= ,当1n =时,上式也成立,所以()12n n n a +=;(2)由()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭,所以121111111112121222311n a a a n n n ⎛⎫⎛⎫+++=-+-++-=-< ⎪ ⎪++⎝⎭⎝⎭.19.答案:(1)3C =(2)32解析:(1)π()cos )sin 2cos()6f x x x x =+-=++由()f C =,得π2cos(6C +=,π2cos(06C +=()0,πC ∈ ππ7π(,)666C ∴+∈π3C ∴=.(2)由(1)知π3C =,又1sin 2ABC S ab C = △31πsin 223ab ∴=2ab ∴=由余弦定理得2222π32cos23a b ab a b ==+-+-225a b ∴+=,3a b +=由正弦定理得sin sin sin 12A B C a b c ===13sin sin ()22A B a b +=+=∴.(2)①a >;②证明见解析解析:(1)由题设()2(1)ln f x x x x =-+,则2(1)2()2ln 12ln 3x f x x x x x-'=++=-+,且0x >,所以(1)1f =,(1)1f '=,则在点(1,(1))f 处的切线方程为11y x -=-,即0x y -=.(2)①当1x >时()0f x =等价于20ln x x a x +-=,设()2ln x g x x a x =+-,则22ln 1(ln 1)(2ln 1)()2ln ln x x x g x x x -+-=+'=.当1x <<时()0g x '<,()g x 单调递减;当x >()0g x '>,()g x 单调递增;所以,当1x >时min ()g x g a ==,因为()f x 在(1,)+∞上存在两个不同的零点1x ,2x ,则min ()0g x <,解得a >.当a >时,取1a a x a =∈-,则1ln 11a a x x a <-=-,故()221201ln 111a a a a a x a a a g x x a a x a a a -=+->+-=>---,又2002ln 2a a g a⎛⎫=>= ⎪⎝⎭,所以()f x在和2a ⎫⎪⎭上各有一个零点,故a >.②因为()2ln 3a f x x x-'=+,所以22222()2ln 3x f x x x a x '=-+,结合()()22222ln 0f x x a x x =-+=知:()()2222222222232222a x a x f x a x a x x a a x -=-+=---+--'.设ln 1y x x =-+,则11y x'=-,在(0,1)上0y '>,在(1,)+∞上0y '<,所以y 在(0,1)上递增,在(1,)+∞上递减,故ln1110y ≤-+=,即ln 1x x ≤-,所以ln 1e ex x ⎛⎫≤- ⎪⎝⎭,即ln e x x ≤,当e x =时取等号,所以e e e e e e ln e 02222e 2a a a a a f -----⎛⎫=-+>-⋅+= ⎪⎝⎭.由①知,()f x 在[)2,x +∞上单调递增,且()20f x =,所以2e 2a x -≤,即22e a x -≥.因为22()2a a t t tϕ=--+在[e,)+∞上是减函数,且22e a x -≥,所以()()22222(e)e 22e a a x f x a x ϕϕ=-≤=--+',得证.。

安徽省合肥一六八中学等学校2024届高三上学期名校期末联合测试数学试题及答案

安徽省合肥一六八中学等学校2024届高三上学期名校期末联合测试数学试题及答案

2024届高三名校期末测试数学考生注意:1.试卷分值:150分,考试时间:120分钟.2.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答案区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.3.所有答案均要答在答题卡上,否则无效.考试结束后只交答题卡.一、单选题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.)1.已知集合{}{}{}1,2,3,4,5,2,3,2,U A B xx k k ====∈Z ∣,则U B A ⋂=ð()A.{}4 B.{}2,4 C.{}1,2 D.{}1,3,52.复数31i i ⎛⎫- ⎪⎝⎭的虚部为()A.8B.-8C.8iD.8i-3.已知向量()()0,2,1,a b t =-= ,若向量b 在向量a 上的投影向量为12a - ,则ab ⋅= ()A.2B.52-C.-2D.1124.在ABC 中,“π2C =”是“22sin sin 1A B +=”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.过点()0,2-与圆22410x y x +--=相切的两条直线的夹角为α,则cos α=()A.4B.14-C.4D.146.,,,,A B C D E 五人站成一排,如果,A B 必须相邻,那么排法种数为()A.24B.120C.48D.607.若系列椭圆()22*:101,n n n C a x y a n +=<<∈N 的离心率12nn e ⎛⎫= ⎪⎝⎭,则n a =()A.114n⎛⎫- ⎪⎝⎭B.112n⎛⎫- ⎪⎝⎭8.已知等差数列{}n a (公差不为0)和等差数列{}n b 的前n 项和分别为n n S T 、,如果关于x 的实系数方程21003100310030x S x T -+=有实数解,那么以下1003个方程()201,2,,1003i i x a x b i -+== 中,有实数解的方程至少有()个A.499B.500C.501D.502二、多选题(本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对得6分,部分选对得部分,有选错的得0分)9.已知一组数据:12,31,24,33,22,35,45,25,16,若去掉12和45,则剩下的数据与原数据相比,下列结论正确的是()A.中位数不变B.平均数不变C.方差不变D.第40百分位数不变10.双曲线2222:1(0,0)x y C a b a b -=>>,左、右顶点分别为,,A B O 为坐标原点,如图,已知动直线l 与双曲线C 左、右两支分别交于,P Q 两点,与其两条渐近线分别交于,R S 两点,则下列命题正确的是()A.存在直线l ,使得AP ∥ORB.l 在运动的过程中,始终有PR SQ=C.若直线l 的方程为2y kx =+,存在k ,使得ORB S 取到最大值D.若直线l 的方程为()2,22y x a RS SB =--= ,则双曲线C 11.如图所示,有一个棱长为4的正四面体P ABC -容器,D 是PB 的中点,E 是CD 上的动点,则下列说法正确的是()A.直线AE 与PB 所成的角为π2B.ABE 的周长最小值为4+C.如果在这个容器中放入1个小球(全部进入),则小球半径的最大值为3D.如果在这个容器中放入4个完全相同的小球(全部进入),则小球半径的最大值为25三、填空题(本大题共3小题,每小题5分,共15分)12.小于300的所有末尾是1的三位数的和等于__________.13.已知函数()()ln 11axf x x x =+-+,若()0f x 恒成立,则a =__________.14.已知抛物线2:2(0)C y px p =>,点P 为抛物线上的动点,点4,02p A ⎛⎫- ⎪⎝⎭与点P 的距离AP 的最小值为2,则p =__________.四、解答题(本大题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤)15.(13分)在ABC 中,,,A B C 的对边分别为,,a b c ,已知4,cos 0b c a C b ==+=.(1)求a ;(2)已知点D 在线段BC 上,且3π4ADB ∠=,求AD 长.16.(15分)甲、乙两人进行射击比赛,每次比赛中,甲、乙各射击一次,甲、乙每次至少射中8环.根据统计资料可知,甲击中8环、9环、10环的概率分别为0.7,0.2,0.1,乙击中8环、9环、10环的概率分别为0.6,0.2,0.2,且甲、乙两人射击相互独立.(1)在一场比赛中,求乙击中的环数少于甲击中的环数的概率;(2)若独立进行三场比赛,其中X 场比赛中甲击中的环数多于乙击中的环数,求X 的分布列与数学期望.17.(15分)如图,圆台12O O 的轴截面为等腰梯形11111,224A ACC AC AA A C ===,B 为底面圆周上异于,A C 的点.(1)在平面1BCC 内,过1C 作一条直线与平面1A AB 平行,并说明理由.(2)设平面1A AB ⋂平面11,,C CB l Q l BC =∈与平面QAC 所成角为α,当四棱锥11B A ACC -的体积最大时,求sin α的取值范围.18.(17分)已知函数()()ln 1f x x ax x =--.(1)当0a <时,探究()f x '零点的个数;(2)当0a >时,证明:()32f x -.19.(17分)阿波罗尼斯是古希腊著名数学家,他的主要研究成果集中在他的代表作《圆锥曲线》一书中.阿波罗尼斯圆是他的研究成果之一,指的是已知动点M 与两定点,Q P 的距离之比(0,1),MQ MPλλλλ=>≠是一个常数,那么动点M 的轨迹就是阿波罗尼斯圆,圆心在直线PQ 上.已知动点M 的轨迹是阿波罗尼斯圆,其方程为224x y +=,定点分别为椭圆2222:1(0)x y C a b a b+=>>的右焦点F 与右顶点A ,且椭圆C 的离心率为12e =.(1)求椭圆C 的标准方程;(2)如图,过右焦点F 斜率为(0)k k >的直线l 与椭圆C 相交于,B D (点B 在x 轴上方),点,S T 是椭圆C 上异于,B D 的两点,SF 平分,BSD TF ∠平分BTD ∠.①求BS DS的取值范围;②将点S F T 、、看作一个阿波罗尼斯圆上的三点,若SFT 外接圆的面积为81π8,求直线l 的方程.2024届高三名校期末测试·数学参考答案、提示及评分细则1.【答案】A【解析】{}{}{}U 1,2,3,4,5,2,3,1,4,5U A A ==∴= ð,又{}2,B x x k k ==∈Z ∣{}U 4B A ∴⋂=ð.故选:A.2.【答案】B【解析】因为331i (i i)8i i ⎛⎫-=+=- ⎪⎝⎭.故选:B.3.【答案】C【解析】由题b 在a 上的投影向量为()()2cos 0,||a b a ab t a a θ⋅⋅⨯== ,又()10,1,12a t -=∴= ,即()()1,1,01212b a b =∴⋅=⨯+-⨯=-.故选:C.4.【答案】A【解析】在ABC 中,πA B C ++=,则πB C A =--,充分性:当π2C =时,ππ,sin sin cos 22B A B A A ⎛⎫=-=-= ⎪⎝⎭,2222sin sin sin cos 1A B A A +=+=,所以“π2C =”是“22sin sin 1A B +=”的充分条件;必要性:当22sin sin 1A B +=时,取ππππ,121222A B A ==+=+,此时满足2222ππsin sin sincos 11212A B +=+=,但ππ32C =≠,所以“π2C =”是“22sin sin 1A B +=”的不必要条件.综上所述,“π2C =”是“22sin sin 1A B +=”的充分不必要条件.故选:A.5.【答案】B【解析】圆22410xy x +--=圆心()2,0C ,半径为r =;设()0,2P -,切线为PA PB 、,则PC PBC == 中,sin2BC PC α==,所以21cos 12sin 24αα=-=-.故选:B.6.【答案】C【解析】将,A B 看成一体,,A B 的排列方法有22A 种方法,然后将A 和B 当成一个整体与其他三个人一共4个元素进行全排列,即不同的排列方式有44A ,根据分步计数原理可知排法种数为2424A A 48=,故选:C.7.【答案】A【解析】椭圆n C 可化为22:111n x y a +=.因为01n a <<,所以离心率12nn ce a⎛⎫=== ⎪⎝⎭,解得:114nn a ⎛⎫=- ⎪⎝⎭.故选:A.8.【答案】D【解析】由题意得:210031003410030S T -⨯ ,其中()110031003502100310032a a S a +==,()110031003502100310032b b T b +==,代入上式得:250250240a b - ,要方程()201,2,3,,1003i i x a x b i -+== 无实数解,则240i i a b -<,显然第502个方程有解.设方程2110x a x b -+=与方程2100310030x a x b -+=的判别式分别为11003Δ,Δ,则()()()22221100311100310031100311003ΔΔ444a b a b a a b b +=-+-=+-+()()()22110035022502502502502242824022a a ab b a b +-⨯=-=- ,等号成立的条件是11003a a =,所以11003Δ0,Δ0<<至多一个成立,同理可证:21002Δ0,Δ0<<至多一个成立,501503Δ0,Δ0<< 至多一个成立,且502Δ0 ,综上,在所给的1003个方程中,无实数根的方程最多501个,故有实数解的方程至少有502个.故选:D.二、多选题(本大题共3小题,每小题6分,共18分)9.【答案】AD【解析】将原数据按从小到大的顺序排列为12,16,22,24,25,31,33,35,45,其中位数为25,平均数是()121622242531333545927++++++++÷=,方差是2222222221824(15)(11)(5)(3)(2)4681899⎡⎤⨯-+-+-+-+-++++=⎣⎦,由40%9 3.6⨯=,得原数据的第40百分位数是第4个数24.将原数据去掉12和45,得16,22,24,25,31,33,35,其中位数为25,平均数是()1861622242531333577++++++÷=,方差是222222217432181131455919167777777749⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⨯-+-+-+-+++=⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,由40%7 2.8⨯=,得新数据的第40百分位数是第3个数24,故中位数和第40百分位数不变,平均数与方差改变,故A ,D 正确,B ,C 错误.故选:AD.10.【答案】BD【分析】根据与渐近线平行的直线不可能与双曲线有两个交点可对A 项判断;设直线:l y kx t =+分别与双曲线联立,渐近线联立,分别求出,P Q 和,R S 坐标,从而可对B C 、项判断;根据2RS SB =,求出b =,从而可对D 项判断.【解析】对于A 项:与渐近线平行的直线不可能与双曲线有两个交点,故A 项错误;对于B 项:设直线:l y kx t =+,与双曲线联立22221y kx tx y ab =+⎧⎪⎨-=⎪⎩,得:()()22222222220b a k x a ktx a t a b ---+=,设()()1122,,,P x y Q x y ,由根与系数关系得:2222212122222222,a kt a b a t x x x x b a k b a k++==---,所以线段PQ 中点2221212222222,,22x x y y a kta k t N tb a k b a k ⎛⎫++⎛⎫=+ ⎪ ⎪--⎝⎭⎝⎭,将直线:l y kx t =+,与渐近线b y x a =联立得点S 坐标为,atbt S b ak b ak ⎛⎫ ⎪--⎝⎭,将直线:l y kx t =+与渐近线b y x a =-联立得点R 坐标为,atbt R b ak b ak -⎛⎫ ⎪++⎝⎭,所以线段RS 中点222222222,a kt a k tM t b a k b a k ⎛⎫+ ⎪--⎝⎭,所以线段PQ 与线段RS 的中点重合,所以2PQ RSPR SQ -==,故B 项正确;对于C 项:由B 项可得22112,,22ORBR ab b R S OB y OB b ak b ak b ak -⎛⎫=⨯=⎪+++⎝⎭ ,因为OB 为定值,当k 越来越接近渐近线b y x a =-的斜率ba-时,2b b ak +趋向于无穷,所以ORB S 会趋向于无穷,不可能有最大值,故C 项错误;对于D 项:联立直线l 与渐近线by xa =,解得2S ,联立直线l 与渐近线by xa =-,解得2R 由题可知,2RS SB = ,所以()2S R B S y y y y -=-即32S R B y y y =+,=,解得b =,所以e =D 项正确.故选:BD.11.【答案】ACD【解析】A 选项,连接AD ,由于D 为PB 的中点,所以,PB CD PB AD ⊥⊥,又,,CD AD D AD CD ⋂=⊂平面ACD ,所以直线PB ⊥平面ACD ,又AE ⊂平面ACD ,所以PB AE ⊥,故A 正确;B 选项,把ACD 沿着CD 展开与平面BDC 在同一个平面内,连接AB 交CD 于点E ,则AE BE +的最小值即为AB 的长,由于4AD CD AC ===,2222221cos 23CD AD AC ADC CD AD ∠+-===⋅,π22cos cos sin 23ADB ADC ADC ∠∠∠⎛⎫=+=-=-⎪⎝⎭,所以222222cos 2221633AB BD AD BD AD ADB ∠⎛⎫=+-⋅=+-⨯⨯-=+ ⎪ ⎪⎝⎭,故AB ABE ==的周长最小值为4+B 错误;C 选项,要使小球半径最大,则小球与四个面相切,是正四面体的内切球,设球心为O ,取AC 的中点M ,连接,BM PM ,过点P 作PF 垂直于BM 于点F ,则F 为ABC 的中心,点O 在PF 上,过点O 作ON PM ⊥于点N ,因为2,4AM AB ==,所以BM ==,同理PM =,则133MF BM ==,故3PF ==,设OF ON R ==,故3OP PF OF R =-=-,因为PNO PFM ∽,所以ON OP FM PM =3233R-=,解得63R =,C正确;D 选项,4个小球分两层(1个,3个)放进去,要使小球半径要最大,则4个小球外切,且小球与三个平面相切,设小球半径为r ,四个小球球心连线是棱长为2r 的正四面体Q VKG -,由C 选项可知,其高为263r ,由C 选项可知,PF 是正四面体P ABC -的高,PF 过点Q 且与平面VKG 交于S ,与平面HIJ 交于Z ,则26,3QS r SF r ==,由C 选项可知,正四面体内切球的半径是高的14,如图正四面体P HIJ -中,,3QZ r QP r ==,正四面体P ABC -高为2633r r r++43=,解得25r =,D 正确.故选:ACD.三、填空题(本大题共3小题,每小题5分,共15分)12.【答案】3920【解析】小于300的所有末尾是1的三位数是101,111,121,,291 ,是以101为首项,以10为公差的等差数列,所以小于300的所有末尾是1的三位数的和为()202010129139202S ⨯+==,故答案为:3920.13.【答案】1【解析】由题意得()()22111(1)(1)x a af x x x x -'-=-=+++,①当0a 时,()0f x '>,所以()f x 在()1,∞-+上单调递增,所以当()1,0x ∈-时,()()00f x f <=,与()0f x 矛盾;②当0a >时,当()1,1x a ∈--时,()()0,f x f x '<单调递减,当()1,x a ∞∈-+时,()()0,f x f x '>单调递增,所以()()min ()1ln 1f x f a a a =-=--,因为()0f x 恒成立,所以()ln 10a a -- ,记()()()11ln 1,1,ag a a a g a a a-=--=='-当()0,1a ∈时,()()0,g a g a '>单调递增,当()1,a ∞∈+时()()0,g a g a '<单调递减,所以()max ()10g a g ==,所以()ln 10a a -- ,又()ln 10a a -- ,所以()ln 10a a --=,所以1a =.14.【答案】24,12【解析】设()()2222222,,||424428342222p p p p P x y AP x y x x px x p x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=--+=--+-+=--+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦2234822p x p p⎡⎤⎛⎫=--+- ⎪⎢⎥⎝⎭⎣⎦(i )当3402p -,即803p < 时,2||AP 有最小值282p p -,即AP2=,解得2p =823+>,故2p =-.(ii )当3402p -<,即83p >时,2||AP 有最小值242p ⎛⎫- ⎪⎝⎭,即AP 有最小值422p -=,解得4p =或12.综上,p的值为24,12.四、解答题(本大题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤)15.【答案】(1)a =(2)455【解析】(1)cos 0a C b +=,由余弦定理得22202a b c a b ab+-⋅+=,即22230,4a b c b c +-===,则可得a =;(2)由余弦定理2225cos 25b a c C ab +-===-,3ππsin ,544C ADB ADC ∠∠∴===∴= ,则在ADC 中,由正弦定理可得sin sin AD ACC ADC∠=,sin sin 52AC CAD ADC∠⋅∴==.16.【答案】(1)0.2(2)分布列见解析期望为0.6【解析】(1)设乙击中的环数少于甲击中的环数为事件B ,则事件B 包括:甲击中9环乙击中8环,甲击中10环乙击中8环,甲击中10环乙击中9环,则()0.20.60.10.60.10.20.2P B =⨯+⨯+⨯=.(2)由题可知X 的所有可能取值为0,1,2,3,由(1)可知,在一场比赛中,甲击中的环数多于乙击中的环数的概率为0.2,则()3,0.2X B ~,所以()()0312330C 0.2(10.2)0.512,1C 0.2(10.2)0.384P X P X ==⨯⨯-===⨯⨯-=,()()()22330332C 0.210.20.096,3C 0.2(10.2)0.008P X P X ==⨯⨯-===⨯⨯-=,故X 的分布列为X 0123P0.5120.3840.0960.008所以()30.20.6E X =⨯=.17.【解析】(1)取BC 中点P ,作直线1C P ,直线1C P 即为所求,取AB 中点H ,连接1,A H PH ,则有PH ∥1,2AC PH AC =,如图,在等腰梯形11A ACC 中,1112A C AC =.HP ∴∥1111,,A C HP A C =∴四边形11A C PH 为平行四边形.1C P ∴∥1A H ,又1A H ⊂平面11,A AB C P ⊄平面1A AB ,1C P ∴∥平面1;A AB(2)由题意作BO '⊥平面11A ACC ,即BO '为四棱锥11B A ACC -的高,在Rt ABC 中,22190,22BA BC BA BC ABC BO AC AC AC ∠⋅+=='=,当且仅当BA BC =时取等号,此时点O '为2O 重合,梯形11A ACC 的面积S 为定值,1113B A ACC V S BO -=⋅',∴当BO '最大,即点O '与2O 重合时四棱椎11B A ACC -的体积最大,又22,2BO AC BO ⊥=,以2O 为原点,射线2221,,O A O B O O 分别为,,x y z 轴建立空间直角坐标系,在等腰梯形11A ACC 中,111224AC AA A C ===,此梯形的高h =11A C 为OAC的中位线,(()()((()11,2,0,0,0,2,0,,1,,2,2,0O A B C BC AB ∴-=--=-,(()20,,2,0,0BO O A =-=,设,R BQ BO λλ=∈,则()2,22AQ AB BQ AB BO λλ=+=+=-- ,设平面QAC 的一个法向量(),,n x y z = ,则()2202220n O A x n AQ x y z λ⎧⋅==⎪⎨⋅=-+-+=⎪⎩ ,取111,1),sin cos ,||n BC n n BC n BC λα⋅=-∴===,令1t λ=+,则sin α=0t =时,sin 0α=,当0t ≠时,0sin 4α<=,当且仅当75t =,即25λ=时取等号,综上0sin 4α .18.【解析】(1)()21212ax ax f x ax a x x-++=-+=',定义域为()0,∞+.二次函数221ax ax -++的判别式为28a a +,对称轴为14x =.当0a <时,二次函数221ax ax -++的图象开口向上,①280a a +<,即80a -<<时,()f x '在()0,∞+上无零点;②280a a +=,即8a =-时,()f x '在()0,∞+上有1个零点14;③280a a +>,即8a <-时,()f x '在()0,∞+有2个不同的零点;综上,当80a -<<时,()f x '在()0,∞+上无零点;当8a =-时,()f x '在()0,∞+上有1个零点;当8a <-时,()f x '在()0,∞+有2个不同的零点;(2)由(1)分析知,当0a >时,()f x '在()0,∞+上有1个零点,设零点为0x ,则20012ax ax +=,解得,04a x a=,进一步,当00x x <<时,()0f x '>,当0x x >时,()0f x '<,所以()()()20000000ln 1ln f x f x x ax x x ax ax =--=-+ ()0000011ln ln 22ax ax x ax x +-=-+=+※易证ln 1x x - ,所以()()()()000822133341222222a a a x ax a x +++--+=-==※ .19.【答案】(1)22186x y +=(2)①1,13⎛⎫ ⎪⎝⎭②22y x =-【解析】(1)方法①特殊值法,令()222,0,22c c M a a -+±=-+,且2a c =,解得22c =.22228,6a b a c ∴==-=,椭圆C 的方程为22186x y +=,方法②设(),M x y,由题意MF MAλ==(常数),整理得:2222222222011c a a c x y x λλλλ--+++=--,故222222220141c a a c λλλλ⎧-=⎪⎪-⎨-⎪=-⎪-⎩,又12c a =,解得:a c ==.2226b a c ∴=-=,椭圆C 的方程为22186x y +=.(2)①由1sin 21sin 2SBFSDF SB SF BSF SB S S SD SD SF DSF ∠∠⋅⋅==⋅⋅ ,又SBF SDF BF S S DF = ,BS BF DSDF∴=(或由角平分线定理得),令BF DFλ=,则BF FD λ=,设()00,D x y ,则有2203424x y +=,又直线l 的斜率0k >,则()0001,B B x x x y y λλλ⎧=+-⎪∈-⎨=-⎪⎩代入2234240x y +-=得:)22200314240x y λλλ⎤+-+-=⎦,即()()01530x λλ+-=,10,,13λλ⎛⎫>∴=⎪⎝⎭.②由(1)知,SB TB BF SDTDDF==,由阿波罗尼斯圆定义知,,,S T F 在以,B D 为定点的阿波罗尼斯圆上,设该圆圆心为1C ,半径为r ,与直线l 的另一个交点为N ,则有BF NB DFND=,即22BF r BF DFr DF-=+,解得:111r BF DF=-.又1281ππ8C S r ==圆,故119r BF DF =∴-=又012DF x ==,0000052111112111933222BF DF DF DF x x x λ--∴-=-===⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭.解得:00,,242x y k =-=-∴=∴直线l的方程为22y x =-.。

安徽省六安市2024届高三上学期期末教学质量检测数学试题含答案

安徽省六安市2024届高三上学期期末教学质量检测数学试题含答案

六安市2024年高三教学质量检测数学试题(答案在最后)注意事项:1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上.2、回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2log 1,A x x x =≤∈Z,{}220B x xx =+-<,则A B = ()A.{}0,1 B.{}2,1-- C.{}1,0- D.{}1-【答案】D 【解析】【分析】解出对数不等式和一元二次不等式,再根据交集含义即可.【详解】2log ||1x ≤,即22log ||log 2x ≤,则22x -≤≤且0x ≠,则{}2,1,1,2A =--,{}21B x x =-<<,所以{}1A B ⋂=-.故选:D .2.已知复数z 的共轭复数在复平面内对应的点为()2,2-,则复数1z的虚部为()A.1-B.i- C.14-D.1i 4-【答案】C 【解析】【分析】得到22i z =+,利用复数除法法则得到111i 44z =-,求出虚部.【详解】由已知得22i z =+,()()122i 1i 11i 22i 22i 444z --===-+-,则复数1z 的虚部为14-.故选:C3.已知向量a =,向量(1,b =- ,则a 与b 的夹角大小为()A.30︒B.60︒C.120︒D.150︒【答案】D 【解析】【分析】根据给定条件,利用向量夹角的坐标表示求解即得.【详解】向量a =,(1,b =-,则cos ,222a b 〈〉==-⨯ ,而0,180a b ︒≤〈〉≤︒ ,所以a,b的夹角为150︒.故选:D4.等差数列{}n a 的公差不为0,其前n 项和为n S ,若()83124m S a a a =++,则m =()A.11B.12C.13D.14【答案】C 【解析】【分析】由等差数列的前n 项和公式与通项公式转化为基本量计算即可.【详解】设等差数列{}n a 的公差为d ,所以81828S a d =+,则有()11118282214a d a d a m d a +=+++-+⎡⎤⎣⎦,即()141d m d =+,又0d ≠,所以114m +=,所以13m =.故选:C.5.函数()e 4,1ln ,1x x x f x x x ⎧+-<=⎨≥⎩,若()()()21105f a f a f +≤--,则实数a 的取值范围是()A.{}1- B.(],1-∞-C.[)1,-+∞ D.11,e⎡⎫--⎪⎢⎣⎭【答案】A 【解析】【分析】原不等式变形为()()25110f a f a ⎡⎤+≤-⎣⎦,再利用分段函数的单调性即可得到不等式,解出即可.【详解】当1x <时,()e 4xf x x =+-,因为e ,4x y y x ==-在(),1∞-上单调递增,此时()f x 单调递增,当1x ≥时,易知()ln f x x =单调递增,且当1x =时,1e 14e 30ln1+-=-<=,则()f x 在R 上单调递增,因为211a +≥,则()()()()()222215ln 1ln5ln5151f a f a a f a ⎡⎤++=++=+=+⎣⎦,所以由()()()21105f a f a f +≤--得()()25110f a f a ⎡⎤+≤-⎣⎦,所以()25110a a +≤-,解得1a =-.故选:A .6.已知ππcos 2cos 63αα⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭,则2πsin 23α⎛⎫+= ⎪⎝⎭()A.35 B.45C.45-D.35-【答案】B 【解析】【分析】根据诱导公式结合二倍角公式,利用齐次式计算可得.【详解】因为πππ632αα⎛⎫⎛⎫-++=⎪ ⎪⎝⎭⎝⎭,所以ππcos sin 63αα⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,则ππsin 2cos 33αα⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭,即πtan 23α⎛⎫+= ⎪⎝⎭,所以222πππ2sin cos 2tan 2πππ4333sin 22sin cos πππ3335sin cos tan 1333ααααααααα⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎛⎫⎛⎫⎛⎫⎝⎭⎝⎭⎝⎭+=++=== ⎪ ⎪ ⎪⎛⎫⎛⎫⎛⎫⎝⎭⎝⎭⎝⎭+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:B.7.圆()222:0O x y r r +=>上一点1,22A r r ⎛⎫⎪⎝⎭关于x 轴的对称点为B ,点E ,F 为圆O 上的两点,且满足EAB FAB ∠=∠,则直线EF 的斜率为()A.B.3C.3D.13【答案】B 【解析】【分析】根据圆的性质以及斜率乘积与直线垂直的关系即可.【详解】由EAB FAB ∠=∠知BOE BOF ∠=∠,所以OB EF ⊥,而212OB OArk k r =-=-=,∴3EF k =.故选:B.8.某种生命体M 在生长一天后会分裂成2个生命体M 和1个生命体N ,1个生命体N 生长一天后可以分裂成2个生命体N 和1个生命体M ,每个新生命体都可以持续生长并发生分裂.假设从某个生命体M 的生长开始计算,记n a 表示第n 天生命体M 的个数,n b 表示第n 天生命体N 的个数,则11a =,10b =,则下列结论中正确的是()A.413a = B.数列{}nnb a 为递增数列C.5163ni b==∑ D.若{}n n a b λ+为等比数列,则1λ=【答案】B 【解析】【分析】根据给定条件,求出递推公式,进而求出数列{},{}n n a b 的通项公式,再逐项分析判断即得.【详解】依题意,12n n n a a b +=+,12n n n b b a +=+,则113()n n n n a b a b +++=+,而111a b +=,因此数列{}n n a b +是首项为1,公比为3的等比数列,13n n n a b -+=,又11n n n n a b a b ++=--,因此111n n a a b b -=-=,于是1312n n a -+=,1312n n b --=,对于A ,3431142a +==,A 错误;对于B ,11131213131n n n n n b a ----==-++,显然数列12{}31n -+是递减数列,因此{}n n b a 为递增数列,B 正确;对于C ,51014134058ni b==++++=∑,C 错误;对于D ,1122331,2,54a b a b a b λλλλλ==+=++++,由{}n n a b λ+为等比数列,得2(2)54λλ+=+,解得1λ=或1λ=-,当1λ=时,13n n n b a λ-+=,显然数列{}n n a b λ+是等比数列,当1λ=-时,1n n a b λ+=,显然数列{}n n a b λ+是等比数列,因此当数列{}n n a b λ+是等比数列时,1λ=或1λ=-,D 错误.故选:B【点睛】思路点睛:涉及求数列单调性问题,可以借助作差或作商的方法判断单调性作答,也可以借助函数单调性进行判断.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列函数中,既是偶函数,又在区间()0,∞+上单调递增的是()A.ln y x =B.ln y x= C.2y x -= D.e e x xy -=+【答案】AD 【解析】【分析】A 选项,根据函数奇偶性得到()ln f x x =为偶函数,且在()0,∞+单调递增,A 正确;B 不满足奇偶性,C 不满足单调性;D 选项,满足为偶函数,且求导得到函数在()0,x ∈+∞上单调递增,得到答案.【详解】A 选项,()ln f x x =定义域为()(),00,x ∈-∞⋃+∞,且()()ln ln f x x x f x -=-==,故()ln f x x =为偶函数,且()0,x ∈+∞时,ln y x =单调递增,故A 正确;B 选项,ln y x =的定义域为()0,∞+,故不是偶函数,故B 项错误;C 选项,()0,x ∈+∞时,2y x -=单调递减,故C 项错误;D 选项,()e exxg x -=+的定义域为R ,且()()e e x xg x g x --=+=,故()e exxg x -=+是偶函数,且()0,x ∈+∞时,()e e0xxg x -'=->,函数单调递增,故D 项正确.故选:AD10.地震释放的能量E 与地震震级M 之间的关系式为lg 4.8 1.5E M =+,2022年9月18日我国台湾地区发生的6.9级地震释放的能量为1E ,2023年1月28日伊朗西北发生的5.9级地震释放的能量为2E ,2023年2月6日土耳其卡赫拉曼马拉什省发生的7.7级地震释放的能量为3E ,下列说法正确的是()A.1E 约为2E 的10倍B.3E 超过2E 的100倍C.3E 超过1E 的10倍D.3E 低于1E 的10倍【答案】BC 【解析】【分析】根据题意,结合对数运算公式,即可判断.【详解】A.()12lg lg 1.5 6.9 5.9E E -=⨯-,所以 1.51210E E =,故A 错误;B.()32lg lg 1.57.7 5.9E E -=⨯-, 2.73210100E E =>,故B 正确;C.()31lg lg 1.57.7 6.9E E -=⨯-, 1.2311010E E =>,故C 项正确,D 项错误.故选:BC11.已知函数()f x 的导函数为()f x ',对任意的正数x ,都满足()()()22f x xf x f x x <<-',则下列结论正确的是()A.()1122f f ⎛⎫< ⎪⎝⎭B.()()1122f f <C.()11422f f ⎛⎫<- ⎪⎝⎭D.()()11214f f <+【答案】BC 【解析】【分析】设()()()0f x g x x x=>,利用导数求出()g x 的单调性,据此即可判断A 和B 选项,设()()()220f x x h x x x-=>,根据导数求出()h x 的单调性,据此即可求解C 和D 选项.【详解】设()()()0f x g x x x=>,则()()()20xf x f x g x x'-='>,所以()g x 在()0,∞+上单调递增,由()112g g ⎛⎫>⎪⎝⎭得()1122f f ⎛⎫> ⎪⎝⎭,故A 项错误;由()()12g g <得()()1122f f <,故B 项正确;设()()()220f x x h x x x-=>,则()()()()()()()()243222220f x x f x x x xf x f x x h x x x ---⋅--=''=<',所以()h x 在()0,∞+上单调递减,由()112h h ⎛⎫<⎪⎝⎭得()11422f f ⎛⎫<- ⎪⎝⎭,故C 项正确:由()()12h h >得()()11214f f >+,故D 项错误.故选:BC.12.在棱长为1的正方体1111ABCD A B C D -中,P 为棱上一点,满足1PA PC d +=(d 为定值),记P 点的个数为n ,则下列说法正确的是()A.当d =2n =B.1d <<+时,6n =C.当d =时,15n =D.n 的最大值为18【答案】AD 【解析】【分析】由点P 的位置进行分类讨论判断求解即可.【详解】当点P 位于A 或1C 处时,d当P 在AB 棱上由A 到B 移动时,d 1,当P 在AD ,1AA ,1C C ,11C B ,11C D 等棱上移动时,d 1+当P 在1BB 棱上由B 到1B 移动时,d 由11+;当P 在BC ,DC ,1D D ,11A B ,11A D 等棱上移动时,d 也是由1+再由增大到1+.故选:AD.三、填空题:本题共4小题,每小题5分,共20分.13.抛物线24y x =的焦点F 与x 轴上一点A 的连线的中点P 恰在抛物线上,则线段AF 的长为______.【答案】316##0.1875【解析】【分析】根据题意求线段AF 的中点坐标,结合抛物线的定义分析求解.【详解】因为24y x =,即214x y =,可知抛物线的焦点10,16F ⎛⎫⎪⎝⎭,准线为116y =-,设(),0A a ,则线段AF的中点为1,232a ⎛⎫⎪⎝⎭,则113321632PF =+=,所以3216AF PF ==.故答案为:316.14.如图,在四边形ABCD 中,AD AB ⊥,120ADC ∠=︒,AB =,1AD =,2CD =,求四边形ABCD 绕直线AD 旋转一周所成几何体的表面积为______.【答案】(12π+【解析】【分析】作出辅助线,求出各边长度,求出以AB 为半径的圆的面积,以CD 为母线和CE 为半径的圆锥的侧面积,以BC 为母线的圆台的面积,相加后得到答案.【详解】作CE AD ⊥,CFAB ⊥,E ,F 为垂足,因为120ADC ∠=︒,所以60EDC ∠=︒,因为2CD =,所以1DE =,CE =,故==AF CE ,又AB =1AD =,故2CF AE AD DE ==+=,BF AB AF =-=,由勾股定理得CB ==,四边形ABCD 绕直线AD 旋转一周所成几何体的表面积分为三部分,以AB 为半径的圆的面积(2π12π=,以CD 为母线和CE 为半径的圆锥的侧面积πrl =,以BC 为母线的圆台的侧面积+=所以该几何体的表面积为(12π+.故答案为:(12π+15.已知函数()()()22cos0f x x ωω=>的最小正周期为π,将函数()y f x =的图象上的所有点向右平移π6个单位长度,再将所得的图象上各点的横坐标缩短为原来的12,纵坐标不变,得到()y g x =的图象,则()y g x =在ππ,124⎡⎤⎢⎥⎣⎦上的值域为______.【答案】1,22⎡⎤⎢⎥⎣⎦【解析】【分析】化简()f x 的解析式,根据()f x 的最小正周期求得ω,根据三角函数图象变换的知识求得()g x ,进而求得()g x 在ππ,124⎡⎤⎢⎣⎦上的值域.【详解】()cos21f x x ω=+,2ππ2ω=,22ω=,()cos21f x x =+,将函数()y f x =的图象上的所有点向右平移π6个单位长度,得到ππcos 21cos 2163y x x ⎡⎤⎛⎫⎛⎫=-+=-+ ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦,再将所得的图象上各点的横坐标缩短为原来的12,得到()πcos 413g x x ⎛⎫=-+ ⎪⎝⎭,因为ππ,124x ⎡⎤∈⎢⎥⎣⎦,所以π2π40,33x ⎡⎤-∈⎢⎥⎣⎦,所以π1cos 4,132x ⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,所以()y g x =在ππ,124⎡⎤⎢⎣⎦上的值域为1,22⎡⎤⎢⎥⎣⎦.故答案为:1,22⎡⎤⎢⎥⎣⎦16.已知2F 是双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,圆222:O x y a +=与双曲线C 的渐近线在第一象限交于点A ,点B 在双曲线C 上,222BF F A =-,则双曲线C 的渐近线方程为______.【答案】2y x =±【解析】【分析】求出点A 的坐标及2AF 长,由222BF F A =-可得点A 为2BF 的中点,再结合双曲线定义求解即得.【详解】由222BF F A =-,得点A 为2BF 的中点,记1F 为C 的左焦点,连接1BF ,令半焦距为c ,则122BF OA a ==,由222b y x ax y a ⎧=⎪⎨⎪+=⎩,解得2a x cab y c ⎧=⎪⎪⎨⎪=⎪⎩,即2(,)a ab A c c ,而2(,0)F c ,因此2222()()a ab AF c b c c=-+=,由双曲线定义得222b a a -=,即2b a =,所以双曲线C 的渐近线方程为2y x =±.故答案为:2y x=±四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知数列{}n a 的前n 项和为n S ,()()140n n S a λλλ-=->.(1)求证:数列{}n a 为等比数列;(2)当2λ=时,设1221log log n n n a n a n b a a ++++=+,求数列{}n b 的前n 项和n T .【答案】(1)证明见解析(2)261939n n nT n +=+【解析】【分析】(1)根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩作差得到1n n a a λ+=,即可得证;(2)由(1)可得12n n a +=,则321122323n n n b n n n n ++=+=+-++++,再利用裂项相消法计算可得.【小问1详解】证明:因为()()140n n S a λλλ-=->,当1n =时,()1114S a λλ-=-,解得14a =,由()14n n S a λλ-=-得()1114n n S a λλ++-=-,两式作差得()()()111144n n n n S S a a λλλλ++---=---,即()111n n n a a a λλλ++-=-,则1n n a a λ+=,又0λ>,所以数列{}n a 是首项为4,公比为λ的等比数列.【小问2详解】当2λ=时,由(1)得11422n n n a -+=⨯=,又223121322232log log log log 2322n n n n n n n a n a n n n b a a n n ++++++++++=+=+=+++,所以322131112232323n n n n n b n n n n n n +++++-=+=+=+-++++++,所以1111112344523n T n n n ⎛⎫⎛⎫⎛⎫=+-+-+⋅⋅⋅+-⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭1111112344523n n n ⎛⎫=+-+-+⋅⋅⋅+- ⎪++⎝⎭21161923339n n n n n +⎛⎫=+-=⎪++⎝⎭.18.在ABC 中,内角A ,B ,C 所对应的边分别为a ,b ,c .(1)若12b a =,6sin sin B A -=,求角A 的值;(2)若π3A =,且b 是a 和3c 的等差中项,求cos B 的值.【答案】(1)π3A =或2π3(2)1cos 7B =-【解析】【分析】(1)根据题意利用正弦定理边化角即可得结果;(2)由等差中项可得23a b c =-,结合余弦定理解得83b c =,73a c =,代入余弦定理即可得结果.【小问1详解】因为12b a =,由正弦定理sin sin b a B A=得1sin sin 2B A =,又因为6sin sin B A -=sin 2A =,且()0,πA ∈,所以π3A =或2π3.【小问2详解】显然0,0,0a b c >>>,由b 是a 和3c 的等差中项得23b a c =+,即230a b c =->,可得32b c >,因为π3A =,由余弦定理2222cos a b c bc A =+-可得()22223b c b c bc -=+-,化简得2231180b bc c -+=,即()()380b c b c --=,解得83b c =或b c =(舍去),由23a b c =-,可得73a c =,由余弦定理222cos 2a c b B ac +-=,得22278133cos 7723c c c B c c ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭==-⎛⎫⨯ ⎪⎝⎭.19.已知函数()()36R f x x ax a =+-∈.(1)若函数()f x 的图象在2x =处的切线与x 轴平行,求函数()f x 的图象在3x =-处的切线方程;(2)讨论函数()f x 的单调性.【答案】19.15480x y -+=20.答案见解析【解析】【分析】(1)先求导函数再求斜率最后写出切线方程;(2)分类讨论列表根据导函数求单调性.【小问1详解】()23f x x a ='+.由题意()2120f a ='+=,解得12a =-,所以()3126f x x x =--,()33f -=,()315f '-=()f x 在3x =-处的切线方程为15480x y -+=【小问2详解】()23f x x a ='+.①当0a ≥时,()0f x '≥,()f x 在R 上单调递增.②当0a <时,由()0f x '=得x =,()f x 在R 上的变化情况如下表:由上表可得()f x 在,∞⎛- ⎝上单调递增,在⎛ ⎝上单调递减,在∞⎫+⎪⎪⎭上单调递增.综上,当0a ≥时,增区间为(),∞∞-+,无减区间;当0a <时,增区间为,∞⎛- ⎝和∞⎫+⎪⎪⎭,减区间为⎛ ⎝.20.如图,在三棱锥A BCD -中,CE BD ⊥,垂足为点E ,AH ⊥平面BCD ,垂足H 在CE 上,点F 在AC 上,且CEF CAH ∠=∠.(1)证明:AC ⊥平面BDF ;(2)若22BE DE ==,22CH EH ==,三棱锥A BCD -的体积为BF 与平面ABD 所成角的正弦值.【答案】(1)证明见解析(2)5.【解析】【分析】(1)利用线面垂直得到线线垂直,由CEF CAH ∠=∠,可得出AC EF ⊥,利用线面垂直的判定定理可以证得AC ⊥平面BDF ;(2)通过三棱锥A BCD -的体积,可以求出AH ,进一步求AC ,由两个三角形AHC ,EFC 相似,得出F 为AC 的中点,然后建立空间直角坐标系,求平面ABD 的法向量,进而可以求得直线与平面所成角的正弦值.【小问1详解】由AH ⊥平面BCD ,BD ⊂平面BCD ,得AH BD ⊥,又CE BD ⊥,而AH ⊂平面ACE ,CE ⊂平面ACE ,AH CE H = ,所以BD ⊥平面ACE ,又AC ⊂平面ACE ,所以BD AC ⊥.再由AH ⊥平面BCD ,EC ⊂平面BCD ,得AH EC ⊥,得90AHC ∠=︒,又CEF CAH ∠=∠,ACH ECF ∠=∠,得90EFC AHC ︒∠=∠=,即AC EF ⊥.又EF ⊂平面BDF ,BD ⊂平面BDF ,EF BD E = ,所以AC ⊥平面BDF .【小问2详解】由条件知11133322A BCD BCD V S AH BD CE AH AH -=⋅=⨯⨯⨯⨯==所以AH =,在Rt AHC 中,2228412AC AH CH =+=+=,所以AC =由(1)知Rt Rt AHC EFC ~△△,所以FC ECHC AC =,即2FC =,得FC =,可知F 为AC 的中点,过点H 作HG BD ∥交BC 于点G由(1)易得HG ,HC ,HA 两两垂直,以{HG 、HC 、}HA正交基底,建立空间直角坐标系H xyz -,如图所示由题意可知,(0,0,A ,()2,1,0B -,()0,1,0E -,()0,2,0C,(F .则(0,1,EA = ,()2,0,0EB =,(2,BF =- ,设平面ABD 的一个法向量为(),,n x y z =,则020EA n y EB n x ⎧⋅=+=⎪⎨⋅==⎪⎩,令1z =-,则y =,所以平面ABD的一个法向量()0,1n =-,设直线BF 与平面ABD 所成角θ,则sin =cos<,5n BF n BF n BFθ⋅>===⋅.故直线BF 与平面ABD所成角的正弦值为5.21.平面内一动点P 到直线:4l y =的距离,是它到定点()0,1F 的距离的2倍.(1)求动点P 的轨迹Γ的方程;(2)经过点F 的直线(不与y 轴重合)与轨迹Γ相交于M ,N 两点,过点M 作y 轴平行线交直线l 于点T ,求证:直线NT 过定点.【答案】(1)22143y x +=(2)证明见解析【解析】【分析】(1)由题意得4y -=,化简即可得解;(2)设直线MN 的方程以及,,M N T 的坐标,联立若椭圆方程,由韦达定理得()121232kx x x x =+,表示出NT 的方程,令0x =,证明此时y 为定值即可得证.【小问1详解】由题意,设动点P 的坐标为(),x y,则4y -=,平方整理得22143y x +=,所以点P 的轨迹Γ方程为22143y x+=.【小问2详解】由题意,设直线MN 的方程为1y kx =+,()11,M x y ,()22,N x y ,则()1,4T x .将1y kx =+代入22143y x +=得()2234690k x kx ++-=,所以122634k x x k -+=+,122934x x k -=+,显然0∆>,所以()121232kx x x x =+.因为直线NT 的方程为()212144y y x x x x --=--,令0x =,则()21221221122121214144x x kx x x y x x kx x y x x x x x x -+---===---()()21122121213545222x x x x x x x x x x --+-===--,因此,直线NT 过定点50,2⎛⎫ ⎪⎝⎭.【点睛】关键点点睛:本题第二问的关键是采用设线法,设直线MN 的方程为1y kx =+,再将其椭圆方程联立得到韦达定理式,再化积为和得到()121232kx x x x =+,再得到直线NT 的方程,令0x =计算即可.22.已知函数()()()22ln 211R 2m f x x x m x m =+-++∈.(1)求函数()f x 的极值;(2)设函数()f x 有两个极值点12,x x ,求证:()()122f x f x f m ⎛⎫+< ⎪⎝⎭.【答案】(1)答案见解析(2)证明见解析【解析】【分析】(1)求定义域,求导,对导函数因式分解,分0m ≤,12m =,12m >,102m <<,得到函数的单调性,进而得到函数的极值情况;(2)由(1)得110,,22m ∞⎛⎫⎛⎫∈⋃+ ⎪ ⎪⎝⎭⎝⎭,并得到()()12212ln 222f x f x m m m +=---,2222ln 44f m m ⎛⎫=-+ ⎪ ⎪⎝⎭,作差法得到()()21222f x f x f m ⎛⎫⎫+-=-- ⎪⎪ ⎪⎭⎝⎭,结合m 的范围得到结论.【小问1详解】()()22ln 2112m f x x x m x =+-++的定义域为()0,∞+,()()()()()()2212212210mx m x x mx f x mx m x x x x-++--'=+-+==>①若0m ≤,则()20f '=,()0,2x ∈时()0f x '>,()2,x ∞∈+时()0f x '<,故()f x 在()0,2x ∈上单调递增,在()2,x ∞∈+上单调递减,所以函数的极大值为()22ln221f m =--,无极小值,②若12m =,则()()2202x f x x'-=≥,()f x 在()0,∞+上单调递增,无极值.③若12m >,由()()()210x mx f x x--'==得2x =或1x m =,10,x m ⎛⎫∈ ⎪⎝⎭时()0f x '>,1,2x m ⎛⎫∈ ⎪⎝⎭时()0f x '<,()2,x ∞∈+时()0f x '>,故()f x 在10,m ⎛⎫ ⎪⎝⎭,()2,∞+上单调递增,在1,2m ⎛⎫⎪⎝⎭上单调递减,所以极大值为112ln 12f m m m ⎛⎫=---⎪⎝⎭,极小值为()22ln221f m =--.④若102m <<,由()()()210x mx f x x--'==得2x =或1x m =,()0,2x ∈时()0f x '>,12,x m ⎛⎫∈ ⎪⎝⎭时()0f x '<,1,x m ∞⎛⎫∈+ ⎪⎝⎭时()0f x '>,故()f x 在()0,2,1,m ∞⎛⎫+⎪⎝⎭上单调递增,在12,m ⎛⎫⎪⎝⎭上单调递减,所以极大值为()22ln221f m =--,极小值为112ln 12f m m m ⎛⎫=---⎪⎝⎭.综上,当0m ≤时,极大值为()22ln221f m =--,无极小值;当102m <<时,极大值为()22ln221f m =--,极小值为112ln 12f m m m ⎛⎫=--- ⎪⎝⎭;当12m =时,()f x 无极值;当12m >时,极大值为112ln 12f m m m ⎛⎫=--- ⎪⎝⎭,极小值为()22ln221f m =--.【小问2详解】由(1)知函数()f x 有两个极值点时,110,,22m ∞⎛⎫⎛⎫∈⋃+ ⎪ ⎪⎝⎭⎝⎭.()()()121122ln2212ln 12f x f x f f m m m m ⎛⎫+=+=----- ⎪⎝⎭212ln222m m m=---,()222224ln 222122ln 44f m m m m m ⎛⎫=+-++=-++ ⎪ ⎪⎝⎭,所以()()122122462f x f x f m m m ⎛⎫+-=--++- ⎪⎪⎝⎭22442⎫=-+-=-⎪⎭,因为110,,22m ∞⎛⎫⎛⎫∈⋃+ ⎪ ⎪⎝⎭⎝⎭2≠,所以()()212220f x f x f m ⎛⎫⎫+-=-+< ⎪⎪ ⎪⎭⎝⎭,即()()1222f x f x f m ⎛⎫+<- ⎪ ⎪⎝⎭.【点睛】方法点睛:在导数解答题中,单调性问题是绕不开的一个问题,因为单调性是解决后续问题的关键,利用导函数求解函数单调性步骤,先求定义域,再求导,导函数能因式分解的要进行因式分解,根据导函数的正负号,确定函数的单调区间,若不能直接求出,可能需要多次求导.。

北京市海淀区2023-2024学年高三上学期期末考试 数学含答案

北京市海淀区2023-2024学年高三上学期期末考试 数学含答案

海淀区2023—2024学年第一学期期末练习高三数学(答案在最后)2024.01本试卷共6页,150分.考试时长120分钟.考生务必将答案答在答题纸上,在试卷上作答无效.考试结束后,将本试卷和答题纸一并交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}1,2,3,4,5,6U =,{}1,3,5A =,{}1,2,3B =,则()U A B = ð()A .{}2,4,5,6B .{}4,6C .{}2,4,6D .{}2,5,62.如图,在复平面内,复数1z ,2z 对应的点分别为1Z ,2Z ,则复数12z z ⋅的虚部为()A .i-B .1-C .3i -D .3-3.已知直线1:12yl x +=,直线2:220l x ay -+=,且12l l ∥,则a =()A .1B .1-C .4D .4-4.已知抛物线2:8C y x =的焦点为F ,点M 在C 上,4MF =,O 为坐标原点,则MO =()A .B .4C .5D .5.在正四棱锥P ABCD -中,2AB =,二面角P CD A --的大小为4π,则该四棱锥的体积为()A .4B .2C .43D .236.已知22:210C x x y ++-= ,直线()10mx n y +-=与C 交于A ,B 两点.若ABC △为直角三角形,则()A .0mn =B .0m n -=C .0m n +=D .2230m n -=7.若关于x 的方程log 0xa x a -=(0a >且1a ≠)有实数解,则a 的值可以为()A .10B .eC .2D .548.已知直线1l ,2l 的斜率分别为1k ,2k ,倾斜角分别为1α,2α,则“()12cos 0->αα”是“120k k >”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件9.已知{}n a 是公比为q (1q ≠)的等比数列,n S 为其前n 项和.若对任意的*N n ∈,11n a S q<-恒成立,则()A .{}n a 是递增数列B .{}n a 是递减数列C .{}n S 是递增数列D .{}n S 是递减数列10.蜜蜂被誉为“天才的建筑师”.蜂巢结构是一种在一定条件下建筑用材面积最小的结构.下图是一个蜂房的立体模型,底面ABCDEF 是正六边形,棱AG ,BH ,CI ,DJ ,EK ,FL 均垂直于底面ABCDEF ,上顶由三个全等的菱形PGHI ,PIJK ,PKLG 构成.设1BC =,GPI IPK ∠=∠KPG =∠=θ10928'≈︒,则上顶的面积为()(参考数据:1cos 3=-θ,tan2=θ)A .B .2C .2D .4第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.在51x ⎫-⎪⎭的展开式中,x 的系数为______.12.已知双曲线221x my -=0y -=,则该双曲线的离心率为______.13.已知点A ,B ,C 在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则AB BC ⋅=______;点C 到直线AB 的距离为______.14.已知无穷等差数列{}n a 的各项均为正数,公差为d ,则能使得1n n a a +为某一个等差数列{}n b 的前n 项和(1n =,2,…)的一组1a ,d 的值为1a =______,d =______.15.已知函数()cos f x x a =+.给出下列四个结论:①任意a ∈R ,函数()f x 的最大值与最小值的差为2;②存在a ∈R ,使得对任意x ∈R ,()()π2f x f x a +-=;③当0a ≠时,对任意非零实数x ,ππ22f x f x ⎛⎫⎛⎫ ⎪ ⎪-⎝⎭⎝+⎭≠;④当0a =时,存在()0,πT ∈,0x ∈R ,使得对任意n ∈Z ,都有()()00f x f x nT =+.其中所有正确结论的序号是______.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.(本小题13分)如图,在四棱柱1111ABCD A B C D -中,侧面11ABB A 是正方形,平面11ABB A ⊥平面ABCD ,AB CD ∥,12AD DC AB ==,M 为线段AB 的中点,1AD B M ⊥.(Ⅰ)求证:1C M ∥平面11ADD A ;(Ⅱ)求直线1AC 与平面11MB C 所成角的正弦值.17.(本小题14分)在ABC △中,2cos 2c A b a =-.(Ⅰ)求C ∠的大小;(Ⅱ)若c =ABC △存在,求AC 边上中线的长.条件①:ABC △的面积为条件②:1sin sin 2B A -=;条件③:2222b a -=.注:如果选择的条件不符合要求,得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.18.(本小题13分)甲、乙、丙三人进行投篮比赛,共比赛10场,规定每场比赛分数最高者获胜,三人得分(单位:分)情况统计如下:场次12345678910甲8101071288101013乙9138121411791210丙121191111998911(Ⅰ)从上述10场比赛中随机选择一场,求甲获胜的概率;(Ⅱ)在上述10场比赛中,从甲得分不低于10分的场次中随机选择两场,设X 表示乙得分大于丙得分的场数,求X 的分布列和数学期望()E X ;(Ⅲ)假设每场比赛获胜者唯一,且各场相互独立,用上述10场比赛中每人获胜的频率估计其获胜的概率.甲、乙、丙三人接下来又将进行6场投篮比赛,设1Y 为甲获胜的场数,2Y 为乙获胜的场数,3Y 为丙获胜的场数,写出方差()1D Y ,()2D Y ,()3D Y 的大小关系.19.(本小题15分)已知椭圆2222:1x y E a b+=(0a b >>)过点()3,0A ,焦距为(Ⅰ)求椭圆E 的方程,并求其短轴长;(Ⅱ)过点()1,0P 且不与x 轴重合的直线l 交椭圆E 于两点C ,D ,连接CO 并延长交椭圆E 于点M ,直线AM 与l 交于点N ,Q 为OD 的中点,其中O 为原点.设直线NQ 的斜率为k ,求k 的最大值.20.(本小题15分)已知函数()2sin f x ax x x b =-+.(Ⅰ)当1a =时,求证:①当0x >时,()f x b >;②函数()f x 有唯一极值点;(Ⅱ)若曲线1C 与曲线2C 在某公共点处的切线重合,则称该切线为1C 和2C 的“优切线”.若曲线()y f x =与曲线cos y x =-存在两条互相垂直的“优切线”,求a ,b 的值.21.(本小题15分)对于给定的奇数m (3m ≥),设A 是由m m ⨯个实数组成的m 行m 列的数表,且A 中所有数不全相同,A 中第i 行第j 列的数{}1,1ij a ∈-,记()r i 为A 的第i 行各数之和,()c j 为A 的第j 列各数之和,其中{},1,2,,i j m ∈⋅⋅⋅.记()()()()2212m r r m f r A -++⋅⋅⋅+=.设集合()()(){}{},00,,1,2,,ij ij H i j a r a c j i m i j =⋅<⋅<∈⋅⋅⋅或,记()H A 为集合H 所含元素的个数.(Ⅰ)对以下两个数表1A ,2A ,写出()1f A ,()1H A ,()2f A ,()2H A 的值;1A 2A (Ⅱ)若()1r ,()2r ,…,()r m 中恰有s 个正数,()1c ,()2c ,…,()c m 中恰有t 个正数.求证:()2H A mt ms ts ≥+-;(Ⅲ)当5m =时,求()()H A f A 的最小值.海淀区2023—2024学年第一学期期末练习高三数学参考答案一、选择题(共10小题,每小题4分,共40分)1.A 2.D 3.B 4.D 5.C 6.A7.D8.B9.B10.D二、填空题(共5小题,每小题5分,共25分)11.5-12.213.1-514.11(答案不唯一)15.②④三、解答题(共6小题,共85分)16.(共13分)解:(Ⅰ)连接1AD .在四棱柱1111ABCD A B C D -中,侧面11CDD C 为平行四边形,所以11C D CD ∥,11C D CD =.因为AB CD ∥,12CD AB =,M 为AB 中点,所以CD AM ∥,CD AM =.所以11C D AM ∥,11C D AM =.所以四边形11MAD C 为平行四边形.所以11MC AD ∥.因为1C M ⊄平面11ADD A ,所以1C M ∥平面11ADD A .(Ⅱ)在正方形11ABB A 中,1AA AB ⊥.因为平面11ABB A ⊥平面ABCD ,所以1AA ⊥平面ABCD .所以1AA AD ⊥.因为1AD B M ⊥,1B M ⊂平面11ABB A ,1B M 与1AA 相交,所以AD ⊥平面11ABB A .所以AD AB ⊥.如图建立空间直角坐标系A xyz -.不妨设1AD =,则()0,0,0A ,()11,2,1C ,()10,2,2B ,()0,0,1M .所以()11,2,1AC = ,()111,0,1C B =- ,()11,2,0MC =.设平面11MB C 的法向量为(),,n x y z = ,则1110,0,n C B n MC ⎧⋅=⎪⎨⋅=⎪⎩ 即0,20.x z x y -+=⎧⎨+=⎩令2x =,则1y =-,2z =.于是()2,1,2n =-.因为1116cos ,9AC n AC n AC n⋅==⋅,所以直线1AC 与平面11MB C 所成角的正弦值为69.17.(共14分)解:(Ⅰ)由正弦定理sin sin sin a b cA B C==及2cos 2c A b a =-,得2sin cos 2sin sin C A B A =-.①因为πA B C ++=,所以()sin sin sin cos cos sin B A C A C A C =+=+.②由①②得2sin sin sin 0A C A -=.因为()0,πA ∈,所以sin 0A ≠.所以1cos 2C =.因为()0,πC ∈,所以π3C =.(Ⅱ)选条件②:1sin sin 2B A -=.由(Ⅰ)知,π2ππ33B A A ∠=--∠=-∠.所以2πsin sin sin sin 3B A A A -=--⎛⎫⎪⎝⎭31cos sin sin 22A A A =+-31cos sin 22A A =-πsin 3A ⎛⎫=- ⎪⎝⎭.所以π1sin 32A ⎛⎫-=⎪⎝⎭.因为2π0,3A ⎛⎫∈ ⎪⎝⎭,所以πππ,333A ⎛⎫-∈- ⎪⎝⎭.所以ππ36A -=,即π6A =.所以ABC △是以AC 为斜边的直角三角形.因为c =2πsin sin 3AB AC C ===.所以AC 边上的中线的长为1.选条件③:2222b a -=.由余弦定理得223a b ab +-=.设AC 边上的中线长为d ,由余弦定理得2222cos 42b ab d a C =+-⋅2242b ab a =+-2222342b a b a +-=+-1=.所以AC 边上的中线的长为1.18.(共13分)解:(Ⅰ)根据三人投篮得分统计数据,在10场比赛中,甲共获胜3场,分别是第3场,第8场,第10场.设A 表示“从10场比赛中随机选择一场,甲获胜”,则()310P A =.(Ⅱ)根据三人投篮得分统计数据,在10场比赛中,甲得分不低于10分的场次有6场,分别是第2场,第3场,第5场,第8场,第9场,第10场,其中乙得分大于丙得分的场次有4场,分别是第2场、第5场、第8场、第9场.所以X 的所有可能取值为0,1,2.()202426C C 10C 15P X ===,()112426C C 81C 15P X ⋅===,()022426C C 22C 5P X ===.所以X 的分布列为X 012P11581525所以()1824012151553E X =⨯+⨯+⨯=.(Ⅲ)()()()213D Y DY D Y >>.19.(共15分)解:(Ⅰ)由题意知3a =,2c =.所以c =,2224b a c =-=.所以椭圆E 的方程为22194x y +=,其短轴长为4.(Ⅱ)设直线CD 的方程为1x my =+,()11,C x y ,()22,D x y ,则()11,M x y --.由221941x y x my ⎧+=⎪⎨⎪=+⎩,得()22498320m y my ++-=.所以122849m y y m -+=+.由()3,0A 得直线AM 的方程为()1133y y x x =-+.由()11331y y x x x my ⎧=-⎪+⎨⎪=+⎩,得11123y y x my -=+-.因为111x my =+,所以12y y =-,112122y my x m ⎛⎫⎭-=⎪⎝- =+.所以112,22my y N --⎛⎫ ⎪⎝⎭.因为Q 为OD 的中点,所以221x my =+,所以221,22my y Q +⎛⎫⎪⎝⎭.所以直线NQ 的斜率()212212221212884922128112912249m y y y y m m k my my m m y y m m -+++====+--+-+--+.当0m ≤时,0k ≤.当0m >时,因为912m m+≥=,当且仅当2m =时,等号成立.所以281299m k m =≤+.所以当2m =时,k取得最大值9.20.(共15分)解:(Ⅰ)①当1a =时,()()2sin sin f x x x x b x x x b =-+=-+.记()sin g x x x =-(0x ≥),则()1cos 0g x x '=-≥.所以()g x 在[)0,+∞上是增函数.所以当0x >时,()()00g x g >=.所以当0x >时,()()sin f x x x x b b =-+>.②由()2sin f x x x x b =-+得()2sin cos f x x x x x '=--,且()00f '=.当0x >时,()()1cos sin f x x x x x '=-+-.因为1cos 0x -≥,sin 0x x ->,所以()0f x '>.因为()()f x f x ''-=-对任意x ∈R 恒成立,所以当0x <时,()0f x '<.所以0是()f x 的唯一极值点.(Ⅱ)设曲线()y f x =与曲线cos y x =-的两条互相垂直的“优切线”的切点的横坐标分别为1x ,2x ,其斜率分别为1k ,2k ,则121k k =-.因为()cos sin x x '-=,所以1212sin sin 1x x k k ⋅==-.所以{}{}12sin ,sin 1,1x x =-.不妨设1sin 1x =,则1π2π2x k =+,k ∈Z .因为()1111112sin cos k f x ax x x x '==--,由“优切线”的定义可知111112sin cos sin ax x x x x --=.所以1124ππa x k ==+,k ∈Z .由“优切线”的定义可知2111111sin cos x x x b x x ⋅-+=-,所以0b =.当24ππa k =+,k ∈Z ,0b =时,取1π2π2x k =+,2π2π2x k =--,则()11cos 0f x x =-=,()22cos 0f x x =-=,()11sin 1f x x ='=,()22sin 1f x x ='=-,符合题意.所以24ππa k =+,k ∈Z ,0b =.21.(共15分)解:(Ⅰ)()110f A =,()112H A =;()212f A ,()215H A =.由定义可知:将数表A 中的每个数变为其相反数,或交换两行(列),()H A ,()f A 的值不变.因为m 为奇数,{}1,1ij a ∈-,所以()1r ,()2r ,…,()r m ,()1c ,()2c ,…,()c m 均不为0.(Ⅱ)当{}0,s m ∈或{}0,t m ∈时,不妨设0s =,即()0r i <,1,2,,i m =⋅⋅⋅.若0t =,结论显然成立;若0t ≠,不妨设()0c j >,1,2,,j t =⋅⋅⋅,则(),i j H ∈,1,2,,i m =⋅⋅⋅,1,2,,j t =⋅⋅⋅.所以()H A mt ≥,结论成立.当{}0,s m ∉且{}0,t m ∉时,不妨设()0r i >,1,2,,i s =⋅⋅⋅,()0c j >,1,2,,j t =⋅⋅⋅,则当1s i m +≤≤时,()0r i <;当1t j m +≤≤时,()0c j <.因为当1,2,,i s =⋅⋅⋅,1,2,,j t t m =++⋅⋅⋅时,()0r i >,()0c j <,所以()()()()()()20ij ij ij a r i a c j a r i c j ⋅=⋅⋅⋅<⋅.所以(),i j H ∈.同理可得:(),i j H ∈,1,2,,m i s s =++⋅⋅⋅,1,2,,j t =⋅⋅⋅.所以()()()2H A s m t m s t mt ms st ≥-+-=+-.(Ⅲ)当5m =时,()()H A f A 的最小值为89.对于如下的数表A ,()()89H A f A =.下面证明:()()89H A f A ≥.设()1r ,()2r ,…,()r m 中恰有s 个正数,()1c ,()2c ,…,()c m 中恰有t 个正数,{},0,1,2,3,4,5s t ∈.①若{}0,5s ∈或{}0,5t ∈,不妨设0s =,即()0r i <,1,2,,5i =⋅⋅⋅.所以当1ij a =时,(),i j H ∈.由A 中所有数不全相同,记数表A 中1的个数为a ,则1a ≥,且()()()()251252r r r f A +++⋅⋅⋅+=()252252a a a +--==,()H A a ≥.所以()()819H A f A ≥>.②由①设{}0,5s ∉且{}0,5t ∉.若{}2,3s ∈或{}2,3t ∈,不妨设2s =,则由(Ⅱ)中结论知:()51041011H A t t t ≥+-=+≥.因为()()()()251250122r r r f A -++⋅⋅⋅+<=≤,所以()()118129H A f A ≥>.③由①②设{}0,2,3,5s ∉且{}0,2,3,5t ∉.若{}{},1,4s t =,则由(Ⅱ)中结论知:()25817H A ≥-=.因为()012f A <≤,所以()()178129H A f A ≥>.若s t =,{}1,4s ∈,不妨设1s t ==,()10r >,()10c >,且()()1H A f A<,由(Ⅱ)中结论知:()8H A ≥.所以()()8f A H A >≥.若数表A 中存在ij a ({},2,3,4,5i j ∈)为1,将其替换为1-后得到数表A '.因为()()1H A H A '=-,()()1f A f A '≥-,所以()()()()()()11H A H A H A f A f A f A '-≤<'-.所以将数表A 中第i 行第j 列(,2,3,4,5i j =)为1的数替换为1-后()()H A f A 值变小.所以不妨设1ij a =-(,2,3,4,5i j =).因为()5528H A ≥+-=,()9f A ≤,。

天津市河北区2023-2024学年高三上学期期末质量检测试题 数学含解析

河北区2023-2024学年度第一学期期末高三年级质量检测数学(答案在最后)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.第Ⅰ卷1至3页,第Ⅱ卷4至8页.第Ⅰ卷(选择题共45分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考号、科目涂写在答题卡上,并在规定位置粘贴考试用条形码.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试卷上的无效.3.本卷共9小题,每小题5分,共45分.参考公式:如果事件,A B 互斥,那么()()()P A B P A P B =+ 如果事件,A B 相互独立,那么()()()P AB P A P B =球的表面积公式24S R π=球的体积公式343V R π=其中R 表示球的半径一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}36M x x =-<<,集合{}2,0,2,4,6N =-,则M N ⋂=()A.{}0,2,4 B.{}2,0,2,4- C.{}0,2,4,6 D.{}2,42.设x ∈R ,则“220x x -<”是“11x -<”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.函数|2|()lncos x f x x π=-的部分图像大致为()A. B.C. D.4.若0.521,log 0.3,2b a b c a ⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为()A.b a c<< B.c b a<< C.c a b<< D.a c b <<5.底面边长为,且侧棱长为的正四棱锥的体积和侧面积分别为()A.32,243B.32,63C.32,24D.32,66.物体在常温下的温度变化可以用牛顿冷却方程来描述:设物体的初始温度为0T ,环境温度为1T ,经过一段时间t (单位:分钟)后物体的温度是T ,满足()10112atT T T T ⎛⎫=+- ⎪⎝⎭.将85℃的热水放到21℃的房间中,如果热水降到37℃需要16分钟,那么从37℃降到29℃还需要多少分钟?()A.2B.4C.6D.87.函数()sin()(0)6f x x πωω=+>的最小正周期为π,将函数()y f x =的图象向左平移4π个单位后得到()y g x =的图象,则下列命题中不正确...的是A.函数()y g x =图象的两条相邻对称轴之间距离为2π;B.函数()y g x =图象关于1112π=x 对称;C.函数()y g x =图像关于7(,0)24π对称;D.函数()y g x =在5(0,)12π内为单调减函数.8.若双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2.抛物线24y x =的焦点为F ,抛物线的准线交双曲线于A B 、两点.若ABF △为等边三角形,则双曲线C 的焦距为()A .2B.4C. D.9.如图,在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若2,45AB AD BAD ==∠=︒,则AF BE ⋅等于()A.32-B.2-C.12-D.1-第Ⅱ卷(非选择题)二、填空题(本大题共6小题,每小题5分,共30分,请将案写在答题纸上)10.i 是虚数单位,则复数12i1i-+的共轭复数为______.11.已知0a >,若52a x x ⎛⎫+ ⎪⎝⎭的展开式中含4x 项的系数为40,则=a ______.12.将直线0x y c -+=向右平移一个单位后,被圆225x y +=截得的弦长为23,则c =______.13.甲乙两人射击,甲射击两次,乙射击一次.甲每次射击命中的概率是12,乙命中的概率是23,两人每次射击是否命中都互不影响,则甲乙二人全部命中的概率为______;在两人至少命中两次的条件下,甲恰好命中两次的概率为______.14.已知0t >,则3321t t t +++的最小值为______.15.若函数()2413f x x a x =--+恰有两个不同的零点12x x 、,且12x x <,则2x 的取值范围为______.三、解答题(本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.在ABC 中,角,,A B C 的对边分别为,,a b c ,已知)35a b c =+,sin 5sin A B =.(1)求cos C 的值;(2)求sin A 的值;(3)求πsin 24C ⎛⎫+ ⎪⎝⎭的值.17.如图,直角梯形ABCD 与等腰直角三角形ABE 所在的平面互相垂直,//AB CD ,,222,,AB BC AB CD BC EA EB O ⊥===⊥为AB 的中点.(1)求证:AB DE ⊥;(2)求直线EC 与平面ABE 所成角的正弦值;(3)线段EA 上有一点F ,满足13EF EA =,求证://EC 平面FBD .18.设椭圆2222:1(0)x y E a b a b+=>>的左右焦点分别为12,F F ,短轴的两个端点为,A B ,且四边形12F AF B是边长为2的正方形.,C D 分别是椭圆的左右顶点,动点M 满足MD CD ⊥,连接CM ,交椭圆E 于点P .(1)求椭圆E 的方程;(2)求证:OM OP ⋅为定值.19.已知{}n a 是等差数列,其公差d 不等于0,其前n 项和为{},n n S b 是等比数列,且11223131,,2a b a b S a b ===-=.(1)求{}n a 和{}n b 的通项公式;(2)求数列{}n n a b 的前n 项和n T ;(3)记1222n n n n a c a a ++=,求{}n c 的前n 项和n P .20.已知函数()241ex ax x f x +-=.(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)当0a >时,求函数()y f x =的单调区间;(3)在(2)的条件下,当[]1,3x ∈时,()112f x ≤≤,求实数a 的取值范围.河北区2023-2024学年度第一学期期末高三年级质量检测数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.第Ⅰ卷1至3页,第Ⅱ卷4至8页.第Ⅰ卷(选择题共45分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考号、科目涂写在答题卡上,并在规定位置粘贴考试用条形码.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试卷上的无效.3.本卷共9小题,每小题5分,共45分.参考公式:如果事件,A B 互斥,那么()()()P A B P A P B =+ 如果事件,A B 相互独立,那么()()()P AB P A P B =球的表面积公式24S R π=球的体积公式343V R π=其中R 表示球的半径一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}36M x x =-<<,集合{}2,0,2,4,6N =-,则M N ⋂=()A.{}0,2,4 B.{}2,0,2,4- C.{}0,2,4,6 D.{}2,4【答案】B 【解析】【分析】根据集合的交集运算,直接求交集即可.【详解】由{}|36M x x =-<<,{}2,0,2,4,6N =-,可得M N ⋂={}2,0,2,4-.故选:B.2.设x ∈R ,则“220x x -<”是“11x -<”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C 【解析】【分析】分别求出两个命题,得到递推关系,最后得到充分性和必要性即可.【详解】由220x x -<,解得02x <<,由11x -<,解得02x <<,所以“220x x -<”是“11x -<”的充要条件,故选:C 3.函数|2|()lncos x f x x π=-的部分图像大致为()A. B.C. D.【答案】B 【解析】【分析】利用函数的奇偶性可排除两个答案,再根据2x =时,函数值的正负可得正确答案.【详解】因为|2()|()ln cos()()x f x x f x π--=--=,所以()f x 为偶函数,排除A,D ;当2x =时,(2)ln co 4s 20f π=->,故排除C ;故选B.【点睛】本题考查根据函数的解析式选择对应函数图象,考查数形结合思想的应用,求解时要充分利用函数的性质和特殊点寻找解题的突破口.4.若0.521,log 0.3,2b a b c a ⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为()A.b a c <<B.c b a<< C.c a b<< D.a c b<<【答案】A 【解析】【分析】根据指数函数、对数函数单调性,判断出,,a b c 的范围,从而可得答案.【详解】因为12xy ⎛⎫= ⎪⎝⎭是单调递减函数,所以0.511010122a ⎛⎫⎛⎫<<=⇒<< ⎪⎪⎝⎭⎝⎭,因为2log y x =在()0,∞+上单调递增,所以22log lo 0g 100.3b =⇒<<,因为x y a =是单调递减函数,011b a a c >⇒>=,综上,b a c <<,故选:A .5.底面边长为,且侧棱长为的正四棱锥的体积和侧面积分别为()A.32,243B.32,63C.32,24D.32,6【答案】A 【解析】【分析】由正四棱锥的结构特征求高、斜高,根据体积、侧面积公式求结果.【详解】由正四棱锥底面为正方形,且底面中心为顶点在底面上射影,结合题设,底面对角线长为44==,所以正四棱锥的体积为132433⨯⨯=,侧面积为1242⨯=.故选:A.6.物体在常温下的温度变化可以用牛顿冷却方程来描述:设物体的初始温度为0T ,环境温度为1T ,经过一段时间t (单位:分钟)后物体的温度是T ,满足()10112atT T T T ⎛⎫=+- ⎪⎝⎭.将85℃的热水放到21℃的房间中,如果热水降到37℃需要16分钟,那么从37℃降到29℃还需要多少分钟?()A.2B.4C.6D.8【答案】D【解析】【分析】由题设,将0185,37,16T T t ===代入并应用指数运算求得18a =,再将0137,21T T ==代入公式求从37℃降到29℃需要的时间.【详解】由题设()161372185212a⎛⎫=+-⨯ ⎪⎝⎭,可得18a =,所以()810112t T T T T ⎛⎫=+- ⎪⎝⎭,则()81292137212t ⎛⎫=+-⨯ ⎪⎝⎭,可得8t =.故选:D7.函数()sin()(0)6f x x πωω=+>的最小正周期为π,将函数()y f x =的图象向左平移4π个单位后得到()y g x =的图象,则下列命题中不正确...的是A.函数()y g x =图象的两条相邻对称轴之间距离为2π;B.函数()y g x =图象关于1112π=x 对称;C.函数()y g x =图像关于7(,0)24π对称;D.函数()y g x =在5(0,)12π内为单调减函数.【答案】C 【解析】【分析】本题首先可通过函数()f x 的解析式得出函数()g x 的解析式,再通过函数()g x 的解析式得出函数()g x 的对称中心横坐标,即可得出答案.【详解】将函数()sin 26f x x π⎛⎫=+⎪⎝⎭的图像向左平移4π个单位后得到()cos 26g x x π⎛⎫=+ ⎪⎝⎭,函数()g x 的对称中心横坐标为262x k πππ+=+,即()62k x k Z ππ=+∈,C 选项错误,故选C.【点睛】一般地,我们研究函数()cos y A x ωϕ=+的图像和性质时,通常用复合函数的方法来讨论,比如求函数的单调区间时,我们可以先确定u x ωϕ=+的单调性,再通过函数的单调性确定外函数cos y u =的单调区间后求出x 的范围即可,比如求函数的对称轴、对称中心时,可以由cos y u =的对称轴或对称中心得到相应的对称轴或对称中心.8.若双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2.抛物线24y x =的焦点为F ,抛物线的准线交双曲线于A B 、两点.若ABF △为等边三角形,则双曲线C 的焦距为()A.2B.4C. D.【答案】D 【解析】【分析】由题可得A ⎛- ⎝,代入双曲线222213x y a a -=,即可得解.【详解】抛物线的准线交双曲线于A B 、两点.设()()0001,1,,0A y B y y --->,,22222222:1(0,0),213x y c x y C a b a b a a a-=>>=∴-= ,,F 到准线距离为2,ABF 为等边三角形,002222AB y y ∴==∴=,代入双曲线222213x y a a-=,可得2241331a a -=⨯,解得2222054,,23993a c a c c ∴==∴===,,故选:D .9.如图,在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若2,45AB AD BAD ==∠=︒,则AF BE ⋅等于()A.32-B.2-C.12-D.1-【答案】C 【解析】【分析】根据两个三角形相似对应边成比例,得到:::1:3DF BA DE BE EF AE ===,运用向量的加减运算和向量中点的表示,结合向量数量积的定义和性质,将向量用AD ,AB表示,计算即可得到结果.【详解】平行四边形ABCD ,2AB =,AD =,45BAD ∠=︒,//DF AB ,可得DEF BEA ∽,E 是线段OD 的中点,可得:::1:3DF BA DE BE EF AE ===,441211()()332322AF AE AO AD AB AD AD ==⨯+=++ 2131()3223AB AD AB AD =+=+;33()44BE BD AD AB ==- ,则31()43AF BE AD AB AB AD ⎛⎫⋅=-⋅+ ⎪⎝⎭ 2212()3433AD AB AB AD =--⋅ 12(24)43233=⨯-⨯-⨯321432⎛⎫=⨯-=- ⎪⎝⎭.故选:C第Ⅱ卷(非选择题)二、填空题(本大题共6小题,每小题5分,共30分,请将案写在答题纸上)10.i 是虚数单位,则复数12i1i-+的共轭复数为______.【答案】13i 22-+【解析】【分析】根据复数除法运算和共轭复数概念即可.【详解】()()()()12i 1i 12i 13i 13i 1i 1i 1i 222-----===--++-,则其共轭复数为13i 22-+,故答案为:13i 22-+.11.已知0a >,若52a x x ⎛⎫+ ⎪⎝⎭的展开式中含4x 项的系数为40,则=a ______.【答案】2【解析】【分析】求出展开式的通项公式,然后令x 的指数为4,由此建立方程即可求解【详解】展开式的通项公式为2(5)103155C ()C r r r r r rr a T x a x x--+=⋅=,令1034r -=,解得2r =,所以4x 项的系数为2225C 1040a a ==,解得2a =±,又0a >,所以2a =故答案为:212.将直线0x y c -+=向右平移一个单位后,被圆225x y +=截得的弦长为,则c =______.【答案】3或1-【解析】【分析】求出平移后直线的方程,再根据平移后的直线被圆截得的弦长,列式计算,即可得答案.【详解】由题意将直线0x y c -+=向右平移一个单位后,得到的直线的方程为10x y c --+=,圆225x y +=的圆心(00),到该直线的距离为d =,由于直线10x y c --+=被圆225x y +=截得的弦长为故=3c =或1c =-,故答案为:3或1-13.甲乙两人射击,甲射击两次,乙射击一次.甲每次射击命中的概率是12,乙命中的概率是23,两人每次射击是否命中都互不影响,则甲乙二人全部命中的概率为______;在两人至少命中两次的条件下,甲恰好命中两次的概率为______.【答案】①.16②.37【解析】【分析】利用互斥事件的概率加法公式、相互独立事件的概率乘法公式,分别计算对应概率,即可选出答案.根再根据条件概率的计算公式即可求解.【详解】甲射击目标恰好命中两次的概率为111224⨯=,则甲乙二人全部命中的概率为121436⨯=,两人至少命中两次为事件A ,甲恰好命中两次为事件B,()()111111112711222322322312P A P A =-=-⨯⨯-⨯⨯⨯-⨯⨯=,()111112322322312P AB =⨯⨯+⨯⨯=,所以()()()33127712P AB P B A P A ===∣.故答案为:16,37.14.已知0t >,则3321t t t +++的最小值为______.【答案】1+##1+【解析】【分析】先将式子3321t t t +++化简消去分子的t ,进而利用基本不等式即可求解.【详解】因为0t >,所以()()()33212133221212221231t t t t t t t t +++++=+=+++++11≥+=+,当且仅当()()2321221t t +=+,即312t -=时,等号成立.所以3321tt t +++1.1+.15.若函数()2413f x x a x =--+恰有两个不同的零点12x x 、,且12x x <,则2x 的取值范围为______.【答案】1,13⎛⎫- ⎪⎝⎭【解析】【分析】题意转化为方程2413x a x +=-恰有两个不同的根,即21y x =+与43y a x =-恰有两个不同的交点,数形结合可求得结果.【详解】由题意函数()f x 恰有两个不同的零点1x ,2x ,且12x x <,即方程2413x a x +=-恰有两个不同的根1x ,2x ,且显然0a >,即21y x =+与43y a x =-恰有两个不同的交点,设43y k x ⎛⎫=- ⎪⎝⎭与21y x =+相切,则2413x k x ⎛⎫+=- ⎪⎝⎭有两个等根,由Δ0=即244103k k ⎛⎫-+= ⎪⎝⎭,解得23k =-或6.所以当23a =时,2433y x =-与21y x =+的图象如图所示,当6a =时,463y x =-与21y x =+的图象如图所示,所以当263a <<时,21y x =+与43y a x =-恰有两个不同的交点,即方程2413x a x +=-恰有两个不同的根,当23a =时,对应的直线2433y x ⎛⎫=-- ⎪⎝⎭与21y x =+相切,解得切点横坐标为13-,当6a =时,对应的直线463y x ⎛⎫=--⎪⎝⎭与21y x =+相交,解得两交点横坐标为7-和1,又12x x <,所以函数21y x =+与43y a x =-恰有两个不同的交点,则2113x -<<.所以2x 的取值范围为1,13⎛⎫- ⎪⎝⎭.故答案为:1,13⎛⎫- ⎪⎝⎭.【点睛】思路点睛:函数()2413f x x a x =--+恰有两个不同的零点1x ,2x ,即转化为函数21y x =+与43y a x =-恰有两个不同的交点,数形结合找到相切时的临界情况运算得解.三、解答题(本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.在ABC 中,角,,A B C 的对边分别为,,a b c ,已知)3a b c =+,sin A B =.(1)求cos C 的值;(2)求sin A 的值;(3)求πsin 24C ⎛⎫+ ⎪⎝⎭的值.【答案】(1)5(2)1(3)10【解析】【分析】(1)先根据正弦定理求得,a b 的关系,然后结合已知条件求得,b c 的关系,最后根据余弦定理求解出cos C 的值;(2)先求解出sin C ,然后根据正弦定理求解出sin A ;(3)先根据二倍角公式求解出sin 2,cos 2C C 的值,然后根据两角和的正弦公式求解出结果.【小问1详解】sin A B =,由正弦定理可得a =,)3,2a b c c b =+∴= .由余弦定理可得2222225cos 25a b c C ab +-===.【小问2详解】()0,π,sin 5C C ∈== ,由正弦定理sin sin a c A C =,得sin 5sin 12a C A c b⋅⋅===,sin 1A ∴=.【小问3详解】243sin22sin cos ,cos22cos 155C C C C C ===-=-,πππ43sin 2sin2cos cos2sin 444525210C C C ⎛⎫∴+=+=⨯⨯ ⎪⎝⎭.17.如图,直角梯形ABCD 与等腰直角三角形ABE 所在的平面互相垂直,//AB CD ,,222,,AB BC AB CD BC EA EB O ⊥===⊥为AB 的中点.(1)求证:AB DE ⊥;(2)求直线EC 与平面ABE 所成角的正弦值;(3)线段EA 上有一点F ,满足13EF EA =,求证://EC 平面FBD .【答案】(1)证明见解析;(2)3;(3)证明见解析.【解析】【分析】(1)由题设知AB EO ⊥、AB OD ⊥,再由线面垂直的判定、性质证结论;(2)由面面垂直的性质得EO OD ⊥,构建空间直角坐标系,应用向量法求线面角;(3)根据(2)坐标系,向量法证明线面平行即可.【小问1详解】由,EA EB O =为AB 的中点,得AB EO ⊥.四边形ABCD 为直角梯形,且22,AB CD BC AB BC ==⊥,所以四边形OBCD 为正方形,则AB OD ⊥,又EO OD O = ,,EO OD ⊂面EOD ,所以AB ⊥平面EOD ,DE ⊂平面EOD ,则AB DE ⊥.【小问2详解】面ABE ⊥面ABCD ,且AB EO ⊥,面ABE ⋂面ABCD AB =,EO ⊂面ABE ,所以EO ⊥平面ABCD ,OD ⊂平面ABCD ,则EO OD ⊥,故,,OB OD OE 两两垂直,以O 为原点,分别以,,OB OD OE 的方向为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系.三角形ABE 为等腰直角三角形,且1OA OB OD OE ====,则()()()()()()0,0,0,1,0,0,1,0,0,1,1,0,0,1,0,0,0,1O A B C D E -,故()1,1,1EC =- .平面ABE 的一个法向量为()0,1,0OD = ,设直线EC 与平面ABE 所成的角为θ,则sin cos ,3EC OD EC OD EC OD θ⋅=== ,即直线EC 与面ABE所成角正弦值为3.【小问3详解】由(2)知()1,0,1EA =-- ,而111,0,333EF EA ⎛⎫==-- ⎪⎝⎭ ,得12,0,33F ⎛⎫- ⎪⎝⎭,故42,0,33FB ⎛⎫=- ⎪⎝⎭ ,且()1,1,0BD =- ,设面FBD 的法向量为(),,m x y z = ,则042033m BD x y m FB x z ⎧⋅=-+=⎪⎨⋅=-=⎪⎩,取1x =,得()1,1,2m = .所以()()1,1,11,1,20EC m ⋅=-⋅= ,且EC ⊄平面FBD ,故//EC 平面FBD .18.设椭圆2222:1(0)x y E a b a b+=>>的左右焦点分别为12,F F ,短轴的两个端点为,A B ,且四边形12F AF B 是边长为2的正方形.,C D 分别是椭圆的左右顶点,动点M 满足MD CD ⊥,连接CM ,交椭圆E 于点P .(1)求椭圆E 的方程;(2)求证:OM OP ⋅ 为定值.【答案】(1)22142x y +=;(2)证明见解析.【解析】【分析】(1)根据题设得1||2,F A a b c ===,结合椭圆参数关系即可得方程;(2)设直线CM 的方程为()2y k x =+,联立椭圆并应用韦达定理求P 坐标,根据已知确定M 坐标,再由向量数量积的坐标表示求OM OP ⋅ ,即可证.【小问1详解】由题设1||2,F A a b c ===,222a b c =+,得222,4b a ==,椭圆的方程为22142x y +=.【小问2详解】由(1)知()()2,0,2,0C D -,由题意知,直线CM 的斜率存在且不为0,设直线CM 的方程为()2y k x =+,联立()222142y k x x y ⎧=+⎪⎨+=⎪⎩,消去y 得()2222128840k x k x k +++-=,其中C 是直线与椭圆一个交点,所以2284212P k x k --=+,则222412P k x k -=+,代入直线得2412P k y k =+,故222244,1212k k P k k ⎛⎫- ⎪++⎝⎭.又MD CD ⊥,将2x =代入()2y k x =+,得4M y k =,则()2,4M k .所以2222222444816244121212k k k k OM OP k k k k--+⋅=⋅+⋅==+++ ,为定值.19.已知{}n a 是等差数列,其公差d 不等于0,其前n 项和为{},n n S b 是等比数列,且11223131,,2a b a b S a b ===-=.(1)求{}n a 和{}n b 的通项公式;(2)求数列{}n n a b 的前n 项和n T ;(3)记1222n n n n a c a a ++=,求{}n c 的前n 项和n P .【答案】(1)n a n =,12n n b -=(2)()121nn T n =-⋅+(3)()()22511164142n n --++【解析】【分析】(1)根据条件列出关于,d q 的方程组,由此求解出,d q 的值,则{}n a 和{}n b 的通项公式可求;(2)利用错位相减法求解出n T ;(3)先将{}n c 的通项公式裂项为()2211142n n ⎛⎫ ⎪- ⎪+⎝⎭,然后采用裂项相消法求和.【小问1详解】设数列{}n b 的公比为q ,11223131,,2a b a b S a b ===-= ,∴223132a b S a b =⎧⎨-=⎩,即2113d q d q +=⎧⎨+=⎩,整理得20d d -=,0d ≠ ,1,2d q ∴==,1111,122n n n n a n n b --∴=+-==⋅=.【小问2详解】12n n n a b n -=⋅ ,设01211222322n n T n -=⨯+⨯+⨯+⋅⋅⋅+⋅,则12321222322n n T n =⨯+⨯+⨯+⋅⋅⋅+⋅,将以上两式相减得:231122222n n n T n --=++++⋅⋅⋅+-⋅()()112212112n n n n n ⋅-=-⋅=---,()121n n T n ∴=-⋅+.【小问3详解】()()122222*********n n n n a n c a a n n n n ++⎛⎫+ ⎪===- ⎪++⎝⎭,()2222221111111413242n P n n ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥ ⎪∴=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭+⎝⎭⎣⎦()()()()22222111151114216124142n n n n ⎡⎤=+--=--⎢⎥++++⎢⎥⎣⎦.20.已知函数()241ex ax x f x +-=.(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)当0a >时,求函数()y f x =的单调区间;(3)在(2)的条件下,当[]1,3x ∈时,()112f x ≤≤,求实数a 的取值范围.【答案】(1)21y x =-(2)单调递减区间是()1,,2,4a ⎛⎫-∞-+∞ ⎪⎝⎭,单调递增区间是1,24a ⎛⎫- ⎪⎝⎭(3)2e e 1,816⎡⎤-⎢⎥⎣⎦【解析】【分析】(1)当1a =时,分别求出()()0,0f f '的值即可得解.(2)对函数()f x 求导,令()()()4120e x ax x f x +-=-=',得2x =或14x a =-,且满足1024a -<<,进一步即可得解.(3)由题意只需()()min max 1,12f x f x ≤≤,即()()()234116136211,21,3e 2e e 2a a a f f f ++=≥=≤=≥,解不等式即可得解.【小问1详解】1a =时,()()()()220414721,,02,01e e ex x x x x x f x f x f f +--++-===='=-',()120y x ∴+=-,整理得21y x =-.∴曲线()y f x =在点()()0,0f 处的切线方程为21y x =-.【小问2详解】()241e xax x f x +-=,()()()()2248124128141e e e x x xax a x ax x ax ax x f x '---+-+--+==-=-,令()0f x '=,0a > ,解得2x =或14x a =-,且满足1024a-<<.当x 变化时,()(),f x f x '的变化情况如下表:x 1,4a ⎛⎫-∞- ⎪⎝⎭14-a 1,24a ⎛⎫- ⎪⎝⎭2()2,+∞()f x '-0+0-()f x 极小值极大值 ∴函数()y f x =单调递减区间是()1,,2,4a ⎛⎫-∞-+∞ ⎪⎝⎭,单调递增区间是1,24a ⎛⎫- ⎪⎝⎭.【小问3详解】由(2)可知,函数()y f x =在区间[)1,2单调递增,在区间(]2,3单调递减,()()()234116136211,21,3e 2e e 2a a a f f f ++∴=≥=≤=≥,解得23e 8e 116e 472a a a ⎧≥⎪⎪-⎪≤⎨⎪⎪-≥⎪⎩,()2333e e 9e 4e e 49e e 9e 0728727272------=<=< ,∴实数a 的取值范围为2e e 1,816⎡⎤-⎢⎥⎣⎦.【点睛】关键点睛:第二问的关键是将极值点先求出来,然后根据导数与单调性的关系即可得解,第三问的关键是由()()min max 1,12f x f x ≤≤,列出相应的不等式,从而即可顺利得解.。

江西省吉安县第三中学、安福二中2024年高三数学第一学期期末经典试题含解析

江西省吉安县第三中学、安福二中2024年高三数学第一学期期末经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合2{|23}A x y x x ==-++,{}2|log 1B x x =>则全集U =R 则下列结论正确的是( ) A .AB A =B .A B B ⋃=C .()UA B =∅ D .UB A ⊆2.某三棱锥的三视图如图所示,网格纸上小正方形的边长为1,则该三棱锥外接球的表面积为( )A .27πB .28πC .29πD .30π3.已知复数z 满足202020191z i i ⋅=+(其中i 为虚数单位),则复数z 的虚部是( ) A .1-B .1C .i -D .i4.在复平面内,复数z a bi =+(a ,b R ∈)对应向量OZ (O 为坐标原点),设OZ r =,以射线Ox 为始边,OZ 为终边旋转的角为θ,则()cos sin z r i θθ=+,法国数学家棣莫弗发现了棣莫弗定理:()1111cos sin z r i θθ=+,()2222cos sin z r i θθ=+,则()()12121212cos sin z z rr i θθθθ=+++⎡⎤⎣⎦,由棣莫弗定理可以导出复数乘方公式:()()cos sin cos sin nnr i r n i n θθθθ+=+⎡⎤⎣⎦,已知)43z i =,则z =( )A .23B .4C .83D .165.已知2cos(2019)3πα+=-,则sin(2)2πα-=( )A .79B .59C .59-D .79-6.某网店2019年全年的月收支数据如图所示,则针对2019年这一年的收支情况,下列说法中错误的是( )A .月收入的极差为60B .7月份的利润最大C .这12个月利润的中位数与众数均为30D .这一年的总利润超过400万元7.记()[]f x x x =-其中[]x 表示不大于x 的最大整数,0()1,0kx x g x x x≥⎧⎪=⎨-<⎪⎩,若方程在()()f x g x =在[5,5]-有7个不同的实数根,则实数k 的取值范围( ) A .11,65⎡⎤⎢⎥⎣⎦B .11,65⎛⎤⎥⎝⎦C .11,54⎛⎫⎪⎝⎭D .11,54⎡⎫⎪⎢⎣⎭8.已知函数()22cos sin 4f x x x π⎛⎫=++⎪⎝⎭,则()f x 的最小值为( ) A .212+B .12C .212-D .214-9.若复数z 满足2(13)(1)i z i +=+,则||z =( )A 5B 5C .102D .10510.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有 A .72种B .36种C .24种D .18种11.已知函数()sin 3f x a x x =-的图像的一条对称轴为直线56x π=,且12()()4f x f x ⋅=-,则12x x +的最小值为( ) A .3π-B .0C .3π D .23π 12.对于函数()f x ,定义满足()00f x x =的实数0x 为()f x 的不动点,设()log a f x x =,其中0a >且1a ≠,若()f x 有且仅有一个不动点,则a 的取值范围是( )A .01a <<或a =B .1a <<C .01a <<或1e a e =D .01a <<二、填空题:本题共4小题,每小题5分,共20分。

2025届浙江省杭州地区重点中学数学高三第一学期期末考试试题含解析

2025届浙江省杭州地区重点中学数学高三第一学期期末考试试题注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且仅有两个数字相邻,则满足条件的不同五位数的个数是( )A .48B .60C .72D .1202.空间点到平面的距离定义如下:过空间一点作平面的垂线,这个点和垂足之间的距离叫做这个点到这个平面的距离.已知平面α,β,λ两两互相垂直,点A α∈,点A 到β,γ的距离都是3,点P 是α上的动点,满足P 到β的距离与P 到点A 的距离相等,则点P 的轨迹上的点到β的距离的最小值是( )A .33-B .3C .332-D .32 3.已知数列{}n a 的通项公式是221sin 2n n a n π+⎛⎫=⎪⎝⎭,则12312a a a a +++⋅⋅⋅+=( ) A .0 B .55 C .66 D .784.如图,在底面边长为1,高为2的正四棱柱1111ABCD A B C D -中,点P 是平面1111D C B A 内一点,则三棱锥P BCD -的正视图与侧视图的面积之和为( )A .2B .3C .4D .55.复数12z i =+,若复数12,z z 在复平面内对应的点关于虚轴对称,则12z z 等于( ) A .345i +- B .345i + C .34i -+ D .345i -+6.椭圆是日常生活中常见的图形,在圆柱形的玻璃杯中盛半杯水,将杯体倾斜一个角度,水面的边界即是椭圆.现有一高度为12厘米,底面半径为3厘米的圆柱形玻璃杯,且杯中所盛水的体积恰为该玻璃杯容积的一半(玻璃厚度忽略不计),在玻璃杯倾斜的过程中(杯中的水不能溢出),杯中水面边界所形成的椭圆的离心率的取值范围是( )A .6⎛ ⎝⎦B .,15⎫⎪⎪⎣⎭C .0,5⎛ ⎝⎦D .,15⎡⎫⎪⎢⎪⎣⎭7.已知函数f (x )=223,1ln ,1x x x x x ⎧--+≤⎨>⎩,若关于x 的方程f (x )=kx -12恰有4个不相等的实数根,则实数k 的取值范围是( )A .12⎛ ⎝B .12⎡⎢⎣C .1,2e ⎛ ⎝⎦D .12⎛ ⎝⎭8.设复数z 满足2z iz i -=+(i 为虚数单位),则z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限9.若()()()32z i a i a R =-+∈为纯虚数,则z =( )A .163iB .6iC .203iD .2010.已知(2)f x +是偶函数,()f x 在(]2-∞,上单调递减,(0)0f =,则(23)0f x ->的解集是A .2()(2)3-∞+∞,, B .2(2)3, C .22()33-, D .22()()33-∞-+∞,, 11.若函数32()2()f x x mx x m R =-+∈在1x =处有极值,则()f x 在区间[0,2]上的最大值为( )A .1427B .2C .1D .312.小张家订了一份报纸,送报人可能在早上6:307:30-之间把报送到小张家,小张离开家去工作的时间在早上7.008:00-之间.用A 表示事件:“小张在离开家前能得到报纸”,设送报人到达的时间为x ,小张离开家的时间为y ,(,)x y 看成平面中的点,则用几何概型的公式得到事件A 的概率()P A 等于( )A .58B .25C .35D .78二、填空题:本题共4小题,每小题5分,共20分。

高三上学期期末考试数学试卷-附答案解析

高三上学期期末考试数学试卷-附答案解析班级:___________姓名:___________考号:___________一、单选题 1.设全集{6}Ux N x =∈<∣,集合{1,2,3},{1,4}A B ==,则()UA B ⋃等于( )A .{1,2,3,4}B .{5}C .{2,4}D .{0,5}2.生物入侵指生物由原生存地入侵到另一个新的环境,从而对入侵地的生态系统造成危害的现象.若某入侵物种的个体平均繁殖数量为Q ,一年四季均可繁殖,繁殖间隔T 为相邻两代间繁殖所需的平均时间.在物种入侵初期,可用对数模型()ln K n n λ=来描述该物种累计繁殖数量n 与入侵时间K (单位:天)之间的对应关系,且1TQ λ=+,在物种入侵初期,基于现有数据得出9Q =和80T =.据此,累计繁殖数量比现有数据增加3倍所需要的时间约为(ln 20.69≈,ln3 1.10≈)( ) A .6.9天B .11.0天C .13.8天D .22.0天3.“1a =-”是“直线1:430l ax y +-=与直线()2:320l x a y +-+=平行的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.已知符号函数1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩,偶函数()f x 满足()()2f x f x +=,当[]0,1x ∈时()f x x =,则( )A .()sgn 0f x >⎡⎤⎣⎦B .202112f ⎛⎫= ⎪⎝⎭C .()()sgn 211k f k +=⎡⎤⎣⎦∈ZD .()()sgn sgn f k k k =∈⎡⎤⎣⎦Z5.已知函数()f x 是定义在R 上的奇函数()()20f x f x --+=,当(]0,1x ∈时()2log f x x =,则4039924f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭( ) A .3- B .1- C .2 D .36.已知函数()2log 2f x ax =-的图象关于直线x=2对称,则函数f (x )图象的大致形状为( )A .B .C .D .7.已知函数()41xf x x=+,则不等式()3213f x -<+<的解集是( ) A .1,2B .()2,1-C .()(),12,-∞-+∞D .()(),21,-∞-+∞8.下列关于命题的说法错误的是9.曲线(2)x y ax e =+在点(0,2)处的切线方程为2y x b =-+,则ab =( ) A .4-B .8-C .4D .810.已知定义在R 上的偶函数()f x ,其导函数为()f x ',若()()20xf x f x '->,()21f -= 则不等式()214f x x <的解集是( ) A .()2,2- B .()(),22,-∞-+∞C .()()2,00,2-⋃D .()(),00,2-∞11.关于函数()222e xx x f x +-=,有如下列结论:①函数()f x 有极小值也有最小值;②函数()f x 有且只有两个不同的零点;③当2262e e k -<<时()f x k =恰有三个实根;④若[]0,x t ∈时()2max 6ef x =,则t 的最小值为2.其中正确..结论的个数是( )A .1B .2C .3D .412.已知函数221552sin ,544()5log (1),4x x f x x x π⎧-≤≤⎪⎪=⎨⎪-⎪⎩>,若存在实数满足1234()()()()f x f x f x f x m ====,则()A .01m ≤≤B .1252x x += C .34340x x x x --= D .340x x >二、填空题13.命题“2230ax ax -->不成立”是真命题,则实数a 的取值范围是______.14.在△ABC 中,点O 是BC 的三等分点2OC OB =,过点O 的直线分别交直线AB ,AC 于点E ,F ,且AB mAE =,AC nAF =(0m >,0n >),若()210t t m n+>的最小值为3,则正数t 的值为___________.15.已知函数()322sin x x x f x =+-,则不等式()()2650f x f x -+≤的解集为___________.16.已知()3,0e 3,0x xx f x x x x ⎧≥⎪=⎨⎪-<⎩,若关于x 的方程()f x a =有3个不同实根,则实数a 取值范围为______.三、解答题 17.化简求值:(1)2302427216log log 839π-⎛⎫++- ⎪⎝⎭; (2)已知tan 2α,求2sin()sin 2cos()sin(3)ππααααπ⎛⎫-++ ⎪⎝⎭-+-的值.18.已知定义域为R 的函数()122xx b f x a+-=+是奇函数.(1)求实数a 、b 的值;(2)判断函数()f x 在R 的单调性并给予证明; (3)求函数()f x 的值域.19.已知函数()1xf x e ax =--.(1)当1a =时求()f x 的单调区间与极值;(2)若()2f x x ≤在[)0,x ∈+∞上有解,求实数a 的取值范围.20.已知:函数()(1)ln()f x ax x ax =+-. (1)当1a =时讨论函数()f x 的单调性;(2)若()f x 在(0,)x ∈+∞上单调递增,求实数a 的取值范围.21.已知函数()316f x x x =+-.(1)求曲线()y f x =在点()2,6-处的切线方程;(2)直线l 为曲线()y f x =的切线,且经过原点,求直线l 的方程及切点坐标.22.已知函数()()2ln 2f x x ax a x =+++和a ∈R .(1)当2a =-时讨论()f x 的单调性;(2)当a<0时若关于x 的不等式()21f x b a≤-+-恒成立,求实数b 的取值范围;(3)设*n ∈N 时证明:()1111ln 12ln 22341n n n ⎛⎫+≥++++- ⎪+⎝⎭.参考答案与解析1.【答案】D故选:D . 2.【答案】C 【分析】根据1TQ λ=+,9Q =与80T =,求得λ,进而得到()ln K n n λ=求解. 【详解】因为1TQ λ=+,9Q =与80T =所以8091λ=+解得10λ=.设初始时间为1K ,初始累计繁殖数量为n ,累计繁殖数量增加3倍后的时间为2K 则()21442213.80K K ln n lnn ln ln λλλ-=-==≈天. 故选:C 3.【答案】A【分析】求出当12l l //时实数a 的值,再利用集合的包含关系判断可得出结论. 【详解】当12l l //时()34a a -=,即2340a a --=,解得1a =-或4.当1a =-时直线1l 的方程为430x y -+=,直线2l 的方程为420x y -+=,此时12l l //; 当4a =时直线1l 的方程为304x y +-=,直线2l 的方程为20x y ++=,此时12l l //. 因为{}1-{}1,4-,因此,“1a =-”是“直线1:430l ax y +-=与直线()2:320l x a y +-+=平行”的充分不必要条件. 故选:A. 4.【答案】C【分析】利用特殊值法可判断AD 选项;利用函数的周期性以及题中定义可判断BC 选项. 【详解】对于A 选项 ()sgn 0sgn 00f ==⎡⎤⎣⎦,A 错; 对于B 选项 202111110102222f f f ⎛⎫⎛⎫⎛⎫=+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,B 错;对于C 选项,对任意的Z k ∈,()()2111f k f +== 则()sgn 21sgn11f k +==⎡⎤⎣⎦,C 对; 对于D 选项 ()()sgn 2sgn 0sgn 00f f ===⎡⎤⎡⎤⎣⎦⎣⎦,而sgn 21=,D 错. 故选:C. 5.【答案】D【分析】由函数()f x 是定义在R 上的奇函数,结合()()20f x f x --+=,可得函数的周期为4,然后利用周期和()()20f x f x --+=及奇函数的性质,分别对40399,24f f ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭化简,使其自变量在区间(]0,1上,然后代入解析式中求解即可【详解】解:因为函数()f x 是定义在R 上的奇函数,所以()()0f x f x +-= 因为()()20f x f x --+=,所以()(2)f x f x -=+ 所以()(2)f x f x =-+,所以(2)(4)f x f x +=-+所以()(4)f x f x =+,所以()f x 的周期为4所以403911711201945043222222f f f f f f⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+=⨯++==-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭911124444f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭因为当(]0,1x ∈时()2log f x x = 所以40399112424f f ff ⎛⎫⎛⎫⎛⎫⎛⎫+=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭2211log log 24=--22log 2log 43=+=故选:D 6.【答案】A【分析】根据函数图象的变换和()2log 2f x ax =-的图象关于2x =对称得到220a -=,即1a =,然后再根据对数函数的图象和图象的变换判断即可.【详解】因为()2log 2f x ax =-的图象关于2x =对称,所以220a -=,解得1a =,则()2log 2f x x =- 所以()f x 的图象可由函数2log y x =的图象沿y 轴翻折,再向右平移2个单位得到. 故选:A. 7.【答案】B【分析】先判断函数()f x 的奇偶性和单调性,再利用函数的单调性化简得3213x -<+<,解不等式即得解. 【详解】因为()()f x f x -=-,所以()f x 是奇函数 当0x >时()44411x f x x x==-++是增函数,此时()0f x > 又(0)0f =所以()f x 在R 上是增函数.又因为()33f -=- ()33f = 所以()3213f x -<+<可化为()(3)21(3)f f x f -<+< 所以3213x -<+< 解得2<<1x -. 故选:B 8.【答案】D【分析】利用原命题与逆否命题的关系可判断出A 选项的正误;根据充分必要性判断出B 选项的正误;利用特称命题的否定可判断出C 选项的正误;利用作商法和指数函数的单调性可判断出D 选项的正误. 【详解】对于A 选项,命题的逆否命题,只需把原命题的结论否定当条件,条件否定当结论即可,A 选项正确;对于B 选项,若函数()log a f x x =在区间()0,∞+上为增函数,则1a >,所以,“2a =”是“函数()log a f x x =在区间()0,∞+上为增函数”的充分不必要条件,B 选项正确; 对于C 选项,特称命题的否定为全称,C 选项正确;对于D 选项,当0x <时由于函数32x y ⎛⎫= ⎪⎝⎭为增函数,则03331222x x x ⎛⎫⎛⎫=<= ⎪ ⎪⎝⎭⎝⎭ 23x x ∴>,D 选项错误.故选D.【点睛】本题考查四种命题的关系、充分不必要条件的判断、特称命题的否定以及特称命题真假的判断,考查逻辑推理能力,属于中等题. 9.【答案】B【解析】求函数导数,利用切线斜率求出a ,根据切线过点(0,2)求出b 即可. 【详解】因为(2)x y ax e =+ 所以(2)x y e ax a '=++ 故0|22x k y a ='==+=- 解得4a =- 又切线过点(0,2)所以220b =-⨯+,解得2b = 所以8ab =- 故选:B【点睛】本题主要考查了导数的几何意义,切线方程,属于中档题. 10.【答案】C【解析】构造函数令2()()f x g x x =,依题意知()g x 为偶函数且在区间(0,)+∞单调递增;不等式2()1()(2)4f x g x g x <⇔<,利用单调性脱去“g ”即可求得不等式2()14f x x <的解集. 【详解】解:令2()()f xg x x=,则243()2()()2()()x f x xf x xf x f x g x x x '-'-'==因为()2()0xf x f x '->所以,当0x >时()0g x '>,即()g x 在区间(0,)+∞单调递增; 又()f x 是R 上的偶函数又()2f ()21f =-=; 故()2g 2(2)124f == 于是,不等式2()14f x x <化为()()2g x g < 故||2x <解得22x -<<,又0x ≠ 故选:C .【点睛】本题考查利用导数研究函数的单调性,考查函数奇偶性,考查化归思想与运算能力,属于难题. 11.【答案】C【分析】求导后,根据()f x '正负可确定()f x 的单调性;根据()0f x >在()2,+∞上恒成立,结合极值和最值的定义可知①正确;利用零点存在定理可说明②正确;作出()f x 图象,将问题转化为()f x 与y k =的交点个数问题,采用数形结合的方式可确定③错误;根据图象和函数值域可确定④正确. 【详解】()()()2224e e x xx x x f x +--'==∴当()(),22,x ∈-∞-+∞时()0f x '<;当()2,2x ∈-时0fx ;f x 在(),2-∞-,()2,+∞上单调递减,在()2,2-上单调递增;对于①,()f x 在2x =-处取得极小值,极小值为()222e 0f -=-<当2x >时2220x x +->恒成立,()0f x ∴>在()2,+∞上恒成立()2f ∴-为()f x 的最小值,则()f x 既有极小值也有最小值,①正确; 对于②()33e 0f -=> ()222e 0f -=-< ()110f =>ef x 在()3,2--和()2,1-上各有一个零点又当2x >时()0f x >恒成立,f x 有且只有两个不同的零点,②正确;对于③()262e f =,f x 图象如下图所示由图象可知:当22e 0k -<≤时()f x 与y k =有且仅有两个不同交点 即当22e 0k -<≤时()f x k =有且仅有两个不等实根,③错误; 对于④,若[]0,x t ∈时()2max 6e f x =,结合图象可知:2t ≥,即t 的最小值为2,④正确. 故选:C.【点睛】方法点睛:本题考查利用导数研究函数的相关性质的问题,其中考查了方程根的个数问题,解决此类问题的基本方法有:(1)直接法:直接求解方程得到方程的根来确定根的个数;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 12.【答案】C【分析】根据题意分段函数的定义,逐个分析即可. 【详解】由15544x -≤≤得3π2ππ252x -≤≤ ()[]2π2sin 2,25f x x ∴=∈- 由54x >得114x ->()()20log 1f x x ∴=-≥对应函数图像如图所示若1234()()()()f x f x f x f x m ==== 则2m <,A 错;1x ,2x 关于54x =-对称 1252x x ∴+=-,B 错;由()()34221log lo 1g x x -=-()()23420log l 11og x x ∴-+-=()()342110log x x ∴--=⎡⎤⎣⎦,得()()34111x x --=即34340x x x x --=,C 对; 由34340x x x x --=,得34111x x +=>(31x 41x ≠) 344x x ∴>,D 错.故选:C 13.【答案】【详解】2230ax ax --≤恒成立,当0a =时30-≤成立;当0a ≠时 20{4120a a a <∆=+≤得30a -≤< 30a ∴-≤≤ 14.【答案】3【分析】由平面向量基本定理可得2133AO mAE nAF =+,进而又由点E ,O ,F 三点共线,则21133m n +=,根据“1”的作用由基本不等式的性质,可解得t 的值.【详解】解:在ABC 中,点O 是BC 的三等分点 ||2||OC OB = ∴1121()3333AO AB BO AB BC AB AC AB AB AC =+=+=+-=+AB mAE = AC nAF = ∴2133AO mAE nAF =+ O ,E ,F 三点共线 ∴21133m n += ∴2222222112122222()()233333393333t t n mt t t t t m n m n m n m n +=++=+++++=++当且仅当2233n mt m n =,即2222m t n =时取等号,∴21t m n +的最小值为2233t +即22333t += 0t > 3t ∴=故答案为:3 15.【答案】[2,3]【分析】由奇偶性定义、导数判断()f x 的奇偶性及单调性,再应用奇函数、单调性求解不等式即可.【详解】由题设,()322sin ()f x x x f x x =-+=---且定义域为R ,故()f x 为奇函数又()()2321cos 0f x x x =+-≥',()f x 在定义域上递增 ∴()()2650f x f x -+≤,可得()2(65)(56)f x f x f x ≤--=-∴256(2)(3)0x x x x -+=--≤,解得23x ≤≤ ∴原不等式解集为[2,3]. 故答案为:[2,3]. 16.【答案】10,e ⎛⎫⎪⎝⎭【分析】利用导函数研究出函数()y f x =的单调性,极值情况,画出函数图象,并将函数的根的问题转化为两函数交点个数问题,数形结合求出实数a 的取值范围. 【详解】当0x ≥时()e xx f x = ()1e x xf x -'=当[)0,1x ∈时()10e x xf x -'=>,当()1,x ∈+∞时()10e xx f x -'=< 故()f x 在[)0,1x ∈上单调递增,在()1,x ∈+∞上单调递减 且()11e f =,当0x >时()ex xf x =恒为正当0x <时()33=-f x x x ()()()233311f x x x x '=-=+-当(),1x ∈-∞-时()2303'=-<f x x ,当()1,0x ∈-时()2303'=->f x x故()f x 在(),1x ∈-∞-上单调递减,在()1,0x ∈-上单调递增且()1312f -=-+=-画出()3,0e 3,0x xx f x x x x ⎧≥⎪=⎨⎪-<⎩的图象如下:要想关于x 的方程()f x a =有3个不同实根,则要函数()y f x =与y a =有3个不同的交点即可显然当10,e a ⎛⎫∈ ⎪⎝⎭时符合要求.故答案为:10,e ⎛⎫⎪⎝⎭17.【答案】(1)49;(2)1-.【分析】(1)根据指数与对数的运算公式求解即可; (2)根据诱导公式,转化为其次问题进行求解即可.【详解】(1)原式2222241log log 333⎛⎫=++- ⎪⎝⎭2411log 92=++ 49=. (2)原式2sin cos cos sin αααα+=-2tan 11tan αα+=-1=-.18.【答案】(1)2,1a b == (2)单调递减,证明见详解 (3)11,22⎛⎫- ⎪⎝⎭【分析】(1)利用()00f =,()()011f f +-=列方程求出a 、b 的值,然后验证函数()f x 为奇函数即可; (2)任取12x x >,然后通过计算()()12f x f x -的正负来判断证明单调性; (3)以120x +>为基础,利用不等式的性质计算121222x +-+的范围,即为函数()f x 的值域.【详解】(1)定义域为R 的函数()122xx b f x a +-=+是奇函数∴()00f = ()()011f f +-=即110222041b ab b a a --⎧=⎪⎪+⎨--⎪+=⎪++⎩,解得21a b =⎧⎨=⎩ 即()11222x x f x +-=+又()()111112121221022222222x x x x x x x x f x f x -+-+++----+-=+=+=++++ ()11222xx f x +-∴=+是奇函数2,1a b ∴==;(2)由(1)得()11122222122x x x f x ++-=+=-++,其为定义域在R 上的单调减函数 任取12x x >()()()()()2112121112111122121222222222222x x x x x x f x f x ++++++⎛⎫⎛⎫∴-=---= ⎪ ⎪++++⎝+⎭-+⎝⎭ 12x x > 1211x x ∴+>+1211220x x ++∴>>()()120f x f x ∴-<,即()()12f x f x <∴函数()f x 是R 上单调递减函数;(3)120x +>1222x +∴+>1110222x +∴<<+120122x +∴<<+1121122222x +∴-<-<+即函数()f x 的值域为11,22⎛⎫- ⎪⎝⎭19.【答案】(1)在(),0∞-上单调递减,在()0,∞+上单调递增,函数()f x 有极小值0,无极大值 (2)2a e ≥-【分析】(1)利用导数的正负判断函数的单调性,然后由极值的定义求解即可;(2)分0x =和0x >两种情况分析求解,当0x >时不等式变形为1()x e a x x x-+在[0x ∈,)∞+上有解,构造函数1()()x e g x x x x=-+,利用导数研究函数()g x 的单调性,求解()g x 的最小值,即可得到答案.(1)当1a =时()1x f x e x =--,所以()1xf x e '=-当0x <时()0f x '<;当0x >时0fx所以()f x 在(),0∞-上单调递减,在()0,∞+上单调递增 所以当0x =时函数()f x 有极小值()00f =,无极大值.(2)因为()2f x x ≤在[)0,∞+上有解所以210x e x ax ---≤在[)0,∞+上有解 当0x =时不等式成立,此时a R ∈ 当0x >时1x e a x x x ⎛⎫≥-+ ⎪⎝⎭在()0,∞+上有解令()1x e g x x x x ⎛⎫=-+ ⎪⎝⎭,则()()()()22221111xx x e x e x x g x x x x ⎡⎤--+-⎛⎫-⎣⎦'=-= ⎪⎝⎭由(1)知0x >时()()00f x f >=,即()10xe x -+>当01x <<时()0g x '<;当1x >时()0g x '> 所以()g x 在()0,1上单调递减,在()1,+∞上单调递增 所以当1x =时()min 2g x e =-,所以2a e ≥- 综上可知,实数a 的取值范围是2a e ≥-.【点睛】利用导数研究不等式恒成立问题或有解问题的策略为:通常构造新函数或参变量分离,利用导数研究函数的单调性,求出最值从而求得参数的取值范围.20.【答案】(1)()0,∞+单调递增;(2)[]0,e .【解析】(1)由1a =得到()()1ln()f x x x x =+-,求导1ln 1()ln x x f x x x x+'=+=,再讨论其正负即可. (2)根据()f x 在(0,)x ∈+∞上单调递增,则1()ln 0f x a x x'=+≥,(0,)x ∈+∞恒成立,转化ln 10ax x +≥,(0,)x ∈+∞恒成立,令()ln 1h x ax x =+求其最小值即可.【详解】(1)当1a =时()()1ln()f x x x x =+- 所以1ln 1()ln x x f x x x x+'=+= 令()ln 1g x x x =+,则()1ln g x x '=+ 当10x e<<时()0g x '<,()g x 递减; 当1x e>时()0g x '>,()g x 递增; 所以()g x 取得最小值1110g e e ⎛⎫=-> ⎪⎝⎭所以()0f x '>在()0,∞+上成立 所以()f x 在()0,∞+上递增; (2)因为()f x 在(0,)x ∈+∞上单调递增 所以1()ln 0f x a x x'=+≥,(0,)x ∈+∞恒成立 即ln 10ax x +≥,(0,)x ∈+∞恒成立 令()ln 1h x ax x =+,则()()1ln h x a x '=+ 当0a >时当10x e<<时()0h x '<,()h x 递减; 当1x e>时()0h x '>,()h x 递增; 所以()h x 取得最小值11a h e e ⎛⎫=- ⎪⎝⎭所以10ae-≥ 0a e <≤当a<0时易知()ln 11ah x ax x e=+≤-,不成立 当a=0时()10h x =>成立综上:0a e ≤≤所以实数a 的取值范围[]0,e .【点睛】方法点睛:1、利用导数研究函数的单调性,当f(x)不含参数时关键在于准确判定导数的符号;当f(x)含参数时需依据参数取值对不等式解集的影响进行分类讨论.2、可导函数f(x)在指定的区间D 上单调递增(减),求参数范围问题,转化为f ′(x)≥0(或f ′(x)≤0)恒成立问题,构建不等式求解,要注意“=”是否取到.21.【答案】(1)1332y x =-;(2)直线l 的方程为13y x =,切点坐标为(226)--,. 【分析】(1)求导,由导数在切点处的导数值可求切线斜率,根据点斜式即可求解;(2)设切点,求出切线方程,根据切线方程经过()00,,代入切线方程即可求解. 【详解】(1)∵()3222166f =+-=- ∴点()26-,在曲线上. ∵()321631()f x x x x ''=+-=+ ∴在点()26-,处的切线的斜率为()2232113.k f '⨯==+= ∴切线的方程为)132(6)(y x =-+-. 即1332y x =-.(2)设切点为00()x y ,则直线l 的斜率为()2003 1f x x '=+∴直线l 的方程为:2300003116()()y x x x x x =+-++-.又∵直线l 过点(0,0)∴2300000 3 116()()x x x x =+-++-整理得308=-x∴3002221626()()x y =-,=-+--=-∴23()3211k ⨯=-+=∴直线l 的方程为13y x =,切点坐标为(226)-,-. 22.【答案】(1)()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减(2)[)1,-+∞ (3)证明见解析【分析】(1)将2a =-代入()f x ,对其求导,利用导数与函数的单调性的关系即可得解;(2)先利用导数求得()f x 的最大值,再将问题转化为()max 21f x b a ≤-+-,从而得到11ln b a a⎛⎫≥-+ ⎪⎝⎭,构造函数()()ln 0g t t t t =->,求得()max g t 即可得解;(3)结合(2)中结论取特殊值得到2ln 21x x ≤-恒成立,进而得到()2ln 1ln ln 2n n n--≤-,利用累加法即可得证,注意1n =的验证.【详解】(1)当2a =-时()2ln 2f x x x =-,()0,x ∈+∞则()21144x f x x x x-'=-=. 当10,2x ⎛⎫∈ ⎪⎝⎭时0fx;当1,2x ⎛⎫∈+∞ ⎪⎝⎭时()0f x '<所以()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减.(2)当a<0时()()()1121212a x x ax x a f x x x ⎛⎫⎛⎫++ ⎪⎪++⎝⎭⎝⎭'==. 当10,x a ⎛⎫∈- ⎪⎝⎭时0f x ;当1,x a ∈-+∞⎛⎫⎪⎝⎭时()0f x '<所以()f x 在10,a ⎛⎫- ⎪⎝⎭上单调递增,在1,a ∞⎛⎫-+ ⎪⎝⎭上单调递减.所以()max 111211ln ln 1a f x f a a a a a a+⎛⎫⎛⎫⎛⎫=-=-+-=--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 由不等式()21f x b a ≤-+-恒成立,得112ln 11b a aa ⎛⎫---≤-+- ⎪⎝⎭恒成立即11ln b a a⎛⎫≥-+ ⎪⎝⎭在a<0时恒成立令1t a =-,()()ln 0g t t t t =->则()111tg t t t-'=-=.当()0,1t ∈时()()0,g t g t '>单调递增;当()1,t ∈+∞时()()0,g t g t '<单调递减. 所以()g t 的最大值为()11g =-所以1b ≥-,即实数b 的取值范围是[)1,-+∞.【点睛】结论点睛:恒成立问题:(1)()0f x >恒成立()min 0f x ⇔>;()0f x <恒成立()max 0f x ⇔<. (2)()f x a >恒成立()min f x a ⇔>;()f x a <恒成立()max f x a ⇔<.(3)()()f x g x >恒成立()()min 0f x g x ⇔->⎡⎤⎣⎦;()()f x g x <恒成立()()max 0f x g x ⇔-<⎡⎤⎣⎦; (4)1x M ∀∈,2x N ∀∈与()()()()1212min max f x g x f x g x >⇔>.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海市金山区高三上学期期末考试
高三数学试卷 .01
编辑:卢立臻
考生注意:
1.答卷前,考生务必在答题纸上将姓名、座位号填写清楚.
2.本试卷共有23题,满分150分,考试时间120分钟.
一、填空题(本大题满分56分)本大题有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.
1.集合{}(,)2A x y y x ==+,{}(,)B x y y x ==-,则A
B =_______________. 2.在261
()x x
+的二项展开式中,常数项是第______项. 3.计算:20101i ()1i
+=-_________(i 为虚数单位). 4.若3cos 5α=,且(0,)2πα∈,则cos()3
πα+=____________. 5.在ABC ∆中,若120A ∠=,5AB =,7BC =,则AC =____________.
6.若32()1x f x x +=- (1)x ≠,则11()2
f -=____________. 7.已知矩阵3157A -⎛⎫= ⎪⎝⎭
,矩阵2110B ⎛⎫= ⎪⎝⎭,计算:AB =_______________. 8.设数列{}n a 为等差数列,11a =,公差为1,{}n b 也是等差数列,10b =,公差为2,则123lim n n n
b b b n a →∞+++=⨯____________. 9.某小镇对学生进行防火安全教育知晓情况调查,已知该小镇的小学生、初中生、高中生分别有1400人、1600人、800人,按小学生抽取70名作调查,进行分层抽样,则在初中生中的抽样人数应该是____________.
10.连续掷两次骰子,出现点数之和等于4的概率是
____________(结果用数值表示).
11.已知点(3cos ,3sin )P αα,点(1,3)Q ,其中[]0,απ∈,
则PQ 的取值范围是
_________________.
12.下图是某算法的程序框图,该算法可表示分段函数
()y f x =,则其输出结果所表示的分段函数为()f x =_______________________.
13.已知,在ABC ∆中,三个内角A 、B 、C 所对的边分别是a 、b 、c ,分别给出下列四个条件:
⑴tan()cos 0A B C -=;
⑵sin()cos()1B C B C +-=;
⑶cos cos a A b B =;
⑷22sin ()cos 0A B C -+=.
若满足条件_____________,则ABC ∆是等腰直角三角形.(只需填写其中一个正确的序号)
14.若()f n 为21n +所表示的数字的各位数字之和,(n 为正整数),例如:因为 2141197+=,19717++=,所以(14)17f =.记1()()f n f n =,[]21()()f n f f n =, …,[]1()()k k f n f f n +=,(k 为正整数),则2010(11)f =_____________.
二、选择题(本大题满分16分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得4分,否则一律得零分.
15.已知函数2sin()y x ωϕ=+(其中0ω>)在区间[]0,2π的图像如图所示,那么ω的值等于 ( )
(A )1
(B )2 (C )12 (D )13 16.若向量(3,1)a =,b 是不平行于x 轴的单位
向量,且3a b ⋅=,则b = ( )
(A )31(,)2 (B )13(,)2 (C )133(,)4 (D )(1,0)
17.下列说法错误的是 ( )
(A )若z ∈C ,则1z =的充要条件是1z z =
(B )若sin icos z θθ=+(其中02π
θ<<),则21()01z z
-<+ (C )若方程20x bx c ++=的系数不都是实数,则此方程必有虚数根
(D )复数()()i a b a b -++为纯虚数的充要条件是a 、b ∈R ,且a b =
18.若函数()f x 、()g x 的定义域和值域都是R ,则“()()f x g x <,x ∈R ”成立的充要条件是 ( )
(A )存在0x ∈R ,使得00()()f x g x < (B )有无数多个实数x ,使得()()f x g x <
(C )对任意x ∈R ,都有1()()2
f x
g x +< (D )不存在实数x ,使得()f x ≥()g x 三、解答题(本大题满分78分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.
19.(本题满分12分)
已知点(1,0)A -,点(1,0)B ,又点(1,)P x y +在x 轴的下方,设a PA PB =⋅,
b AP AB =⋅,
c BP BA =⋅,且0a b c d
=. ⑴求a 、b 、c 关于x 、y 的表达式;
⑵求y 关于x 的函数关系式()y f x =,并求当y 取最小值时P 点的坐标.
20.(本题满分12分)
已知函数4()log (41)x f x =+,()(1)g x k x =-,记()()()F x f x g x =-,且()F x 为
偶函数.
⑴求实常数k 的值;
⑵求证:当m ≤1时,函数(2)y f x =与函数(2)y g x m =+的图像最多只有一个交点.
21.(本题满分16分)
已知函数()y f x =是定义在R 上的周期函数,周期5T =,又函数()y f x =在区间[]1,1-上是奇函数,又知()y f x =在区间[]0,1上的图像是线段,在区间[]1,4上的图像是一个二次函数图像的一部分,且在2x =时,函数取得最小值5-.求:
⑴(1)(4)f f +的值;
⑵()y f x =在[]1,4x ∈上的函数解析式;
⑶()y f x =在[]4,9x ∈上的函数解析式.
22.(本题满分18分)
已知等差数列{}n a 满足:1212n a a n -+=,()n *∈N ,设n S 是数列1n a ⎧⎫⎨⎬⎩⎭
的前n 项和, 记2()n n f n S S =-.
⑴求n a ;()n *
∈N
⑵比较(1)f n +与()f n 的大小;()n *∈N
⑶如果函数2()log 12()g x x f n =-(其中[],x a b ∈)对于一切大于1的自然数n ,其函数值都小于零,那么a 、b 应满足什么条件?
23.(本题满分20分)
已知函数1()log 1
a
mx f x x -=-在定义域D 上是奇函数,其中0a >且1a ≠. ⑴求出m 的值,并求出定义域D ; ⑵判断()f x 在(1,)+∞上的单调性,并加以证明;
⑶当(,2)x r a ∈-时,()f x 的值的范围恰好为(1,)+∞,求a 及r 的值.。

相关文档
最新文档