尺规作图复习PPT课件
合集下载
2.4 用尺规作图课件 课件

2.下列属于尺规作图的是( B ) A.用量角器画一个角等于30°
B.用圆规和直尺作线段AB等于已知线段a C.用三角板作线段AB的垂线
D.用刻度尺画一条线段等于3 cm
选做题
3.如图,已知∠A,∠B,求作一个角,使它等于∠A-∠B.
(不用写作法,保留作图痕迹)
解:作∠COD=∠A, 并在∠COD的内部作∠DOE=∠B, 则∠COE就是所求作的角.
用尺规作一个角等于已知角
已知:∠AOB. 求作:作∠A'O'B',使∠A'O'B'=∠AOB.
作法
(1)作射线O'A'
(2)以点O为圆心,以任意长为半 径画弧,交OA于点C,交OB于点D; O
(3)以点O'为圆心,以OC长为半
作法与示范 径画弧,交O'A'于点C';
O
(4)以点C'为圆心,以CD长为半
选做题
2.如图,已知α和β(α>β),求作∠AOB,使∠AOB=α-β.
做法: (1)作射线__O_A_____; (2)以射线OA为一边作∠AOC=___∠__α__; (3)以____O___为顶点,以射线_O_C_____为一边,在∠AOC的内部作 ∠BOC=__∠__β___,则___∠__A_O_B____就是所求的角。
B
D’ D
是一个正方形
课堂总结 尺规作角
基本工具
圆规 无刻度直尺
尺规判断两个角的大小
用尺规作一个角等于已知角的和、差、倍
基本步骤:一线三弧
画弧必 备条件
圆心 半径
作业布置
必做题
1.如图,点C在∠AOB的边OB上,用尺规作出了∠BCN=∠AOC, 作图痕迹中,弧FG是( D )
《尺规作图》课件PPT课件

在机械装配过程中,装配图纸是指导工人如何组装机械的重要依据。使用尺规作图可以绘制出详细的装配图纸, 包括各个零件的尺寸、位置和连接方式等。
05
习题与练习
基本题
题目1
作一个角等于已知角
题目2
经过一点作已知直线的垂线
题目3
过直线外一点作已知直线的平行线
进阶题
01
02
03
题目4
作一个三角形,使其三边 长度分别为3cm、4cm、 5cm
02
通过一个点作圆
使用尺规,选取一个点作为圆心,再选取一个长度作为半径,然后以该
点为起点,以该长度为半径,画出一个圆。
03
通过两个点作圆
使用尺规,选取两个点作为圆上的点,再选取这两个点之间的中点作为
圆心,然后以该中点到每个点的距离为半径,分别画出两个圆,这两个
圆就是所求的两个圆。
圆弧的作法
圆弧的基本性质
题目5
作一个角,使其是已知两 角的和
题目6
经过一点作已知直线的垂 直平分线
挑战题
题目7
作一个正方形,使其面积 等于已知三角形的面积
题目8
经过两个已知点作一条直 线的平行线
题目9
作一个五边形,使其内角 和等于已知四边形的内角 和
THANKS FOR WATCHING
感谢您的观看
在几何学中,尺规作图被广泛应用于解决各种几何问题,如求作线段的中点、等分 线段、求作圆的切线等。
在代数和解析几何中,尺规作图也有着广泛的应用,如求作函数的图像、求作方程 的根等。
在数学竞赛中,尺规作图是重要的解题工具之一,能够解决一些复杂的几何构造问 题。
02
尺规作图的基本技能
直线的作法
直线的基本性质
05
习题与练习
基本题
题目1
作一个角等于已知角
题目2
经过一点作已知直线的垂线
题目3
过直线外一点作已知直线的平行线
进阶题
01
02
03
题目4
作一个三角形,使其三边 长度分别为3cm、4cm、 5cm
02
通过一个点作圆
使用尺规,选取一个点作为圆心,再选取一个长度作为半径,然后以该
点为起点,以该长度为半径,画出一个圆。
03
通过两个点作圆
使用尺规,选取两个点作为圆上的点,再选取这两个点之间的中点作为
圆心,然后以该中点到每个点的距离为半径,分别画出两个圆,这两个
圆就是所求的两个圆。
圆弧的作法
圆弧的基本性质
题目5
作一个角,使其是已知两 角的和
题目6
经过一点作已知直线的垂 直平分线
挑战题
题目7
作一个正方形,使其面积 等于已知三角形的面积
题目8
经过两个已知点作一条直 线的平行线
题目9
作一个五边形,使其内角 和等于已知四边形的内角 和
THANKS FOR WATCHING
感谢您的观看
在几何学中,尺规作图被广泛应用于解决各种几何问题,如求作线段的中点、等分 线段、求作圆的切线等。
在代数和解析几何中,尺规作图也有着广泛的应用,如求作函数的图像、求作方程 的根等。
在数学竞赛中,尺规作图是重要的解题工具之一,能够解决一些复杂的几何构造问 题。
02
尺规作图的基本技能
直线的作法
直线的基本性质
中考数学基础复习第22课尺规作图课件

2
解得,x=5或-3(舍弃),∴BE=5.
变式2.(202X·长沙)人教版初中数学教科书八年级上册第48页告知我们一种 作已知角的平分线的方法: 已知:∠AOB. 求作:∠AOB的平分线. 作法:(1)以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N; (2)分别以点M,N为圆心,大于 1 MN的长为半径画弧,两弧在∠AOB的内部相交
4.(202X·北京)已知:如图,△ABC为锐角三角形,AB=AC,CD∥AB. 求作:线段BP,使得点P在直线CD上,且∠ABP= ∠BAC. 作法:①以点A为圆心,AC长为半径画圆,交直线CD于C,P两点;②连接BP.线段BP 就是所求作线段. (1)使用直尺和圆规,依作法补全图形.(保留作图痕迹)
2
∠CBA内交于点F;作射线BF交AC于点G.若CG=1,P为AB上一动点,则GP的最小值
为
(C)
A.无法确定
B. 1
2
C.1
D.2
5.(202X·河北)如图1,已知∠ABC,用尺规作它的角平分线.
如图2,步骤如下,
第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;
第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;
【解析】(1)则四边形ABCD就是所求作的四边形.
(2)∵AB∥CD,∴∠ABP=∠CDP,∠BAP=∠DCP,∴△ABP∽△CDP,∴ AB . AP
【考点3】尺规作图拓展应用
例3.(202X·苏州)如图,已知∠MON是一个锐角,以点O为圆心,任意长为半径画 弧,分别交OM,ON于点A,B,再分别以点A,B为圆心,大于 1 AB长为半径画弧,两
2
弧交于点C,画射线OC.过点A作AD∥ON,交射线OC于点D,过点D作DE⊥OC,交ON于
解得,x=5或-3(舍弃),∴BE=5.
变式2.(202X·长沙)人教版初中数学教科书八年级上册第48页告知我们一种 作已知角的平分线的方法: 已知:∠AOB. 求作:∠AOB的平分线. 作法:(1)以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N; (2)分别以点M,N为圆心,大于 1 MN的长为半径画弧,两弧在∠AOB的内部相交
4.(202X·北京)已知:如图,△ABC为锐角三角形,AB=AC,CD∥AB. 求作:线段BP,使得点P在直线CD上,且∠ABP= ∠BAC. 作法:①以点A为圆心,AC长为半径画圆,交直线CD于C,P两点;②连接BP.线段BP 就是所求作线段. (1)使用直尺和圆规,依作法补全图形.(保留作图痕迹)
2
∠CBA内交于点F;作射线BF交AC于点G.若CG=1,P为AB上一动点,则GP的最小值
为
(C)
A.无法确定
B. 1
2
C.1
D.2
5.(202X·河北)如图1,已知∠ABC,用尺规作它的角平分线.
如图2,步骤如下,
第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;
第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;
【解析】(1)则四边形ABCD就是所求作的四边形.
(2)∵AB∥CD,∴∠ABP=∠CDP,∠BAP=∠DCP,∴△ABP∽△CDP,∴ AB . AP
【考点3】尺规作图拓展应用
例3.(202X·苏州)如图,已知∠MON是一个锐角,以点O为圆心,任意长为半径画 弧,分别交OM,ON于点A,B,再分别以点A,B为圆心,大于 1 AB长为半径画弧,两
2
弧交于点C,画射线OC.过点A作AD∥ON,交射线OC于点D,过点D作DE⊥OC,交ON于
最新华师版八上数学 13.4 尺规作图 上课课件(共44张PPT)

1
2
1
2
课堂小结
工具→没有刻度的直尺、圆规
尺
规 作
图 作图
1.作一条线段等于已知线段→作线段的和与差 2.作一个角等于已知角→作角的和与差
3.作三角形
华东师大版·八年级数学上册
2.尺规作图(2)
新课导入
用圆规和直尺能不能作 出正七边形、正九边形、正 十一边形、正十三边形、正 十七边形呢?
两千年来,这一直是个未解之谜.
练习
1.
如图,已知∠A,试作∠B=
1 2
∠A(不写作
法,保留作图痕迹)
A
B
2. 做出图中三角形的三个角的平分线。
内心
如何过一点 C 作已知直线 AB 的垂线呢?
C
点C与已知直线 AB 的位置关系有两种: 点C在直线 AB 上或点C在直线 AB 外.
(1)当点 C 在直线 AB 上
① 做平角ACB的平分线CD;
华东师大版·八年级数学上册
1.尺规作图(1)
新课导入
三角尺 量角器
刻度尺
圆规
探究新知
没有刻度的直尺
只能使用圆规和 没有刻度的直尺这两 种工具作几何图形的 方法叫做尺规作图.
圆规
基本的尺规作图:
作一条线段等于已知线段
作一个角等于已知角 作已知角的平分线
尺规作图时通常 保留作图痕迹.
经过一已知点作已知直线的垂线
D
B
C
思考 如图,已知直线l是线段AB的垂 直平分线,则直线l是线段AB的对称轴, 对l上的任意两点C、D,总有:
A
CA=CB,DA=DB
由此,你能发现作垂直平分线的方法吗?
l C
B D
尺规作图课件

作圆的直径与半径
总结词
利用直尺和圆规,可以轻松作出圆的直径和半径。
详细描述
首先确定圆心和任意一点在圆上,然后使用直尺和圆规,通过测量和画线,可以作出圆的直径或半径。直径是穿 过圆心且两端都在圆上的线段,而半径是从圆心到圆上任意一点的线段。
04
尺规作图的进阶技能
作已知直线的中垂线
总结词
通过给定直线上的一个点,使用尺规作已知直线的中垂线。
02
尺规作图的基本知识
尺规作图的工具与材料
工具
直尺、圆规、斜边尺
材料
白纸、铅笔、橡皮
尺规作图的规则与限制
规则
只能使用直尺和圆规,不能使用其他工具。
限制
不能折叠、剪切或黏贴图形。
尺规作图的步骤与方法
步骤一
确定作图目标,理解题 目要求。
步骤二
根据题目要求,使用直 尺和圆规绘制草图。
步骤三
仔细检查草图,确保符 合尺规作图的规则和限
制。
步骤四
修改和完善草图,直至 达到预期的作图目标。
03
尺规作图的基本技能
作平行线与垂直线
总结词
利用直尺和圆规,可以轻松作出 平行线和垂直线。
详细描述
首先确定一个点作为起点,然后 使用直尺和圆规,通过测量和画 线,可以作出与已知直线平行的 直线或与已知直线垂直的直线。
作角的平分线
总结词
利用直尺和圆规,可以将一个角平分 成两个相等的角。
何图形。
尺规作图的限制在于只能使用直 尺和圆规,不能使用其他工具来
辅助作图。
尺规作图的历史与发展
尺规作图的历史可以追溯到古希腊时期,当时数学家们开始研究如何使用直尺和圆 规来完成各种几何图形。
尺规作图(画线段的垂直平分线)课件

如桥梁、建筑等。
应用2
解决几何问题:通过构造垂直平分 线,可以将复杂的几何问题转化为 简单的几何问题,从而方便求解。
应用3
设计图纸:在工程设计和建筑图纸 中,常常需要画出各种垂直平分线 ,以确保结构的稳定性和对称性。
03
尺规作线段垂直平分线的方法
确定线段的两个端点
总结词
确定线段两个端点是尺规作图的基础 ,需要使用圆规截取线段长度,并标 记出两个端点。
详细描述
首先,使用圆规截取线段长度,并标 记出两个端点。确保这两个端点位于 同一直线上,并且距离适中,以便于 后续作图。
以线段中点为圆心,半长为半径画圆
总结词
以线段中点为圆心,半长为半径画圆是垂直平分线作图的关键步骤,需要使用 直尺和圆规进行操作。
详细描述
使用直尺和圆规,以线段的中点为圆心,线段长度的一半为半径画圆。这个圆 将通过线段的两个端点,并且与线段相切于中点。
在思考过程中,可以尝试使用其他工具或方法来作线段的垂 直平分线。例如,可以使用折纸法、三角形法等不同的方法 。通过比较不同方法的优缺点,可以更好地理解作图的本质 和原理。
总结与归纳作图过程中的注意事项
总结
总结归纳作图过程中的注意事项,有助于提高作图的准确性和效率。
在作图过程中,需要注意以下几点
首先,要确保使用的工具是准确和可靠的;其次,要遵循尺规作图的规则和步骤;最后,要认真检查和修正作图 结果。通过总结归纳这些注意事项,可以更好地掌握尺规作图的技巧和方法。
线段垂直平分线的性质
01
02
03
性质1
垂直平分线上的任意一点 到线段两端点的距离相等 。
性质2
线段垂直平分线上的点到 线段两端点的连线与垂直 平分线垂直。
应用2
解决几何问题:通过构造垂直平分 线,可以将复杂的几何问题转化为 简单的几何问题,从而方便求解。
应用3
设计图纸:在工程设计和建筑图纸 中,常常需要画出各种垂直平分线 ,以确保结构的稳定性和对称性。
03
尺规作线段垂直平分线的方法
确定线段的两个端点
总结词
确定线段两个端点是尺规作图的基础 ,需要使用圆规截取线段长度,并标 记出两个端点。
详细描述
首先,使用圆规截取线段长度,并标 记出两个端点。确保这两个端点位于 同一直线上,并且距离适中,以便于 后续作图。
以线段中点为圆心,半长为半径画圆
总结词
以线段中点为圆心,半长为半径画圆是垂直平分线作图的关键步骤,需要使用 直尺和圆规进行操作。
详细描述
使用直尺和圆规,以线段的中点为圆心,线段长度的一半为半径画圆。这个圆 将通过线段的两个端点,并且与线段相切于中点。
在思考过程中,可以尝试使用其他工具或方法来作线段的垂 直平分线。例如,可以使用折纸法、三角形法等不同的方法 。通过比较不同方法的优缺点,可以更好地理解作图的本质 和原理。
总结与归纳作图过程中的注意事项
总结
总结归纳作图过程中的注意事项,有助于提高作图的准确性和效率。
在作图过程中,需要注意以下几点
首先,要确保使用的工具是准确和可靠的;其次,要遵循尺规作图的规则和步骤;最后,要认真检查和修正作图 结果。通过总结归纳这些注意事项,可以更好地掌握尺规作图的技巧和方法。
线段垂直平分线的性质
01
02
03
性质1
垂直平分线上的任意一点 到线段两端点的距离相等 。
性质2
线段垂直平分线上的点到 线段两端点的连线与垂直 平分线垂直。
尺规作图中考总复习原创课件

【考点3】作线段的垂直平分线
【例3】如图,在Rt△ABC中,∠ACB=90°.(1)用尺规在边BC上求作一点P,使PA=PB(不写作法, 保留作图痕迹);(2)连接AP,当∠B为__________时,AP平分∠CAB.并 说明理由.
解:(1)作图略 (2)∠B=30°,理由如下: ∵PA=PB,∴∠B=∠BAP. 又∵AP平分∠CAB,∴∠CAP=∠BAP=∠B. ∵在Rt△ABC中,∠ACB=90°, ∴∠CAP=∠BAP=∠B= 30°,即 ∠B= 30°.
4.如图,在△ABC中,∠ACB=90°,∠A= 30°,BC=4.(1)过点C作AB边的垂线,垂足为D;(尺规作图,保 留作图痕迹,不写作法)(2)求AD的长.
解:(1)图略(2)在△ABC中,∠ACB=90°,∠A=30°,BC=4, ∴ AB=2BC=8,∠B=60°. 由(1)可得CD⊥AB,∴∠BCD=30°. ∴BD= BC=2. ∴ AD=AB-BD=6.
105°
解:(1)图略(2)由(1)可得直线EF垂直平分AB,且D是AB的中点, 又∵∠ACB=90°,∴CD= AB, 在Rt△ABC中,∠ACB=90°,AC=6, BC=8, ∴ .∴CD= AB=5.
【变式2】如图,点D在△ABC的边AB上,且 ∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图, 保留作图痕迹,不写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系, 并证明.
解:(1)作图略 (2)DE∥AC, ∵DE平分∠BDC,∴∠BDE= ∠BDC, ∵∠ACD=∠A,∠ACD+∠A=∠BDC, ∴∠A= ∠BDC,∴∠A=∠BDE. ∴DE∥AC.
课后训练
1.如图,已知在△ABC中,按以下步骤作图:(1)分别以B, C为圆心,大于 BC的长为半径作弧,两弧相交于两点M,N;(2)作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB=______.
【例3】如图,在Rt△ABC中,∠ACB=90°.(1)用尺规在边BC上求作一点P,使PA=PB(不写作法, 保留作图痕迹);(2)连接AP,当∠B为__________时,AP平分∠CAB.并 说明理由.
解:(1)作图略 (2)∠B=30°,理由如下: ∵PA=PB,∴∠B=∠BAP. 又∵AP平分∠CAB,∴∠CAP=∠BAP=∠B. ∵在Rt△ABC中,∠ACB=90°, ∴∠CAP=∠BAP=∠B= 30°,即 ∠B= 30°.
4.如图,在△ABC中,∠ACB=90°,∠A= 30°,BC=4.(1)过点C作AB边的垂线,垂足为D;(尺规作图,保 留作图痕迹,不写作法)(2)求AD的长.
解:(1)图略(2)在△ABC中,∠ACB=90°,∠A=30°,BC=4, ∴ AB=2BC=8,∠B=60°. 由(1)可得CD⊥AB,∴∠BCD=30°. ∴BD= BC=2. ∴ AD=AB-BD=6.
105°
解:(1)图略(2)由(1)可得直线EF垂直平分AB,且D是AB的中点, 又∵∠ACB=90°,∴CD= AB, 在Rt△ABC中,∠ACB=90°,AC=6, BC=8, ∴ .∴CD= AB=5.
【变式2】如图,点D在△ABC的边AB上,且 ∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图, 保留作图痕迹,不写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系, 并证明.
解:(1)作图略 (2)DE∥AC, ∵DE平分∠BDC,∴∠BDE= ∠BDC, ∵∠ACD=∠A,∠ACD+∠A=∠BDC, ∴∠A= ∠BDC,∴∠A=∠BDE. ∴DE∥AC.
课后训练
1.如图,已知在△ABC中,按以下步骤作图:(1)分别以B, C为圆心,大于 BC的长为半径作弧,两弧相交于两点M,N;(2)作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB=______.
2024年中考数学复习课件-第26讲 尺规作图

证明: , , 点 在以 为直径的圆上, . . 为 的切线, . , . . .在 和 中, .
图56
考点专练
图6
4.尺规作图.(只保留作图痕迹,不要求写出作法)如图6,已知 .请根据“ ”基本事实作出 ,使 .
图2
【解析】由作图可知, 是线段 的垂直平分线, 四边形 是平行四边形, , .又 , , .故
【答案】D
结论B,C正确. ,即 . 故结论A正确.由已知条件,无法证明 ,故结论D不正确.
考点专练
2.如图3,在 中, , 为 的外角.观察图3中尺规作图的痕迹,则下列结论错误的是( ) .
第26讲 尺规作图
典题精析
考点一 基本作图的认识
名师指导 熟练掌握五种基本作图的方法和作图依据,是用尺规作图的基础.
例1 尺规作图:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线.图1是按上述要求排乱顺序的尺规作图,则正确的配对是( ) .
C
A. B. C. D.
图2
例2 (2023·随州)如图2,在 中,分别以点 , 为圆心,大于 的长为半径画弧,两弧相交于点 , ,过 , 两点作直线交 于点 ,分别交 , 于点 , .下列结论中,不正确的是( ) .
A. B. C. D.
思路点拨 由作图可知, 垂直平分线段 .根据线段垂直平分线的性质得到 ,再结合平行四边形的性质,逐一进行判断.
作图依据
①等腰三角形底边上的高线、底边上的中线、顶角的平分线互相重合(“三线合一”)②两点确定一条直线
续表
图形
作法
①任意取一点 ,使点 和点 在直线 的两侧②以点 为圆心,____长为半径画弧,交直线 于点 , ③分别以点 , 为圆心,大于_ ____的长为半径向直线 的同侧画弧,两弧相交于点 ④作直线 ,则直线 就是所求作的垂线
图56
考点专练
图6
4.尺规作图.(只保留作图痕迹,不要求写出作法)如图6,已知 .请根据“ ”基本事实作出 ,使 .
图2
【解析】由作图可知, 是线段 的垂直平分线, 四边形 是平行四边形, , .又 , , .故
【答案】D
结论B,C正确. ,即 . 故结论A正确.由已知条件,无法证明 ,故结论D不正确.
考点专练
2.如图3,在 中, , 为 的外角.观察图3中尺规作图的痕迹,则下列结论错误的是( ) .
第26讲 尺规作图
典题精析
考点一 基本作图的认识
名师指导 熟练掌握五种基本作图的方法和作图依据,是用尺规作图的基础.
例1 尺规作图:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线.图1是按上述要求排乱顺序的尺规作图,则正确的配对是( ) .
C
A. B. C. D.
图2
例2 (2023·随州)如图2,在 中,分别以点 , 为圆心,大于 的长为半径画弧,两弧相交于点 , ,过 , 两点作直线交 于点 ,分别交 , 于点 , .下列结论中,不正确的是( ) .
A. B. C. D.
思路点拨 由作图可知, 垂直平分线段 .根据线段垂直平分线的性质得到 ,再结合平行四边形的性质,逐一进行判断.
作图依据
①等腰三角形底边上的高线、底边上的中线、顶角的平分线互相重合(“三线合一”)②两点确定一条直线
续表
图形
作法
①任意取一点 ,使点 和点 在直线 的两侧②以点 为圆心,____长为半径画弧,交直线 于点 , ③分别以点 , 为圆心,大于_ ____的长为半径向直线 的同侧画弧,两弧相交于点 ④作直线 ,则直线 就是所求作的垂线
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19.09.2020
余金耀
8
2.(2003年·河南省)已知:如图8-7-7是两个同心 圆被两条半径截得的一个扇形图,请你画出一个 以O为对称中心的扇形的对称图形(保留画图痕迹 不写画法)
19.09.2020
余金耀
9
例题讲解
3、如图,107国道OA和320国道OB在某市 相交于点O,在∠AOB的内部有工厂C和D, 现要修建一个货站P,使P到OA,OB的距离 相 等 且 PC=PD , 用 尺 规 作 出 货 站 P 的 位 置 (不写作法,保留作图痕迹,写出结论)。
尺规作图
19.09.2020
1
2006年中考考试目标:
(1)能完成基本作图:作一条线段等于已知线段;
作一个角等于已知角;作角的平分线;作线利用基本作图作三角形:已知三边作三角形;
已知两边及其夹角作三角形;已知两角及其夹边作三角
形;已知底边及底边上的高作等腰三角形 (3)探索如何过一点、两点和不在同一直线上的三
点作圆
b
(4)了解尺规作图的步骤
a
(5)对于尺规作图题,会写已知、求作和作法(不要
求证明)
a
19.09.2020
余金耀
2
一、基本作图及其数学语言
1.尺规作图限定作图工具只有圆规和没有
刻度的直尺.
2.基本作图
⑴作一条线段等于已知线段;
作线段AB=a.
⑵作一个角等于已知角;作∠ABC=∠α.
⑶作已知角的平分线;
A
19.09.2020
107国 道
D
O
C
B
320国 道
余金耀
10
3.(2003年·湖南省湘潭市)如图8-7-8,国道107 和国道320相交于O点,在∠AOB的内部有工厂C 和D,现在修建一个货站P,使P到OA、OB的距 离相等,且使PC=PD,用尺规作出货站P的位置 (不写作法,保留作图痕迹,写出结论).
作∠ABC的平分线BP.
⑷作线段的垂直平分线;
作线段AB的垂直平分线CD.
19.09.2020
余金耀
3
⑸已知三边,两边夹角,两角夹边,斜边直角 边作三角形,底边和底边上的高作等腰三角形.
①作△ABC,使AB=c,BC==a,AC=b. ②作△ABC,使AB=c,BC==a,∠ABC=∠α. ③作△ABC,使AB=c,∠CAB=∠α ∠CBA=∠β. ④作△ABC,使AB=c,BC==a,∠ACB=900. ⑤作△ABC,使AB=AC,BC==a,AD⊥BC于D,且 AD=h.
19.09.2020
余金耀
15
【解析】这是一道考查动手作图能力的设计题,
本题实际上用三角形奠基法作平行四边形,这是 基本作图. 作图步骤如下:连结AC、BD交于点O1分别以 AB、BC、CD、DA为对角线,向外作AEBO, BFCO,CGDO,DHAO,则可得EFGH,这就 是所求作图的图形.
19.09.2020
13
【例1】(2003年·广西桂林市)正在修建的中山北 路有一形状如图8-7-11所示的三角形空地需要绿 化,拟从点A出发,将△ABC分成面积相等的三 个三角形,以便种上三种不同的花草,请你帮助 规划出图案(保留作图痕迹,不写作法).
【解析】从A点出发的二条 线段把△ABC分成三个面积 相等的三角形,根据同高等 底面积相等,则只要作出 BC的三等分点即可,这样 只要根据平行线等分线段定 理,即可作图.
3.作图题的一般步骤: ①已知,②求作,③分析,④作法,⑤证明,⑥ 讨论.
19.09.2020
余金耀
4
➢ 要点、考点聚焦
1 本课时重点是利用五个基本作图解决一些实 际问题,将几何作图与几何设计综合在一起,考 查解决实际问题的动手作图能力.
2 五种基本作图 (1)作一条线段等于已知线段
19.09.2020
余金耀
16
【例3】(2003年·青岛市)如图8-7-13,某汽车队 要从A城穿越沙漠去B城,途中需要到河流L边为 汽车加水,汽车在河边哪一点加水,才能使行驶 的总路程最短?请你用尺、规作出这一点(不写作 法,但要保留作图痕迹).
19.09.2020
余金耀
17
【解析】根据两点之间线段最短的公理内容知, 若A、B两点分在L的两旁,则只需连结AB,AB 与L的交点即是.但是此题A、B在L的同侧,这样 就想到轴对称的问题,因此作A点关于L的对称 点A′,连结A′B,A′B与L的交点即是所要找的点.
19.09.2020
余金耀
18
【例4】在一服装厂里有大量形状为等腰直角三角形的 边角布料(如图8-7-14),现找出其中的一种,测得 ∠C=90°,AC=BC=4,今要从这种三角形中剪出一 种扇形,做成不同形状的玩具,使扇形的边缘半径恰 好都在△ABC的边上,且扇形的弧与△ABC的其他边 都相切,请设计出所有可能符合题意的方案示意图, 并求出半径(只要求画出图形,并直接写出扇形半径.)
【解析】这是一道应用性作图题,只要满足它们要 求就行,这样可以画出四种方案,如上. 熟知所作的图形的性质,才能由基本尺规作图,作 出图形来或设计出图案来.
19.09.2020
余金耀
19
19.09.2020
19.09.2020
余金耀
11
4.如图8-7-9,已知点O是正六边形的中心,现 要用一条直线把它的面积分成面积相等的两部分, 请分别用两种不同的方法画出这条直线.
19.09.2020
余金耀
12
5.如图8-7-10,已知点O和直线l,以点O为圆心 画一个与直线l相切的圆.
19.09.2020
余金耀
19.09.2020
余金耀
14
【例2】如图8-7-12,田村有一口呈四边形的池塘, 在它的四个角A、B、C、D处均种有一棵大核桃 树,田村准备开挖池塘建养鱼池,想使池塘面积 扩大一倍,又想保持核桃树不动,并要求扩建后 的池塘成平行四边形形状,请问田村能否实现这 一设想?若能,请你设计并画出图形,若不能, 请说明理由(画图要保留痕迹,不写画法)
余金耀
5
(2)作一个角等于已知角
(3)作一个角的平分线
19.09.2020
余金耀
6
(4)作已知线段的中垂线 (5)过一点作已知直线的垂线
19.09.2020
余金耀
7
1.(2003年·广东省)如图,AB、AC分别是菱形 ABEF的一条边和一条对角线所在的直线,请用 尺规把这个菱形补充完整(保留作图痕迹,不要 求写作法和证明)