珠光体耐热钢(知识资料)

珠光体耐热钢(知识资料)
珠光体耐热钢(知识资料)

1.2关于珠光体耐热钢的研究

珠光体耐热钢在化工、石油设备中主要用于炉管、热交换器和其它受热面管子、高压加氢设备中的各种管道和高温紧固件。

1.2.1珠光体耐热钢的特点

珠光体耐热钢除碳钢外,大多是含有铬、钼元素,少数的还含有钒元素,但含量都不大,所以当加热、冷却时都能发生a γ相的转变。经正火后,容易得到珠光体组织,因此,这类钢称为珠光体耐热钢。

作为石油化工热交换器和锅炉用钢,除了要求有较好的耐热性外,还要求有很好的焊接性能和冷加工性能,为此,这类钢应具有良好的塑性。因此,其化学成分中含碳量都很低,其中钢管的含碳量要求更低,一般在0.1~0.15%C之间;钢板为0.20~0.30%C之间,最多不能超过0.30%C。

这类钢作为耐热钢,其耐热性虽然比奥氏体钢低,但它有许多优点:

1) 这类钢合金元素少,价格比较便宜;

2) 冷、热加工性能和焊接性能较好,热膨胀系数低,导热性能强,从而可

避免焊接时引起局部过热和产生较大的应力;

3) 热处理工艺简单,一般为正火加回火,能改善机械性能,也能利用热处

理细化组织。

但这类钢耐热性较差,它的工作温度一般不超过550~580℃。

1.2.2珠光体耐热钢的组织稳定性

在高温、应力长期作用下,由于扩散过程加快,钢的组织将逐渐发生变化。由于组织的不稳定性将引起钢的性能的变化,特别是对钢的热强性、松弛稳定性等性能都会带来不利的影响。珠光体耐热钢在高温长期工作条件下常见的组织不稳定现象有:

1.2.2.1石墨化

钢在高温、应力长期作用下,由于珠光体内渗碳体分解为游离石墨的现象称为石墨化。低碳钢当温度于450℃以上,含0.5%Mo的钢在500℃左右长期工作时,都可能发生石墨化,此时,钢脆化,强度与塑性降低,可导致爆管等事故。对由于长期过热导致爆管的20钢分析发现,其石墨化已达三级。一般钢发生石墨化的时间约需几万小时。防止0.5%Mo钢石墨化的最有效方法是实行进一步的合金化。在钢中加入铬、钒、铌等强碳化物形成元素能有效地阻止石墨化。

1.2.2.2珠光体球化

低合金珠光体型耐热钢在高温和应力长期作用下,珠光体组织中片状渗碳体逐渐自发地趋向形成球状渗碳体,并慢慢聚集长大。该现象称为珠光体球化。文献[5]对碳化物的球化过程和机理进行了探讨。影响球化的主要因素是温度、时间和化学成分。

实践表明,低合金耐热钢中加入铬、钼、钨、钒、铌等合金元素能显著地减弱其球化过程。这些合金元素的单个加入或复合加入后都能起到良好的作用。其原因是,它们能减弱碳在α固溶体中的扩散,同时这些合金元素又能与碳形成稳定的碳化物。

1.2.2.4蠕变过程中析出相类型的转变

在高温和应力条件下长期作用下,由于珠光体中Fe3C的分解,固溶体内合金元素向碳化物过渡以及碳在α固溶体内扩散过程加速进行,会引起在蠕变过程中碳化物相析出类型发生变化,从而影响钢的热强性。

文献[7-13]对低合金铬钼钢和铬钼钒钢长期服役后的碳化物相进行了研究,其转变过程大致是:珠光体组织中Fe3C球化和分解,在铁素体基体中开始析出M7C3、M23C6、M2C等不同类型的碳化物,同时发生固溶体内合金元素的贫化,随工作时间的增长,碳化物颗粒也聚集长大,最后转变为M6C碳化物。

1.2.3珠光体耐热钢的热强性能

珠光体耐热钢是在高温和应力下长期使用的材料,因此要求钢具有长期热强性能,通常这指的是钢在高温和应力长期作用下的拉变形和抗断裂能力。它的基本判据是蠕变极限和持久强度。对紧固件用钢来说,松弛稳定性也是重要判据之一。

1.2.3.1蠕变极限

通常所说的蠕变极限都属于条件蠕变极限,它是由蠕变第二阶段的蠕变速率所确定下来的应力,或在一定时间间隔内达到规定的总形变时的应力。蠕变极限表明材料在高温下的形变抗力,它随温度的提高而降低。许可的蠕变形变的大小,取决于零部件的工作条件及对零部件所要求的使用期限。

1.2.3.2持久强度

持久强度表明材料在高温和应力长期作用下的抗断裂能力,通常用以表示材料在给定温度下经过规定时间发生断裂的应力。持久强度是进行高温材料强度计算的另一个判据。有些部件如锅炉过热器管及再热器管,对蠕变速率的限制不严,但必须保证在使用期间内不致爆破。这些部件的主要设计依据便是持久强度。长期持久强度是通过较短期的持久强度试验求出规定温度和规定应力下到断裂所经历的时间外推求得的。通过对12Cr1MoV、12CrMo、10CrMo910等三种热强钢的持久强度数据分析表明,它们的持久强度均最佳服从对数正态分布,经不同时间运行后的12Cr1MoV钢其持久强度仍在其原始状态持久强度分散带内,揭示了高温性能数据资源共享的可行性。

1.2.3.3松弛稳定性

保持线尺寸不变的受力试样或机件,在给定温度下,在力的作用方向上,靠弹性变形的减少,塑性变形的逐渐增加,使应力随时间逐渐自发降低的现象叫做松弛。可以用下列条件来表示松弛过程:

ε

总= ε

=常数

σ≠常数

目前对松弛的机理还没有完整的认识,一般认为第一阶段松弛主要发生在晶界上,晶界的扩散过程起主要作用;第二阶段松弛主要发生在晶粒内部,由镶嵌块的转动或移动所引起的。

1.2.4.2 1Cr5Mo钢

1Cr5Mo是石化行业中广泛采用的珠光体耐热钢,在550℃以下有一定的热强性,650℃以下有较好的抗氧化性,在热石油介质中有很好的耐蚀性。适用于制造石油蒸馏的管道及容器,广泛用于制造热交换器和再热器等。近年来关于1Cr5Mo比较系统而深入的研究不多。目前的研究主要集中在两方面,一是对在役的1Cr5Mo炉管进行组织性能分析及剩余寿命预测,二是对损坏的1Cr5Mo炉管进行失效分析。加拿大学者May将转化炉炉管的高温蠕变损伤分为五级,各级对应于不同的剩余寿命,见图1-l所示。张礼敬等利用这一方法对Cr5Mo炉管进行了剩余寿命的评估,即在破裂部位组织严重损伤,被定为E级(存在宏观裂纹);旧管部位的组织为B-C级(形成空洞),其接近总寿命的1/3。文献[44]研究

了经长期高温压力服役后的1Cr5Mo耐热钢管道,分析了材料在服役条件下的显微组织和力学性能,不仅确保了设备的安全运行,而且也为能否超期服役及其剩余寿命估算提供可靠依据。文献[45]对1Cr5Mo炉管失效原因进行了分析,指出了Cr-Mo钢炉管正常损伤和非正常损伤的原因,并提出了延长炉管使用寿命的建议。

钢结构基础知识

钢结构基础知识 钢结构识图基础 (1) 一、施工图基本知识 (3) 1. 制图标准有关规定 (3) 2. 构件名称的代号 (4) 3. 材料代号 (5) 4. 螺栓与球节点 (7) 5. 焊缝及其表示方法 (12) 6. 钢结构的防火和防腐 (14) 二、钢结构节点详图 (17) 1. 节点详图识读 (17) 2. 柱拼接连接详图 (17) 3. 梁拼接连接详图 (19)

4. 绘图练习 (20)

一、施工图基本知识 在建筑钢结构工程设计中,通常将结构施工图的设计分为设计图设计和施工详图设计两个阶段。设计图设计是由设计单位编制完成,施工详图设计是以设计图为依据,由钢结构加工厂深化编制完成,并将其作为钢结构加工与安装的依据。 设计图与施工详图的主要区别是:设计图是根据工艺、建筑和初步设计等要求,经设计和计算编制而成的较高阶段的施工设计图。它的目的和深度以及所包含的内容是作为施工详图编制的依据,它由设计单位编制完成,图纸表达简明,图纸量少。内容一般包括:设计总说明、结构布置图、构件图、节点图和钢材订货表等。施工详图是根据设计图编制的工厂施工和安装详图,也包含少量的连接和构造计算,它是对设计图的进一步深化设计,目的是为制造厂或施工单位提供制造、加工和安装的施工详图,它一般由制造厂或施工单位编制完成,它图纸表示详细,数量多。内容包括:构件安装布置图、构件详图等。本书只介绍钢结构设计图的识读。 1.制图标准有关规定 (1)线型 在结构施工图中图线的宽度b通常为2.0mm、1.4mm、0.7mm、0.5mm、0.35mm,当选定基本线宽度为b时,则粗实线为b、中实线为0.5b、细实线为0.25b。在同一张图纸中,相同比例的各种

12Cr1MoV珠光体耐热钢管焊接工艺

12Cr1MoV珠光体耐热钢管焊接工艺1Cr18Ni9Ti与12Cr1MoV异种钢接头焊接工艺 12Cr1MoV珠光体耐热钢管焊接工艺 叶剑文 谢美琼 (广州市锅炉压力容器监察检验所 广东510050)(广州市番禺区职业技术培训中心) 12Cr1MoV是我国使用广泛的珠光体耐热钢之一,主要用于制造管壁温度小于580?的锅炉过热管、联箱和主汽管道。在12t/h双汽包横置式沸腾炉制造过程中,锅炉的蒸汽出口温度为450?,最高工作压力为3.8MPa,按设计图纸要求采用 12Cr1MoV珠光体耐热钢管(φ159mm×10mm)作为过热器联箱管,以满足产品的使用要求。 1 焊接性分析 12Cr1MoV珠光体耐热钢为低合金耐热钢,此类钢的Cr含量较高,在500-550?时具有较高的热强性和持 久强度。12Cr1MoV钢的化学成分及力学性能见表1。 表1 12Cr1MoV珠光体耐热钢化学成分和力学性能 化学成分/% 力学性能 σs/ C Mn Si Ci Mo V S P σb/MPa δ5/% MPa 0.12 0.60 0.35 1.10 0.31 0.19 0.013 0.022 436 217 22 注:表中数据为焊接试件母材复验结果

由表1可见,12Cr1MoV钢的碳及合金元素含量较多,淬硬敏感性较大,易在焊缝及热影响区出现淬硬组织。在接头刚性及应力较大时,易产生冷裂纹。由于过热联箱是在较高温度下工作的受压元件,焊接时 应采取必要的工艺措施,使焊接接头有足够的热强性能,保证过热联箱安全运行。 2 焊接工艺 - 1 - 1Cr18Ni9Ti与12Cr1MoV异种钢接头焊接工艺 2.1 焊接方法 在蒸汽管道的管子对接时,对打底焊缝的质量要求较高,不仅要求焊缝熔透、背面齐平,还要求焊缝背面无渣或少渣,否则会影响设备的安全运行。因此,采用手工钨极氩弧焊(TIG)打底,手工电弧焊(SMAW) 填充和盖面的焊接工艺方法。 2.2坡口尺寸 选用单面V形坡口,坡口尺寸见图1。用机械方法加工,应严格控制根部间隙和坡口钝边尺寸,以确保 打底焊缝彻底熔透。 图1 坡口形式和尺寸 2.3 焊接材料选择 手工钨极氩弧焊(TIG)选用:TIC-R31焊丝,焊丝直径为φ2.5mm。

常用耐热钢的焊接工艺

常用耐热钢的焊接工艺 耐热钢是指钢再高温条件下既具有热稳定性,又具有热强性的 钢材。热稳定性是指钢材在高温条件下能保持化学稳定性(耐腐蚀、 不氧化)。热强性是指钢材在高温条件下具有足够的强度。其中耐热 性能主要通过铬、钼、钒、钛、铌等合金元素来保证,因此在焊接材 料的选择上应根据母材的合金元素含量来确定。耐热钢在石油石化工业装置施工中应用较为广泛,我们能够经常接触到的多为合金含量较 低的珠光体耐热钢,如15CrMo,1Cr5Mo等。 1铬钼耐热钢的焊接性 铬和钼是珠光体耐热钢的主要合金元素,显著提高金属的高温强度和高温抗氧化性,但它们使金属的焊接性能变差,在焊缝和热影响区具有淬应倾向,焊后在空气中冷却易产生硬而脆的马氏体组织,不仅影响焊接接头的机械性能,而且产生很大的内应力,从而产生冷裂倾向。 因此耐热钢焊接时的主要问题是裂纹,而形成裂纹的三要素是: 组织、应力和焊缝中的含氢量,因此制定合理的焊接工艺尤为重 要。 2珠光体耐热钢焊接工艺 2.1坡口 坡口的加工通常用火焰或者等离子切割工艺,必要时切割也要预热,打磨干净后做PT检验,去除坡口上的裂纹。通常选用V型坡口, 坡口角度为60°,从防止裂纹的角度考虑,坡口角度大些有利,但

是增加了焊接量,同时将坡口及内处两侧打磨干净,去除油污、铁锈及水份等污物(去氢、防止气孔)。 2.2组对 要求不能强制组对,防止产生内应力,由于铬钼耐热钢裂纹倾 向较大,故在焊接时焊缝的拘束度不能过大,以免造成过大的刚度,特别在厚板焊接时,妨碍焊缝自由收缩的拉筋、夹具和卡具等应尽量避免使用。 2.3焊接方法的选用 目前,我们石油石化安装单位管线焊接常用的焊接方法是钨极氩弧焊打底,焊条电弧焊填充盖面,其它焊接方法还有熔化极惰性气体保护焊(MIG焊)、CO2气体保护焊、电渣焊和埋弧自动焊等。 2.4焊接材料的选择 选配焊接材料的原则,焊缝金属的合金成分与强度性能基本上要与母材相应指标一致或者应达到产品技术条件提出的最低性能指标。而且为了降低氢含量应先用低氢型碱性焊条,焊条或者焊剂应按规定工艺烘干,随用随取,要装在焊条保温桶中随用随取,焊条再保温桶内不得超过4个小时,否则应重新烘干,烘干次数不得超过三次,这在具体施工过程中都有详细的规定。铬钼耐热钢手弧焊时,也可选用奥氏体不锈钢焊条,如A307焊条,但焊前仍需要预热,这种方法适用于焊件焊后不能热处理的情况。 耐热钢焊材选用表如下所示:

第七节 珠光体钢与奥氏体钢的焊接

第七节珠光体钢与奥氏体钢的焊接 一、珠光体钢和奥氏体钢的焊接性 珠光体钢和奥氏体钢是两种组织和成分都不相同的钢种。因此,这两类钢焊接在一起,焊缝金属是由两种不同类型的母材以及填充金属材料熔合而成的。这就产生了与焊接同一种金属所不同的一系列新的问题。 1.焊缝的稀释由于珠光体钢合金元素含量相对较低,所以它对整个焊缝金属的合金具有稀释作用,从而使焊缝的奥氏体形成元素含量减少,结果焊缝中可能会出现马氏体组织,导致焊接接头性能恶化,严重时甚至可能出现裂纹。 焊缝的组织决定于焊缝的成分,而焊缝的成分决定于母材的熔入量,即熔合比。因此,一定的熔合比决定了一定的焊缝成分和组织。熔合比发生变化时,焊缝的成分和组织都要随之发生相应的变化,这种变化可以根据舍夫勒不锈钢的组织图来表示,见图3-1-1。 2.过渡层的形成上面讨论的是当母材与填充金属材料均匀混合的情况下,珠光体钢母材对整个焊缝的稀释作用。事实上,在焊接热源作用下,熔化的母材和填充金属材料相互混合的程度在熔池边缘是不相同的。在熔池边缘,液态金属温度较低,流动性较差,在液态停留时间较短。由于珠光体钢与奥氏体钢填充金属材料的成分相差悬殊。在熔池边缘上,熔化的母材与填充金属就不能很好地熔合,结果在珠光体钢这一侧焊缝金属中,珠光体钢母材所占的比例较大,而且越靠近熔合线,母材所占的比例越大。所以,珠光体钢和奥氏体钢焊接时,在紧靠珠光体钢一侧熔合线的焊缝金属中,会形成和焊缝金属内部成分不同的过渡层。离熔合线越近,珠光体的稀释作用越强烈,过渡层中含铬、镍量也越小,因此,其铬当量和镍当量也相应减少。对照舍夫勒组织图(图3-1-1),可以看出,此时过渡层将由奥氏体区+马氏体和奥氏体区组成,过渡层的宽度决定于所用焊条的类型,见表3-7-1。 当马氏体区较宽时,会显著降低焊接接头的韧性,使用过程中容易 出现局部脆性破坏。因此,当工作条件要求接头的低温冲击韧度较好 时,应选用含镍较高的焊条。 表3-7-1过渡层的宽度(单位:μm) 3.熔合区扩散层的形成奥氏体钢和珠光体钢组成的焊接接头中,由于珠光体钢的含碳量较高,但合金元素含量较少(主要指碳化物形成元素),而奥氏体钢则相反,这样在熔合区珠光体钢一侧的碳和碳化物形成元素含量差。当接头在温度高于350~400℃长期工作时,熔合区便出现明显的碳的扩散,即碳从珠光体钢一侧通过熔合区向奥氏体焊缝扩散。结果,在靠近熔合区的珠光体钢母材上形成了一层脱碳软化层,在奥氏体焊缝一侧产生了增碳硬化层。 影响脱碳层发展的因素有: (1)接头加热温度和在高温停留的时间焊后状态,特别是在单层焊缝的接头中,即使采用大功率的焊接参数,扩散层也是很弱的。但把接头重新加热到较高温度(500℃左右),并保温一定时间,扩散层就开始明显发展起来,到了600~800℃时最为强烈,800℃时达到最大值,并且随着加热时间的延长,扩散层加宽。因此,在通常情况下,这种异种钢接头进行焊后热处理是不适宜的。 (2)碳化物形成元素的影响奥氏体钢中碳化物形成元素的种类和数量对珠光体钢中脱碳

数控铣床入门知识(20200521125930)

一入门知识 本课题主要讲述的内容: 1. 数控铣床安全操作规程 2. 数控铣削在工业生产中的地位及加工范围 3. 编程基础知识(一): ①机床的坐标轴及运动代号; ②基本指令; ③加工程序编制初步; 实训目的: 1.了解掌握数控铣床的安全操作及基本指令和基础编程知识。 2. 了解掌握机床坐标轴的判别方式和动运代号,运动方向。 一、安全文明生产 (一) 文明生产 1. 严格遵守车间记律,准时上下班; 2. 操作结束要清扫机床和清洁量具; 3. 下班前要清扫工场、清点和清洁量具、清点和清洁刀具、清理整齐工件和毛坯; 4. 废品工件加工、折断的刀具必须回收,不得丢弃和藏幂; 5. 严禁不文明行为。 (二) 安全生产 1. 严禁在工场追逐、打闹、快速奔跑; 2. 严禁着拖鞋、高跟鞋,严禁着不符合工作服要求的服装(如

宽大的、衣领或套袖上有装饰带的),头发长的同学必须戴帽子,头 发必须盘在帽子内; 3. 操作机床严格按照老师规定的步骤执行; 4. 一台机床只能单人操作!同组其他同学在旁边只能观察操作 过程、口头指出错误,严禁动手!唯一的例外是:发生紧急情况时, 可代操作者拍按“急停”按钮! 5. 发生事故要及时停机,并马上报告老师处理;严禁私自处理!严禁隐瞒不报! 6. 对刀时要及时调整“进给倍率”旋钮(按键):刀具远离工件时(大于50mm),可用较大倍率;靠近工件时(50~10mm),必须用较小倍率(10%~20%);准备切到工件时(1~10mm),必须选用1~2%倍率档! 7. 加工工件过程:检查平口钳装夹是否牢靠→正确装夹工件→ 对刀、设置坐标偏置→登录程序→检查程序→提高坐标偏置(如G54)中的Z坐标偏置100mm(即 +Z 方向)→正确设置刀具补偿→选择“空运行”、“单段”之后,自动运行程序;观察走刀轨迹是否正确。若正确,则取消“空运行”、恢复坐标偏置、保留“单段”→开始加工; 8. 切削前必须确认已经取消“空运行”、调整“进给倍率”旋钮(按键)到较低档、坐标偏置正确、“单段”已经选用。切入工件后 可取消“单段”、调整“进给倍率”到100%或适当倍率; 9. 加工过程必须值守在机床操作位; 10. 严格遵守学校颁布的《数控铣床安全操作规程》。

12Cr1MoV珠光体耐热钢管焊接工艺(printed)

12Cr1MoV珠光体耐热钢管焊接工艺 叶剑文谢美琼 (广州市锅炉压力容器监察检验所广东510050)(广州市番禺区职业技术培训中心) 12Cr1MoV是我国使用广泛的珠光体耐热钢之一,主要用于制造管壁温度小于580℃的锅炉过热管、联箱和主汽管道。在12t/h双汽包横置式沸腾炉制造过程中,锅炉的蒸汽出口温度为450℃,最高工作压力为3.8MPa,按设计图纸要求采用12Cr1MoV珠光体耐热钢管(φ159mm×10mm)作为过热器联箱管,以满足产品的使用要求。 1 焊接性分析 12Cr1MoV珠光体耐热钢为低合金耐热钢,此类钢的Cr含量较高,在500-550℃时具有较高的热强性和持久强度。12Cr1MoV钢的化学成分及力学性能见表1。 表1 12Cr1MoV珠光体耐热钢化学成分和力学性能 注:表中数据为焊接试件母材复验结果 由表1可见,12Cr1MoV钢的碳及合金元素含量较多,淬硬敏感性较大,易在焊缝及热影响区出现淬硬组织。在接头刚性及应力较大时,易产生冷裂纹。由于过热联箱是在较高温度下工作的受压元件,焊接时应采取必要的工艺措施,使焊接接头有足够的热强性能,保证过热联箱安全运行。 2焊接工艺 2.1焊接方法 在蒸汽管道的管子对接时,对打底焊缝的质量要求较高,不仅要求焊缝熔透、背面齐平,还要求焊缝背面无渣或少渣,否则会影响设备的安全运行。因此,采用手工钨极氩弧焊(TIG)打底,手工电弧焊(SMAW)填充和盖面的焊接工艺方法。 2.2坡口尺寸 选用单面V形坡口,坡口尺寸见图1。用机械方法加工,应严格控制根部间隙和坡口钝边尺寸,以确保打底焊缝彻底熔透。 图1 坡口形式和尺寸

数控机床学习进步基础入门知识资料

数控机床 是数字控制机床的简称,是一种装有程序控制系统的自动化机床。该控制系统能够逻辑地处理具有控制编码或其他符号指令规定的程序,并将其译码,从而使机床动作并加工零件的控制单元,数控机床的操作和监控全部在这个数控单元中完成,它是数控机床的大脑。 加工精度高,具有稳定的加工质量; 可进行多坐标的联动,能加工形状复杂的零件; 加工零件改变时,一般只需要更改数控程序,可节省生产准备时间; 机床本身的精度高、刚性大,可选择有利的加工用量,生产率高(一般为普通机床的3~5倍); 机床自动化程度高,可以减轻劳动强度; 对操作人员的素质要求较高,对维修人员的技术要求更高。 数控机床一般由下列几个部分组成: 主机,是数控机床的主体,包括机床身、立柱、主轴、进给机构等机械部件。它是用于完成各种切削加工的机械部件。 数控装置,是数控机床的核心,包括硬件(印刷电路板、CRT显示器、键盒、纸带阅读机等)以及相应的软件,用于输入数字化的零件程序,并完成输入信息的存储、数据的变换、插补运算以及实现各种控制功能。 驱动装置,是数控机床执行机构的驱动部件,包括主轴驱动单元、进给单元、主轴电机及进给电机等。它在数控装置的控制下通过电气或电液伺服系统实现主轴和进给驱动。当几个进给联动时,可以完成定位、直线、平面曲线和空间曲线的加工。 辅助装置,指数控机床的一些必要的配套部件,用以保证数控机床的运行,如冷却、排屑、润滑、照明、监测等。它包括液压和气动装置、排屑装置、交换工作台、数控转台和数控分度头,还包括刀具及监控检测装置等。 编程及其他附属设备,可用来在机外进行零件的程序编制、存储等。 数控机床加工流程说明 CAD:Computer Aided Design,即计算机辅助设计。2D或3D的工件或立体图设计 CAM:Computer Aided Making,即计算机辅助制造。使用CAM软体生成G-Code CNC:数控机床控制器,读入G-Code开始加工

(完整版)珠光体耐热钢

1.2关于珠光体耐热钢的研究 珠光体耐热钢在化工、石油设备中主要用于炉管、热交换器和其它受热面管子、高压加氢设备中的各种管道和高温紧固件。 1.2.1珠光体耐热钢的特点 珠光体耐热钢除碳钢外,大多是含有铬、钼元素,少数的还含有钒元素,但含量都不大,所以当加热、冷却时都能发生a γ相的转变。经正火后,容易得到珠光体组织,因此,这类钢称为珠光体耐热钢。 作为石油化工热交换器和锅炉用钢,除了要求有较好的耐热性外,还要求有很好的焊接性能和冷加工性能,为此,这类钢应具有良好的塑性。因此,其化学成分中含碳量都很低,其中钢管的含碳量要求更低,一般在0.1~0.15%C之间;钢板为0.20~0.30%C之间,最多不能超过0.30%C。 这类钢作为耐热钢,其耐热性虽然比奥氏体钢低,但它有许多优点: 1) 这类钢合金元素少,价格比较便宜; 2) 冷、热加工性能和焊接性能较好,热膨胀系数低,导热性能强,从而可 避免焊接时引起局部过热和产生较大的应力; 3) 热处理工艺简单,一般为正火加回火,能改善机械性能,也能利用热处 理细化组织。 但这类钢耐热性较差,它的工作温度一般不超过550~580℃。 1.2.2珠光体耐热钢的组织稳定性 在高温、应力长期作用下,由于扩散过程加快,钢的组织将逐渐发生变化。由于组织的不稳定性将引起钢的性能的变化,特别是对钢的热强性、松弛稳定性等性能都会带来不利的影响。珠光体耐热钢在高温长期工作条件下常见的组织不稳定现象有: 1.2.2.1石墨化 钢在高温、应力长期作用下,由于珠光体内渗碳体分解为游离石墨的现象称为石墨化。低碳钢当温度于450℃以上,含0.5%Mo的钢在500℃左右长期工作时,都可能发生石墨化,此时,钢脆化,强度与塑性降低,可导致爆管等事故。对由于长期过热导致爆管的20钢分析发现,其石墨化已达三级。一般钢发生石墨化的时间约需几万小时。防止0.5%Mo钢石墨化的最有效方法是实行进一步的合金化。在钢中加入铬、钒、铌等强碳化物形成元素能有效地阻止石墨化。 1.2.2.2珠光体球化 低合金珠光体型耐热钢在高温和应力长期作用下,珠光体组织中片状渗碳体逐渐自发地趋向形成球状渗碳体,并慢慢聚集长大。该现象称为珠光体球化。文献[5]对碳化物的球化过程和机理进行了探讨。影响球化的主要因素是温度、时间和化学成分。 实践表明,低合金耐热钢中加入铬、钼、钨、钒、铌等合金元素能显著地减弱其球化过程。这些合金元素的单个加入或复合加入后都能起到良好的作用。其原因是,它们能减弱碳在α固溶体中的扩散,同时这些合金元素又能与碳形成稳定的碳化物。 1.2.2.4蠕变过程中析出相类型的转变 在高温和应力条件下长期作用下,由于珠光体中Fe3C的分解,固溶体内合金元素向碳化物过渡以及碳在α固溶体内扩散过程加速进行,会引起在蠕变过程中碳化物相析出类型发生变化,从而影响钢的热强性。 文献[7-13]对低合金铬钼钢和铬钼钒钢长期服役后的碳化物相进行了研究,

珠光体耐热钢采用奥氏体焊材焊接与应用

珠光体耐热钢采用奥氏体焊材焊接与应用 上海永鑫波纹管有限公司朱洪明 摘要:在本文中笔者介绍了用奥氏体焊接材料焊接珠光体耐热钢,其本质是异种金属焊接的一种型式,母材金属相同而填充金属不同的接头。焊后不进行热处理,工艺简单,适合不具备热处理的情况下采用。 关键词:珠光体耐热钢(12Cr2Mo1R):异种钢焊接:熔合比:低氢焊接方法Welding&Application of Austenitic Electrode with the Pearlitic Heat Resistant Steel Shanghai YongXin Bellows CO., LTD Hongming Zhu Abstract: In this article, the writer will introduce how to weld the Austenitic Electrode with the Pearlitic Heat Resistant Steel. The fact is the form of diversity metal welding and the joint has same base metal and the different full metal. It does n’t need heat treatment after welding. It has easy process and available on the condition without heat treatment equipment. Key Word: Pearlitic Heat Resistant Steel (12Cr2Mo1R); Diversity Metal Welding; Fusion Ratio; Low-hydrogen Welding 一、引言 12Cr2Mo1R钢是电力行业使用温度400~500℃压力容器和压力管道常用的钢种,亦称为珠光体耐热钢,此种材料在高温下,具有足够强度和抗氧化,抗腐蚀性,如采用化学成份相同焊材进行焊接,工艺苛刻。必须做到焊前预热,后热,消应力热处理,稍有不慎仍有冷裂纹出现可能。采用奥氏体焊材后,工艺简单,焊后不进行热处理,但需要严格控制热输入量和焊缝金属与被熔化的母材金属之间的比例,即熔合比,才能获得符合使用要求的焊接接头。在焊接试验和工艺评定合格后已成功应用在产品上。 二、异种钢焊接特点 1.对于珠光体耐热钢(12Cr2Mo1R钢),用奥氏体焊材焊接,虽然两侧母材是同钢种, 但从焊缝的材质来考虑,仍具用异钢种焊接的特质,其本质是异种金属焊接的一种型式,母材金属相同而填充金属不同的接头。同时在异种钢的焊接时通常会出现以下三个问题: ①焊缝成分的稀释(熔合比) ②熔合区过渡层低塑性带及碳的迁移

史上最全钢材基本知识汇总

史上最全钢材基本知识汇总

史上最全钢材基本知识汇总 一、钢材机械性能 1.屈服点(σs) 钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。设Ps为屈服点s 处的外力,Fo为试样断面积,则屈服点σs =Ps/Fo(MPa) 2.屈服强度(σ0.2) 有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规定产生永久残余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2。 3.抗拉强度(σb) 材料在拉伸过程中,从开始到发生断裂时所达到的最大应力值。它表示钢材抵抗断裂的能力大小。与抗拉强度相应的还有抗压强度、抗弯强度等。设Pb为材料被拉断前达到的最大拉力,Fo 为试样截面面积,则抗拉强度σb= Pb/Fo (MPa)。

4.伸长率(δs) 材料在拉断后,其塑性伸长的长度与原试样长度的百分比叫伸长率或延伸率。 5.屈强比(σs/σb) 钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。屈强比越大,结构零件的可靠性越高,一般碳素钢屈强比为0.6-0.65,低合金结构钢为0.65-0.75合金结构钢为0.84-0.86。 6.硬度 硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。 布氏硬度(HB) 以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB)。 洛氏硬度(HR) 当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的

数控车床基础知识

广州市XXXX技工学校 教案册 (生产实习) 课题数控车床基本知识 教师 时间

课题练习与作业 图样 技术要求: 1、以01为工件编程原点写出各点的绝对坐标值 2、以02为工件编程原点写出各点的绝对坐标值 名称材料45#额定工时

课题学习要求(引言) 本课题的教学目的 掌握数控加工的入门知识、组成及工作原理,及数控编程的基础知识;熟练数控的基本功能。 掌握数控编程通用 G 代码、M 功能、S 功能、T 功能。 一、数控车床加工特点以及加工流程(0.3课日) 1数控的定义: 数控是指用数字来控制,通过计算机进行自动控制的技术通称为数控技术。 2、数控机床的特点: 1)、具有高度柔性, 2) 、加工精度高, 3) 、加工质量稳定、可靠。 4) 、生产率高。 5) 、改善劳动条件。 6)、利于生产管理现代化。 3、数控机床的组成和工作原理 1)、数控机床的组成 数控机床一般由输入输出设备、 CNC 装置(或称CNC 单元)、伺服单元、驱动装置(或称执行机 构)、可编程控制器 PLC 及电气控制装置、辅助装置、机床本体及测量装置组成。 下图是数控机床的组成框图,其中除机床本体之外的部分统称为计算机数控 (CNC )系统。 2)、工作步骤 在数控机床上加工零件通常经过以下几个步骤: 加 工 阶 段 编 程 阶 段

4、数控车床编程的基础知识 数控车床之所以能够自动加工出不同形状、尺寸及高精度的零件,是因为数控车床按事先编制好的加工程序,经其数控装置“接收”和“处理”,从而实现对零件的自动加工的控制。 使用数控车床加工零件时,首先要做的工作就是编制加工程序。从分析零件图样到获得数控车床所需控制介质(加工程序单或数控带等)的全过程,称为程序编制,其主要内容和一般过程如下图所示: 修改f 丄| | f * | f修改 1)图样分析 根据加工零件的图纸和技术文件,对零件的轮廓形状、有关标注、尺寸、精度、表面粗糙度、毛坯种类、件数、材料及热处理等项目要求进行分析并形成初步的加工方案。 2)辅助准备 根据图样分析确定机床和夹具、机床坐标系、编程坐标系、刀具准备、对刀方法、对刀点位置及测定机械间隙等。 3)制定加工工艺 拟定加工工艺方案、确定加工方法、加工线路与余量的分配、定位夹紧方式并合理选用机床,刀具及切削用量等。 4)数值计算 在编制程序前,还需对加工轨迹的一些未知坐标值进行计算,作为程序输入数据,主要包括:数值换算、尺寸链解算、坐标计算和辅助计算等。对于复杂的加工曲线和曲面还须使用计算机辅助计算。 5)编写加工程序单 根据确定的加工路线、刀具号、刀具形状、切削用量、辅助动作以及数值计算的结果按照数控车床规定使用的功能指令代码及程序段格式,逐段编写加工程序。此外,还应附上必要的加工示意图、刀具示意图、机床调整卡、工序卡等加工条件说明。 6)制作控制介质 加工程序完成以后,还必须将加工程序的内容记录在控制介质上,以便输入到数控装置中。如穿孔带、磁带及软盘等,还可采用手动方式将程序输入给数控装置。 7)程序校核 加工程序必须经过校验和试切削才能正式使用,通常可以通过数控车床的空运行检查程序格式有无出错或用模拟防真软件来检查刀具加工轨迹的正误,根据加工模拟轮廓的形状,与图纸对照检查。 但是,这些方法尚无法检查出刀具偏置误差和编程计算不准而造成的零件误差大小,及切削用量选用是否合适、刀具断屑效果和工件表面质量是否达到要求,所以必须采用首件试切的方法来进行实际效果的检查,以便对程序进行修正。

珠光体耐热钢焊接再热裂纹的防治

珠光体耐热钢焊接再热裂纹的防治 王珏 摘要为了解决珠光体耐热钢焊后热处理过程中易产生再热裂纹的问题,分析了再热裂纹的特征和产生机理,针对影响再热裂纹的因素,提出预防措施。 主题词不锈钢焊接热处理裂纹分析防治措施 To Prevent the Reformation of Thermal Cracks on Pearlitic High-temperature Steel Wang Jue To solve the problem of thermal cracks reformation on pearlitic high-temperature during post weld heat treatment, the properties and formation mechanisms are analyzed in this paper. Preventive measures are proposed in light of the factors causing such reformation. Key words: Stainless steel, Welding, Heat treatment, Crack, Analysis, Preventive treatment, Measure 1概况 随着国内石油化工、电力工业的迅速发展,以Cr-Mo为基础的低、中合金珠光体耐热钢成为高温条件下使用的重要材料之一。珠光体耐热钢在小于600℃温度下不仅有很好的抗氧化热强度,还有较好的抗氢腐蚀和抗硫腐蚀性能。同时由于珠光体耐热钢中合金元素较少,其工艺性能和物理性能优良,为其它的耐热钢材料所不及。因此,珠光体耐热钢得到了广泛应用。 珠光体耐热钢的焊接工艺通常有两种,一种为选用与母材相匹配的耐热钢焊条,另一种采用奥氏体钢焊条。采用奥氏体焊条由于焊缝金属与母材的膨胀系数不同,长期高温工作还可能发生碳的扩散迁移现象,容易导致在熔合区发生破坏,因此,该焊接工艺较多应用于局部补焊或焊后不易进行热处理的部位,焊接珠光体耐热钢较普遍采用耐热钢焊条。 生产实践证明,采用珠光体耐热钢焊条,主要存在冷裂纹、近缝区硬化、热影响区软化等问题。此外,焊接残余应力是造成应力脆性破坏、结构变形失稳以及应力腐蚀裂纹的主要原因之一。因此珠光体耐热钢焊后进行热处理是不可缺少的重要工序,多数珠光体耐热钢在焊后并未出现裂纹,而是在焊后热处理过程中产生了裂纹,这就是珠光体耐热钢焊接的又一问题,即焊接再热裂纹。 从60年代开始,国外相继报道了因再热裂纹而发生的多起事故,促使各国对再热裂纹开展了大量的试验研究。70年代初,国内也报道了因再热裂纹而导致产品失效的事故。随着珠光体耐热钢应用于压力容器和高温高压管道,关于再热裂纹的报道也时有所闻。 再热裂纹(Reheat cracking)又称为消除应力处理裂纹(Stress-Relief cracking),这种裂纹不仅发生在消除应力的热处理中,也发生于焊后再次高温加热过程中。 2再热裂纹的特征 (1)产生的部位均在焊接热影响区的过热粗晶区,焊缝、热影响区的细晶区及母材均不产生再热裂纹。裂纹沿熔合线方向在奥氏体粗晶晶界发展,不少裂纹是断续的,再热裂纹具有沿晶间开裂的特征。 (2)再热裂纹的产生与再热过程的加热或冷却速度无关。 (3)焊后不会发生,只是在焊后进行消除应力处理及焊后高温使用中发生,它有一个敏感的温度区,一般在500~700℃,600℃左右最为敏感。 (4)再热裂纹总是出现在拘束应力或应力集中的部位,焊接应力越大越易产生,如焊缝向母材过渡不圆滑、焊缝余高过高、咬肉、焊瘤、未焊透、边缘未熔合等部位都容易产生再热裂纹。

CNC数控基础知识

机床CNC 基础知识 一.CNC 机床与CNC 系统 CNC 的含义是计算机数值控制。 1.CNC 机床 ⑴.金属切削用 孔加工、攻丝、镗削、铣削、车削、切螺纹、切平面、轮廓加工、平面磨削、外圆磨削、内圆磨削等。 ⑵.线电极切割机。 ⑶.冲床、步冲、冲压、金属成型、弯管等机床。 ⑷.产业机器人。 ⑸.注塑机。 ⑹.检测、测量机。 ⑺.木工机械。 ⑻.特殊材料加工机械:如加工石材、玻璃、发射性矿料等。 ⑼.特种加工机械 激光加工机、气体切割机、焊接机、制图机、印刷机等。随着电子技术和计算机技术以及IT 技术的发展,目前,这些机床与加工设备都可用数值计算机用数值数据进行控制,称为CNC 控制。 2.CNC 系统 CNC 系统的含义是计算机数值控制系统。 CNC 系统的基本配置 机床的CNC 控制是集成多学科的综合控制技术。一台CNC 系统包括: ⑴.CNC 控制单元(数值控制器部分)。 ⑵.伺服驱动单元和进给伺服电动机。 ⑶.主轴驱动单元和主轴电动机。 ⑷.PMC(PLC)控制器。 ⑸.机床强电柜(包括刀库)控制信号的输入/输出(I/O)单元。 ⑹.机床的位置测量与反馈单元(通常包括在伺服驱动单元中)。 ⑺.外部轴(机械)控制单元。如:刀库、交换工作台、上下料机械手等的驱动轴。 ⑻.信息的输入/输出设备。如电脑、磁盘机、存储卡、键盘、专用信息设备等。 ⑼.网络。如以太网、HSSB(高速数据传输口)、RS-232C 口等和加工现场的局域网。CNC 单元(控制器部分)的硬件实际上就是一台专用的微型计算机。是CNC 设备制造厂自己设计生产的专门用于机床的控制的核心。下面的几张图表示出其基本硬件模块;基本的控制功能模块和一台实际的控制器硬件。 二.机床的运动坐标及进给轴

钢结构常识(入门必看)要点

钢结构加工制作流程 (1)钢材力学指标:结构用钢的力学指标包括屈服点、抗拉强度、延伸率、低温冲击韧性。这些指标应 符合《钢结构设计规范》的要求,但其中低温冲击韧性仅在结构可能处于低温环境下工作时才要检验。钢 材力学指标的测定须符合《钢材力学及工艺性能试验取样规定》(GB2975-82) (2)钢材化学成分:与钢材的可加工性、韧性、耐久性等有关。其中主要是碳的含量,合金元素的含量 及硫、磷等杂质元素的限制含量应符合规范(GB222-84)要求。 (3)工艺性能:工艺性能主要包括可焊性和加工性能。可焊性与含碳量或碳当量(低合金钢)有关,可 用可焊性试验鉴定。加工性能则通过冷弯试验来确定。按(GB232-88)为标准。 (4)几何尺寸偏差:钢材(钢板、型钢、圆钢、钢管)的外形尺寸与理论尺寸的偏差必须在允许范围内 。允许偏差值可参考国家标准GB709-88、GB706-88、GB787-88、GB978-88,GB707-88、GB816-87等。 (5)钢材外形缺陷:钢材表面不得有气泡、结疤、拉裂、裂纹、褶皱、夹杂和压入的氧化铁皮。这些缺 陷必须清除,清除后该处的凹陷深度不得大于钢材厚度负偏差值。另外,当钢材表面有锈蚀、麻点或划痕 等缺陷时,其深度不得大于该钢材厚度负偏差值的1/2。 (6)机械切割:使用机械力(剪切、锯割、磨削)切割,相应的机械有剪板机、锯床、砂轮机等,较适 合于厚度在12~16mm以下钢板或型材的直线性切割。 (7)气割:使用氧-乙炔、丙烷、液化石油气等火焰加热融化金属,并用压缩空气吹去融蚀的金属液, 从而使金属割离,适合于曲线切割和多头切割。)

(8)等离子切割:利用等离子弧线流实现切割,适用于不锈钢等高熔点材料的切割。 (9)热成形加工:是指将钢材加热到一定温度后再进行加工。这种方法适于成形、弯曲和矫正在常温下 不能做的工件。热加工终止温度不得低于700℃。加热温度在200~300℃时钢材产生蓝脆,严禁锤打和弯 曲。含碳量超出低碳钢范围的钢材一般不能进行热加工。 (10)冷成形加工:是在常温下进行的。由于外力超出材料的屈服强度而使材料产生要求的永久变形,或 由于外力超出了材料的极限强度而使材料的某些部分按要求与材料脱离。冷加工都有使材料变硬变脆的趋 势,因而可通过热处理使钢材恢复正常状态或刨削掉硬化较严重的边缘部分。环境温度低于-16℃时不得 冷加工碳素钢。低于-12℃时,不得加工低合金钢。 (11)弯曲加工:根据设计要求,利用加工设备和一定的工装模具把板材或型钢弯制成一定形状的工艺方 法。冷弯适合于薄板、小型钢;热弯适合于较厚的板及较复杂的构件、型钢,热弯温度在950~1100℃。 (12)卷板加工:在外力作用下使平钢板的外层纤维伸长,内层纤维缩短而产生弯曲变形的方法。卷板由 卷板机完成。根据材料温度的不同,又分为冷卷和热卷。卷板主要用于焊接圆管柱、管道、气包等。 (13)折边:把钢结构构件的边缘压弯成一定角度或一定形状的工艺过程称为折边。折边一般用于薄板构 件。折边常用折边机,配合适当的模具进行。 (14)模压:模压是在压力设备上利用模具使钢材成型的一种方法。具体作法有落料成形、冲切成形、压 弯、卷圆、拉伸、压延等。 (15)铲边:铲边是通过对铲头的锤击作用而铲除金属的边缘多余部分而形成坡口。

钢材的基本组织结构

钢铁材料有7种基本组织结构:奥氏体、铁素体和渗碳体、珠光体、贝氏体、马氏体和莱氏体,其中奥氏体、铁素体和渗碳体是基本相,珠光体、贝氏体、马氏体和莱氏体是多相混合物。 奥氏体:观察Mn13或奥氏体钢1Cr18Ni9Ti的钢丝金相组织可发现,奥氏体的晶界比较直,晶内有孪晶或滑移线。淬火钢中的残余奥氏体分布在马氏体的空隙处,颜色浅黄、发亮。 奥氏体钢丝具有优异的冷加工性能,在高低温条件下均可保持良好的强韧性。一般来说奥氏体钢的冷加工硬化速率远大于珠光体和索氏体钢,经大减面拉拔可以制备具有特殊性能的弹簧,高锰奥氏体钢具有优异的耐磨性能和减振性能,奥氏体不锈钢具有良好的耐蚀性能和耐热性能。固溶状态的奥氏体钢无磁,经深冷加工有微弱的磁性。 铁素体:铁素体晶界圆滑,晶内很少见孪晶或滑移线,颜色浅绿、发亮,深腐蚀后发暗。钢中铁素体以片状、块状、针状和网状存在。纯铁素体组织具有良好的塑性和韧性,但强度和硬度都很低;冷加工硬化缓慢,可以承受较大减面率拉拔,但成品钢丝抗拉强度很难超过1200MPa。常用铁素体钢丝有铁素体不锈钢丝(0Cr17)和铁-铬-铝电热合金丝(0Cr25Al5)等。 渗碳体:钢中渗碳体以各种形态存在,外形和成分有很大差异。一次渗碳体多在树枝晶间处析出,呈块状,角部不尖锐;共晶渗碳体呈骨骼状,破碎后呈多角形块状;二次渗碳体多在晶界处或晶内,可能是带状、网状或针状;共析渗碳体呈片状,退火、回火后呈球状或粒状。在金相图谱中渗碳体白亮,退火状态呈珠光色。一次渗碳体和破碎的共晶渗碳体只有在莱氏体钢丝,如9Cr18、Cr12、Cr12MoV和W18Cr4V中才能见到,只要热加工工艺得当,冷拉用盘条中的一次渗碳体块度应较小、无尖角,共晶碳化物应破碎成小块、角部要圆滑,否则根本无法拉拔,渗碳体带轻度棱角的盘条,可以通过正火后球化退火+轻度(Q020%)拉拔+高温再结晶退火的方法加以挽救。带状和网状渗碳体也是拉丝用盘条中不应出现的组织,这两种组织提高钢的脆性,不利于钢丝加工成形,显著降低成品钢丝的切削性能和淬火均匀性,对网状2.5级的盘条可用正火的方法改善网状,一般来说钢丝经冷拉-退火两次以上循环,网状可降低0.5-1级。 珠光体:珠光体是由片状铁素体和渗碳体组成的混合物,其中渗碳体的质量分数为12%,铁素体的质量分数为88%,两者密度相近,在金相图谱中铁素体呈宽条状,渗碳体呈窄条状。 片状珠光体是由成分均匀的奥氏体冷却转变来的,等温转变温度,或连续冷却速度直接影响到珠光体的片间距。同一牌号的钢丝,在一定等温区间,珠光体的片间距是相对恒定的。实验证明,奥氏体晶粒度虽然对珠光体晶团的大小有决定性影响,但基本不影响珠光体片间距。 片状珠光体经适当的热处理,渗碳体变为球状或粒状,转化为粒状珠光体。从奥氏体状态冷却时,是转变为片状珠光体,还是粒状珠光体,主要取决于奥氏体成分的均匀性。完全奥氏体化的成分均匀的奥氏体,冷却后形成片状珠光体;成分不均匀的奥氏体,冷却后形成粒状珠光体。在奥氏体临界点(A1)附近反复冷却-加热,然后缓冷,或钢丝冷拉后再退火,都是实现粒状珠光体转变的有效方法。 珠光体钢丝的力学性能(抗拉强度Rm、伸长率A、断面收缩率Z、硬度),可拉拔性(变形抗力、冷加工硬化速率、极限减面率Q),工艺性能(弯曲Nb、扭转N t、缠绕、顶锻、冲压)与显微组织结构密切相关。一般来说,粒状珠光体钢丝的抗拉强度Rm和硬度要低于片状珠光体钢丝,伸长率A和断面收缩率Z前者要高于后者;粒状珠光体钢丝的拉拔性能优于片状珠光体钢丝,表现为拉拔力低、冷加工硬化慢、能承受的极限减面率大;工艺性能前者优于后者。在粒状珠光体范围内,随着球化度提高(球化组织从1级升到3级),钢丝抗拉强度和硬度下降,塑性和韧性上升,可拉拔性和工艺性能也越来越好,特别冷顶锻和深冲性能显著改善。在片状珠光体范围内,珠光体晶团和片间距对钢丝性能起决定性的影响,珠

钢结构的八大基本知识

钢结构的八大基础知识! 一、钢结构的特点 1 钢结构自重较轻 2 钢结构工作的可靠性较高 3 钢材的抗振(震)性、抗冲击性好 4 钢结构制造的工业化程度较高 5 钢结构可以准确快速地装配 6 容易做成密封结构 7 钢结构易腐蚀 8 钢结构耐火性差 二、常用钢结构用钢的牌号及性能

1 炭素结构钢:Q195、Q215、Q235等 2 低合金高强度结构钢 3 优质碳素结构钢及合金结构钢 4 专门用途钢 三、钢结构的材料选用原则 钢结构的材料选用原则是保证承重结构的承载能力和防止在一定条件下出现脆性破坏,根据结构的重要性、荷载特征、结构形式、应力状态、连接方法、钢材厚度和工作环境等因素综合考虑的。

《钢结构设计规范》GB50017-2003提出的四种钢材型号是“宜”使用的型号,是在条件许可时的首先选择,并不禁止其它型号的使用,只要使用的钢材满足规范的要求即可。 四、主要钢结构技术内容 高层钢结构技术 根据建筑高度和设计要求分别采用框架、框架支撑、筒体和巨型框架结构,其构件可采用钢、劲性钢筋混凝土或钢管混凝土。钢构件质轻延性好,可采用焊接型钢或轧制型钢,适用于超高建层建筑;劲性钢筋混凝土构件刚度大,防火

性能好,适用于中高层建筑或底部结构;钢管混凝土施工简便,仅用于柱结构。 空间钢结构技术 空间钢结构自重轻、刚度大、造型美观,施工速度快。以钢管为杆件的球节点平板网架、多层变截面网架及网壳等是我国空间钢结构用量最大的结构型式。具有空间刚度大,用钢量低的优点,在设计、施工和检验规程,并可提供完备的CAD。除网架结构外,空间结构尚有大跨悬索结构、索膜结构等。 轻钢结构技术 伴随着轻型彩色钢板制成墙体和屋面围护结构组成的新结构形式。由5mm以上钢板焊接或轧制的大断面薄壁H型钢墙梁和屋面檩条,圆钢制成柔性支持系统和高强螺栓连接构成的轻钢结构体系,柱距可从6m到9m,跨度可达30m或更大,高度可达十几米,并可设轻型吊四。用钢量20~30kg/m2。现已有标准化的设计程序和专业化生产企业,产品质量好,安装速度快,重量轻,投资少,施工不受季节限制,适用于各种轻型工业厂房。 钢混凝土组合结构技术 以型钢或钢管理与混凝土构件组成的梁、柱承重结构为钢混组合结构,近年来应用范围日益扩大。组合结构兼有钢与混凝土两者的优点,整体强度大、刚性好、抗震性能良好,当采用外包混凝土构造时,更具有良好的耐火和耐腐蚀性能。组合结构构件一般可降低用钢量15~20%。组合楼盖及钢管混凝土构件,还具有

珠光体耐热钢的化学成分及焊接性

珠光体耐热钢的化学成分和合金的组织,是为满足常温力学性能和保证高温性能而设计的。高温,金属容易氧化和腐蚀,而长期受应力作用的同时还会发生“蠕变”。因此为提高钢的抗氧化性,通常加入Cr、Al、Si元素,从而可在钢的表面形成稳定致密的保护性氧化膜Cr2O3、Al2O3等,以防止氧对铁的继续氧化。为提高钢的热强性,加入Cr、Mo、W等元素可使铁素体基本固溶强化;加入V、Nb、Ti强碳化物形成元素,以形成合金碳化物(如V4C3、VC、NbC、TiC)沉淀强化;加入微量元素RE 和B等起净化并填充晶界的作用,并可阻碍晶界的扩散变形,使晶界强化。 珠光体耐热钢由于加入多量合金元素以提高热稳和热强性,因此也增大了钢的淬透性,近缝区(熔合线附近)存在淬硬脆化和延迟纹倾向,尤其含V钢在焊后热处理或高温长期工作中还会产生再热裂纹。热影响区中加热温度处于ACl附近的区域还将发生回火软化,而可能成为蠕变断裂的起源。 某些耐热钢基体金属及焊接接头,当存在一定量的杂质元素(如钢中残余的P、As、Sb、Sn和焊缝金属中的O、Si、P等)时,还具有明显的回火脆性,使其在350~500℃的温度区间长期运行过程中发生剧烈脆变,导致失效或断裂。 为保证焊缝性能与母材相匹配具有热强性,焊缝成分应力求与母材相近。为防止焊缝热裂段向,其含碳量应比基体金属低(但不低于0.07%),其他合金元素含量尽可能与母材相近,以获得相同的热物理性能和力学性能。 为消除近缝区的淬硬现象,应根据钢的成分及其结构尺寸,选择适当的预热温度和焊后热处理温度。同时为控制软化区的软化程度,尽可能选择低的预热温度和偏小的线能量。 为防止回火脆性,应降低焊缝金属中的O、Si、P含量,这是最有效的措施。 (注:本资料素材和资料部分来自网络,仅供参考。请预览后才下载,期待你的好评与关注!)

相关文档
最新文档