单相桥式SPWM逆变电路

合集下载

单相桥式SPWM逆变电路

单相桥式SPWM逆变电路
目前使用的变频器都是进口的。主要以富士变 频器为主,兼用了山垦、西门子、日电等品牌。
变频器的投用,取得明显的控制和节能效果, 变频器的投用率和完好率现已作为电气车间和 有关车间经济考核指标。目前,通过大家的共 同努力,变频器的投用率和完好率已从去年的 90%、70%分别提高到现在的98.5%、86%。
变 变频器的发展趋势
频 向专用型方向发展
向人性化方向发展
器 易用性不断提高 应 功率结构模块化
智能化
用 减小谐波影响


变 我国变频器应用的大环境
频 在我国60%的发电量是通过电动机消耗的,因此调速传
动是一个重要行业,一直得到国家重视,目前已有一定
器 规模。
1998年1月1日实施的《中华人民共和国节约能源法》第

学术解释:变频器是利用电力半导体器件的通断作用将 工频电源变换为另一频率的电能控制装置。



变 变频技术的发展过程
频 变频技术是应交流电机无级调速电子器件从SCR(晶闸管)、GTO(门极可关断
晶闸管)、GTR(电力晶体管)、 MOSFET(电力场效晶体管)发展到今天的
用 频器调速,除了替代过去的老式调速,更多的是用于老式调速无法
胜任的新的调速领域。


变 变频调速效果
频 器 应 用 技 术
应用目的 节能 自动化 提高产品质量 提高生产率
应用范围及效果
风机、泵类、采油、挤压机、搅拌机等。通过调节电动机转速达到节 能目的,通过节能在1、2年内即可收回改造成本
提高搬运机械停止位置的精度;提高生产线速度、控制精度;采用有 反馈装置的流量控制实现自动化
曲线如图

单极性SPWM逆变电路电力电子课设

单极性SPWM逆变电路电力电子课设

电力电子技术课程设计单极性SPWM单相桥式逆变电路的设计与仿真院、部:电气信息工程学院学生姓名:李旺指导教师:杨万里职称助教专业:自动化班级:1401班学号:1430740107完成时间:2017.6湖南工学院电力电子技术课程设计课题任务书学院:电气与信息工程学院专业:自动化摘要20世纪80年代以来,信息电子技术和电力电子技术在各自发展的基础上相结合而产生了一代高频化、全控型的电力电子器件,典型代表有门极可关断晶闸管、电力晶体管、电力场效应晶体管和绝缘栅双极型晶体管。

逆变电路是PWM控制技术最为重要的应用场合。

这里在研究单相桥式PWM逆变电路的理论基础上,采用Matlab的可视化仿真工具Simulink建立单相桥式单极性控制方式下PWM逆变电路的仿真模型,通过动态仿真,研究了调制深度、载波度对输出波形的影响。

仿真结果表明建模的正确性,并证明了该模型具有快捷、灵活、方便、直观等一系列特点,从而为电力电子技术教学和研究中提供了一种较好的辅助工具。

关键词:PWM控制技术;逆变电路;单极性SPWM;SimulinkAbstractSince 1980s, the electronic information technology and power electronics technology combined to produce a generation of high frequency phase in their development, full controlled power electronic devices, a typical gate turn off thyristor, power transistor, power MOSFET and insulated gate bipolar transistor.The inverter circuit is one of the most important applications of PWM control technology. Here in the theoretical basis of the single-phase bridge inverter circuit of the PWM, the simulation model of PWM inverter using Matlab visual simulation tool Simulink to establish the single-phase bridge unipolar control mode, through dynamic simulation, studied the modulation depth, the carrier frequency of the output voltage. Influence of load current; and analyzes the harmonic characteristics of output voltage, load current. The simulation results show that the model is correct, and it is proved that the model is fast, flexible, convenient, intuitive and a series of characteristics, so as to power electronic technology teaching Study and research provides an effective tool.Key words:PWM control technology; inverter circuit; SPWM waveform; Simulink目录1绪言 (1)1.1电力电子技术的概况 (1)1.2课程学习情况简介 (1)1.3设计要求及总体方案设计 (2)2主电路设计 (3)2.1主电路原理图及原理分析 (3)2.2器件选择及参数计算 (4)3控制与驱动电路设计 (5)3.1控制电路设计 (5)3.2驱动电路设计 (6)4保护电路设计 (7)4.1过电流保护 (7)4.2过电压保护 (7)5仿真分析 (8)5.1仿真软件介绍 (8)5.2仿真模型的建立 (8)5.3仿真结果分析 (10)6设计总结 (13)参考文献 (14)致谢 (15)附录 (16)1绪言1.1电力电子技术的概括随着电力电子技术的高速发展,逆变电路的应用非常广泛,蓄电池、干电池、太阳能电池等都是直流电源,当我们使用这些电源向交流负载供电时,就需要用到逆变电路了。

单相和三相逆变器SPWM调制技术的仿真与分析

单相和三相逆变器SPWM调制技术的仿真与分析

目录1.引言 .......................................................................................... - 2 -2.PWM控制的基本原理........................................................... - 2 -3.PWM逆变电路及其控制方法............................................... - 3 -4.电路仿真及分析 ...................................................................... - 4 -4.1双极性SPWM波形的产生 . (4)4.2三相SPWM波形的产生 (6)4.3双极性SPWM控制方式单相桥式逆变电路仿真及分析-7-5.双极性SPWM控制方式的单相桥式逆变电路和三相逆变电路比较分析 .................................................................................. - 12 -6.结论 ........................................................................................ - 13 -7.参考文献 ................................................................................ - 13 -1. 引言PWM 技术的的应用十分广泛,目前中小功率的逆变电路几乎都采用了PWM 技术。

它使电力电子装置的性能大大提高,因此它在电力电子技术的发展史上占有十分重要的地位。

PWM 控制技术正是有赖于在逆变电路中的成功应用,才确定了它在电力电子技术中的重要地位。

单极性全桥逆变SPWM控制方法以及解决过零点振荡的方案

单极性全桥逆变SPWM控制方法以及解决过零点振荡的方案

单极性全桥逆变SPWM控制方法以及解决过零点振荡的方案引言当前众多电源应用领域对交流电源的要求越来越高,传统的电网直接供电方式在很多场合已无法满足要求,因此,需要对电网或者其他能源处理后逆变输出。

高质量的逆变电源已经成为电源技术的重要研究对象。

全桥架构又是逆变器中非常重要的架构。

全桥逆变控制方式主要分为双极性控制方式和单极性控制方式。

双极性控制是对角的一对开关为同步开关,桥臂上下管之间除死区时间外为互补开关,控制相对简单,但是它的开关损耗高,存在很大的开关谐波,电磁干扰大,而单极性控制可以很好地解决这些问题。

全桥逆变器单极性控制仅用一对高频开关,相对于双极性控制具有损耗低、电磁干扰小、无开关频率级谐波等优点,正在取代双极性逆变控制方式。

但由于控制环路的延时作用,单极性控制方式的逆变器仍然受一个问题的困扰,即在过零点存在一个明显的振荡。

单极性控制方式又包括单边方式和双边方式,双边方式相对于单边方式在抑止过零点振荡方面有一定优势,但仍然无法做到过零点的平滑过渡。

为了提高逆变器的输出波形质量,本文分析了,单极性双边控制方式,分析了其振荡产生原因,并介绍一种解决过零点振荡的方案。

1 主电路拓扑单极性SPWM逆变器如图1所示,由2组桥臂构成,一组桥臂(S3,S4)以高频开关工作频率工作,称为高频臂;另一组桥臂(S1,S2)以输出的正弦波频率进行切换,称为低频臂。

2 单极性双边SPWM控制方式单极性逆变有两种产生SPWM的方法,分为单极性单边SPWM控制方式和单极性双边SPWM控制方式,文献l对此有比较详尽的介绍,这里只介绍过零点特性较好的双边控制方式,这种方式对于单边控制方式仍然有效。

在单极性双边SPSM控制方式中,给定的载波信号按正弦方式变化,三角调制波信号,当输出电压为正时三角波为正,输出电压为负时三角波为负,如图2所示。

高频臂上管S3的开关由载波与调制波相比较决定,载波幅值大于调制波则开通,载波幅值小于调制波则关断,除去死区时间,高频臂上管S3与高频臂下管S4的开关完全互补。

实验五十一DCACSPWM单相全桥逆变电路设计及研究

实验五十一DCACSPWM单相全桥逆变电路设计及研究

华中科技大学电气与电子工程学院实验教学中心 信号与控制综合实验指导书 实验五十一DC/AC SPWM单相全桥逆变电路设计及研究(信号与系统—自动控制理论—检测技术-电力电子学综合实验)一、实验原理SPWM单相全桥逆变电路的主要工作原理是依靠四个开关管的通、断状态配合,利用冲量等效原理,采用正弦脉宽调制(SPWM)策略将输入的直流电压变换成正弦波电压输出。

SPWM的调制原理是通过对每个周期内输出的脉冲个数和每个脉冲宽度来调节逆变器输出电压的频率和幅值。

要使输出的电压波形接近标准的正弦波,就要尽量保证SPWM电压波在每一时间段都与该时段中正弦电压等效。

除要求每一时间段的面积相等外,每个时间段的电压脉冲宽度还必须很窄,这就需要在一个正弦波形内脉冲的数量很多。

脉波数量越多,不连续的按正弦规律改变宽度的多脉冲电压就越等效于正弦电压。

目前,在电力电子控制技术中,SPWM技术应用极为广泛,SPWM波形的形成一般有自然采样法、规则采样法等等。

前者主要用于模拟控制中,后者适用数字控制。

本实验采用的是DSP控制的单相全桥逆变电路,采用对称规则采样法。

对称规则采样的基本思想是使SPWM波的每个脉冲均以三角载波中心线为轴线对称,因此在每个载波周期内只需一个采样点就可确定两个开关切换点时刻。

具体算法是过三角波的对称轴与正弦波的交点,做平行于时间轴的平行线,该平行线与三角波的两个腰的交点作为SPWM波“开通”和“关断”的时刻。

由于在每个三角载波周期中只需要进行一次采样,因此使得计算公式得到简化,并且可以根据脉宽计算公式实时计算出SPWM波的脉宽时间,可以实现数字化控制。

图51-1 对称规则采样法生成SPWM波根据相似三角形定理,可以分析出图1对称规则采样法生成的SPWM波脉宽时间T n华中科技大学电气与电子工程学院实验教学中心 信号与控制综合实验指导书为:()21sin n n T T MN Nπ−= (51-1) 式中,M 为调制度,T 为正弦调制波周期,N 为载波比。

单相正弦波脉宽调制(SPWM)逆变电路实验结果

单相正弦波脉宽调制(SPWM)逆变电路实验结果

单相正弦波脉宽调制(SPWM)逆变电路实验结果(1)控制信号的观测①观察正弦调制波信号U r的波形,测试其频率可调范围;U r频率最小时波形图,由图可知最小频率小于10HzU r频率最大波形图,由图可知最大频率等于62Hz②观察三角载波U c的波形,测试其频率,由图可知最大频率等于178.9Hz③改变正弦调制波信号U r的频率,再测量三角载波U c的频率改变正弦调制波信号U r的频率三角载波U c的频率是同步变化④比较“PWM+”,“PWM-”和“SPWM1”,“SPWM2”的区别PWM+”,“PWM-的区别:同一相上下两管驱动信号之间无死区SPWM1”,“SPWM2的区别:同一相上下两管驱动信号之间死区延迟时间是30ms(2)带电阻及电阻电感性负载①输出接灯泡负载,然后将主电路接通由控制屏左下侧的直流电源(通过调节单相交流自藕调压器,使整流后输出直流电压保持为200V)接入主电路,由小到大调节正弦调制波U r 的频率,观测负载电压的波形,记录其波形参数(幅值、频率)。

U O(V) 82.2 82.4 82.5 波形F(Hz) 13.56 28.23 29.59 U O(V) 82 82 82波形F(Hz) 34.63 42.73 55.81U O(V) 82 82 82波形②接入DJK06给定及实验器件和DJK02上的100mH电感串联组成的电阻电感性负载,然后将主电路接通由DJK09提供的直流电源,由小到大调节正弦调制波信号U r的频率观测负载电压的波形,记录其波形参数(幅值、频率)。

F(Hz) 17.67 20.53 22.67U O(V) 83 83 83波形U O(V) 83 83 83 波形F(Hz) 49.61 53.78 161.15 U O(V) 83 83 83波形。

6单相正弦波脉宽调制(SPWM)逆变电路实验报告

6单相正弦波脉宽调制(SPWM)逆变电路实验报告

实验报告课程名称:现代电力电子技术实验项目:单相正弦波脉宽调制(SPWM)逆变电路验实验时间:实验班级:总份数:指导教师:朱鹰屏自动化学院电力电子实验室二〇〇年月日广东技术师范学院实验报告学院:自动化学院专业:电气工程及其自动化班级:成绩:姓名:学号:组别:组员:实验地点:电力电子实验室实验日期:指导教师签名:实验(六)项目名称:单相正弦波脉宽调制(SPWM)逆变电路实验1.实验目的和要求(1)熟悉单相交直交变频电路原理及电路组成。

(2)熟悉ICL8038的功能。

(3)掌握SPWM波产生的基理。

(4)分析交直交变频电路在不同负载时的工作情况和波形,并研究工作频率对电路工作波形的影响。

2.实验原理采用SPWM正弦波脉宽调制,通过改变调制频率,实现交直交变频的目的。

实验电路由三部分组成:即主电路, 驱动电路和控制电路。

主电路部分:AC/DC (整流) DC/AC (逆变)图4-1 主电路结构原理图如图4-1所示, 交直流变换部分(AC/DC)为不可控整流电路(由实验挂箱DJK09提供);逆变部分(DC/AC)由四只IGBT管组成单相桥式逆变电路,采用双极性调制方式。

输出经LC低通滤波器,滤除高次谐波,得到频率可调的正弦波(基波)交流输出。

本实验设计的负载为电阻性或电阻电感性负载,在满足一定条件下,可接电阻启动式单相鼠笼式异步电动机。

(2)驱动电路:如图4-2(以其中一路为例)所示,采用IGBT管专用驱动芯片M57962L,其输入端接控制电路产生的SPWM信号,其输出可用以直接驱动IGBT管。

其特点如下:①采用快速型的光藕实现电气隔离。

②具有过流保护功能,通过检测IGBT管的饱和压降来判断IGBT是否过流,过流时IGBT 管CE结之间的饱和压降升到某一定值,使8脚输出低电平,在光藕TLP521的输出端OC1呈现高电平,经过流保护电路(见图4-3),使4013的输出Q端呈现低电平,送控制电路,起到了封锁保护作用。

电力电子技术I 实验3 单相SPWM逆变电路

电力电子技术I 实验3 单相SPWM逆变电路

课程名称:电力电子技术指导老师:马皓成绩:__________________ 实验名称:单相正弦波(SPWM)逆变电路实验类型:____________同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的与要求熟悉单相桥式SPWM逆变电路的工作原理,对工作情况及其波形作全面的分析,并研究正弦波的频率和幅值及三角波载波频率的关系。

二、实验内容1. 测量SPWM波形产生过程中各点波形;2. 测量逻辑延时电路的延时时间;3. 观察不同负载时变频电路的输出波形。

三、实验仪器与设备1. MPE-I电力电子探究性实验平台2. NMCL-10B单相SPWM逆变实验箱3. NMCL-03D可调电阻4. NMCL-31B交直流仪表5. 万用表6. 示波器四、实验方法及操作步骤1.SPWM波形的观察(1) 观察“SPWM波形发生电路”输出的正弦波波形,改变正弦波频率调节电位器,测试其频率可调范围,改变正弦波幅值调节电位器,测试其幅值变化范围。

(2) 观察“SPWM波形发生电路”输出的三角形载波波形,改变三角波频率调节电位器,测试其频率可调范围,并观察三角波与正弦波波形的对应关系。

(3) 观察“SPWM波形发生电路”经过三角波和正弦波比较后得到的SPWM波形。

2. 逻辑延迟时间的测试将“SPWM波形发生电路”的输出SPWM波与“DLD逻辑延时”的输入端相连(以下实验均需保持连接),用双踪示波器同时观察“DLD逻辑延迟”的“1”和“2”与“SPWM波形发生电路”接地端之间电压波形,并记录延迟时间T d。

3. 同一桥臂上下开关管驱动信号死区时间测试分别将IGBT驱动芯片IR2110输出E1和E2,E3与E4相连,用双踪是比起分别测量G1、E1和G2、E2,G3、E3和G4、E4两端的波形,并测量死区时间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

风机、泵类、采油、挤压机、搅拌机等。通过调节电动机转速达到节 能目的,通过节能在1、2年内即可收回改造成本
提高搬运机械停止位置的精度;提高生产线速度、控制精度;采用有 反馈装置的流量控制实现自动化
生产加工实现最佳速度控制及协调生产线内各装置的速度,使其同步、 同速,以提高产品的质量和加工精度
根据产品种类联网控制,实现生产线的最佳速度,提高生产率
高度重视。
用 20世纪80年代,作为变频技术核心的PWM模式优化问题吸引着人们的浓厚兴
趣,并得出诸多优化模式,其中以鞍形波PWM模式效果最佳。
技 20世纪80年代后半期开始,美、日、德、英等发达国家的VVVF变频器已投 入市场并广泛应用。
20世纪90年代,变频技术从V/F控制发展到矢量控制和直接转矩控制,从开
应 更国的国内外客户认可和选用。 当今,变频器的应用几乎涵盖了国民经济的各个行业,特别是在建

材、钢铁、有色金属、采油、石化、纺织等领域应用广泛。采用变 频器调速,除了替代过去的老式调速,更多的是用于老式调速无法
胜任的新的调速领域。


变 变频调速效果
频 应用目的
应用范围及效果
器 应 用
节能 自动化 提高产品质量 提高生产率

环控制到闭环控制, 2000年以后,变频技术结合PLC技术,逐步向智
能模糊控制方向发展。
变 我国变频器的应用现状
频 20世纪90年代初中国企业界才开始认识并认识并尝试使用变频器,
得到认可并大量使用是最近几年的事。
器 变频器从一开始进入我国,国外品牌就占据大部分市场份额,同时,
国内变频器的研制和生产也在向前发展,目前,国产变频器正在被
变化时,转矩即可在很大的范围内变化,即工作于额定转矩TN时,电

动机具有很硬的机械特性。
最大转矩TM

在n=nL(s=sL),T=TM点,这点的转矩称为最大转矩TM。TM的大小象 征着电动机的过载能力,用过载倍数λ表示,λ=TM/TN。在任何情况下,
电动机的负载转矩都不能大于TM,否则电动机转速将急剧下降,致使

电动机堵转停止,因此这一点称为临界转速点。临界转速nL的大小决定 了L点的上下位置,从而反映了机械特性的硬度。
变 交流电动机调速的几种方式
频 交流电动机的三种调速方法:

晶闸管)、GTR(电力晶体管)、 MOSFET(电力场效晶体管)发展到今天的 IGBT(绝缘栅双极型晶体管)、HVIGBT(耐高压绝缘栅双极型晶闸管)、
IGCT(集成门极换流晶闸管)、IPM(智能功率模块),器件的更新促使电力
应 变换技术的不断发展。 20世纪70年代开始,脉宽调制变压变频(PWM—VVVF)调速研究引起了人们的
用 三相异步电动机的机械特性
曲线如图


变 特性曲线上几个特殊的转矩
频 起动转矩(TST)
在n=0(s=1),T= TST点,这点转矩称为起动转矩TST,也称为堵转转

矩。当电动机的负载转矩大于TST时,电动机将不能起动。
额定转矩TN

在n=nN(s=sN),T=TN点,这点的转矩称为额定转矩TN。当电动机工 作在额定转矩TN时,sN通常在0.02—0.06之间,转速在很小的范围内
90%、70%分别提高到现在的98.5%、86%。



器 交流异步电机调速方式 应


第二部分

变 三相异步电动机的机械特性
频 公式 1同步转速:n=60f/p ; 2感应电动势:
器 E=4.44KNfΦm
当加在电动机上的电压U为额定电压时,电动机的电磁

转矩T与转子转速n之间的关系,称为电动机的机械特性, 即 n=f(T)
英文名称:Inverter,一般译作逆变器。
应 学术解释:变频器是利用电力半导体器件的通断作用将
工频电源变换为另一频率的电能控制装置。



变 变频技术的发展过程
频 变频技术是应交流电机无级调速的需要而诞生的。
20世纪60年代后半期开始,电力电子器件从SCR(晶闸管)、GTO(门极可关断
应 功率结构模块化
智能化
用 减小谐波影响
技ቤተ መጻሕፍቲ ባይዱ

变 我国变频器应用的大环境
频 在我国60%的发电量是通过电动机消耗的,因此调速传
动是一个重要行业,一直得到国家重视,目前已有一定
器 规模。

1998年1月1日实施的《中华人民共和国节约能源法》第 39条,已将变频调速列入通用节能技术加以推广。
年节电量在2000万kWh左右。但这两年来,随着

炼量的大幅提升,许多装了变频器的机泵都提 量,接近满负荷甚至超负荷运行,节电效果明
显下降。
用 目前使用的变频器都是进口的。主要以富士变 频器为主,兼用了山垦、西门子、日电等品牌。
变频器的投用,取得明显的控制和节能效果,

变频器的投用率和完好率现已作为电气车间和 有关车间经济考核指标。目前,通过大家的共 同努力,变频器的投用率和完好率已从去年的
变 内容大纲
频 变频器概述 器 交流异步电机调速方式 应 变频器的工作原理
变频器的控制方式
用 节能原理与应用举例 技 变频器管理注意事项



器 变频器概述 应


第一部分

变 引言:什么是变频器?
频 顾名思义,变频器就是要改变电压或电流的频率,以改
变交流异步电动机转速的机器。

用 即将出台的限制性政策规定:对新建和扩建工程需要调
速运行的风机和水泵,一律不准采用挡板和阀门调节流
技 量;对采用挡板和阀门调节流量的要分期、分批、有步
骤地进行调速改造。

变 变频器在我们炼油厂的使用
频 在石化系统,我们茂石化和九江石化应用变频
器最早。 在八十年代末期,我厂首先在润滑油

重质车间使用获得成功。目前安装台数已达到 258台,总容量16359kW,其中有10台高压变频器。 平均节电率达到20-30%之间,有的高达50%,全

增加设备使用 寿命
采用对设备不产生冲击的起动、停止及空载低速运行等方式,增加设 备的使用寿命

增加舒适度
电梯、电车等,采用平滑加速、减速,以提高乘坐的舒适性;改变空 调间断运行为变速连续运行,使室内温差减小,增大环境舒适度
变 变频器的发展趋势
频 向专用型方向发展 器 向人性化方向发展
易用性不断提高
相关文档
最新文档