实验一 金相显微镜的原理
(完整版)金相显微镜的基本原理、构造及使用

5.2 金相显微镜的基本原理、构造及使用金相显微镜可用来鉴别和分析各种金属和合金的组织结构,广泛应用在工厂或实验室进行铸件质量的鉴定、原材料的检验或对材料处理后金相组织的研究分析等工作。
还可用于半导体检测、电路封装、精密模具、生物材料等检验与测量。
【实验目的】1.了解金相显微镜的基本原理、基本结构和使用方法。
2.掌握仔细阅读显微镜使用说明书并进行正确操作的方法。
【实验原理】显微镜的基本放大作用由焦距很短的物镜和焦距较大的目镜来完成的,物体位于物镜的前焦点外但很靠近焦点位置,物体经过物镜形成倒立的放大实像,这个像位于目镜的物方焦距内但很靠近焦点位置,作为目镜的物体,目镜将物镜放大的实像再放大成虚像,位于观察者的明视距离(距人眼250mm)处,供眼睛观察。
光路图见“2.4光学基本仪器”中的图2-?为了减少球面像差、色像差和像域弯曲等像差,金相显微镜的物镜和目镜都是由透镜组构成的复杂光学系统。
显微镜的成像质量在很大程度上取决于物镜的质量,因此物镜的构造尤为复杂,根据对各种像差的校正程度不同,物镜可分为消色差物镜、复消色差物镜和平视场物镜等三大类。
近年来,由于采用计算机技术,物镜的设计和制造都有了很大改进。
实际上,一方面,金相显微镜所观察的显微组织,往往几何尺寸很小,小至可与光波波长相比较,此时不能再近似地把光线看成直线传播,而要考虑衍射的影响。
另一方面,显微镜中的光线总是部分相干的,因此显微镜的成像过程是个比较复杂的衍射相干过程。
此外,由于衍射等因素的影响,显微镜的分辨能力和放大能力都受到一定限制,目前金相显微镜可观察的最小尺寸一般是0.2μm左右,有效放大倍数最大为1500~1600倍。
金相显微镜总的放大倍数为物镜与目镜放大倍数的乘积。
放大倍数用符号“Х”表示,例如物镜放大倍数为20Х,目镜放大倍数为10Х,则显微镜的放大倍数为200Х。
通常物镜、目镜的放大倍数都刻在镜体上,在使用显微镜观察试样时,应根据其组织的粗细情况,选择适当的放大倍数,以细节部分能观察得清晰为准。
材料科学基础实验报告

(1)用砂轮打磨,获得平整磨面; (2)使用金相砂纸按照先粗后细,依顺序进行磨制; (3)在抛光机上进行抛光,获得光亮镜面; (4)用浸蚀剂浸蚀试样磨面; (5)显微镜观察。
四、观察试样
观察记录试样的显微组织
试样 100×
试样 400×
五、实验存在的问题
(1)在进行试样的制备过程中利用砂纸进行打磨时用力不均匀,导致了试样的划痕深浅不一。 (2)其次,试样制作时没有掌握技巧,做了许多无用功。 (3)最后在浸蚀的时候浸蚀时间没有掌握好,试样并不是很完美
实验三 铁碳合金平衡组织观察
一、 实验目的
1、识别和研究铁碳合金(碳钢和白口铸铁)在平衡状态下的显微组织; 2、分析含碳量对铁碳合金显微组织的影响,加深理解成分、组织与性能之间的相互关系
二、实验概述
铁碳合金的显微组织是研究钢铁材料性能的基础。铁碳合金平衡状态的组织是指合金在极 为缓慢的冷却条件下(如退火状态)所得到的组织,其相变过程均按 Fe—Fe3C 相图进行,所以 我们可以根据该相图来分析铁碳合金的平衡组织。
莱氏体+一次渗碳 体
浸蚀剂 4%硝酸酒精溶液 4%硝酸酒精溶液 4%硝酸酒精溶液 4%硝酸酒精溶液
4%硝酸酒精溶液
4%硝酸酒精溶液 4%硝酸酒精溶液
三、实验照片采集分析
铁素体
铁素体
材料名称 含碳量(%) 浸蚀剂 放大倍数
工业纯铁 <0.02 4 % 硝 酸 100×
酒精溶液
铁素体+珠光体
材料名称 含碳量(%) 浸蚀剂
实验一 金相显微镜的构造及使用
MDJ 型双目金相显微镜的构造及使用 一、实验目的
1、了解金相显微镜的光学原理和构造 2、初步掌握金相显微镜的使用方法及利用显 微镜进行显微组织分析
金相实验的原理和方法

金相实验得原理与方法实验目得: 金属材料得使用通常遵循着“成分一组织一性能”得相互关系。
金相即金相学,就就是研究金属或合金内部结构得科学。
不仅如此, 它还研究当外界条件或内在因素改变时,对金属或合金内部结构得影响。
所谓内在因素主要指金属或合金得化学成分。
所谓外部条件就就是指温度、加工变形、铸造情况等。
—试验设备:lx 金相试样切割机砂轮机2、3、镶嵌机4、预磨机5、抛光机腐蚀液6、7、金相显微镜8、摄影系统及电脑三试验原理:金相试验就是将欲检验试片表而经研磨抛光(或化学抛光、电化学抛光)至一定得要求光滑后,以特定得腐蚀液于以腐蚀,利用各相或同一相中方向不同对腐蚀程度得不同而能表现出各相之特征,并利用显微镜放大倍率观察判断之。
四试验方法:Is试片准备:为使试片能合乎观察得要求必须以如下之步骤处理之。
⑴取样(SAMPLING): 取样必须考虑其整体或研究得主题得代表性,如材料属方向性者则应依各方而皆取样观察:如品管检查则可随机取样破坏分析可取性质较差得材料来凸显破坏原因以便观察。
⑵切割(SECTIONING):如材料硬度低则可直接用锯子予以切割,如硬度较高则可使用砂轮切割,但必须慎选砂轮,且切割时须冷却以避免因切割过程所产生得热对材料组织得影响。
⑶粗磨(C OARSE G R I NDING):用砂轮机去除试片得毛边,并用较粗得砂纸(#80左右)或沙袋机磨平且可除去可能因切割所产生得变态层。
(4)镶嵌(MOUNTING):镶嵌得目得为使试片握持方便或保持试片边缘之完整,如不考虑这两种因素,则此步骤可省略,镶嵌得方法有两种,即热镶嵌(Hot Mol ding)及冷镶嵌(ColdMold ing)。
热镶嵌也称为加压嵌模(pression Molding),方法为将试片表面朝下置于金属磨中(一般内径为1 11/4及1 2/2等三种)再填以适量之树脂,如酚树脂(如电木粉Bakelite),预热至60~8CrC后即加压至4,200PSI左右之压力,并继续加热至130-14 持续加热数分钟后,即可移去热源,并可取出试片,如系使用热塑性塑M(The rmoplast i c s )则应让温度降至5 OC以下才可取出。
金相显微镜的工作原理

金相显微镜的工作原理金相显微镜的主要部件包括光源、透镜系统、物镜、目镜、标本架和焦平面。
光源提供光线照射样品。
透镜系统由凹透镜组成,用于聚焦光线。
物镜位于样品与透镜系统之间,是放大样品图像的主要组件。
目镜位于物镜的后面,用于进一步放大以及观察样品图像。
标本架用于支撑样品,并使之能够在显微镜中转动。
焦平面是样品被聚焦后的区域。
1.准备样品:将金属样品切割成薄片,并研磨至平整。
为了更好地观察样品的内部细微结构,还需要将样品进行抛光以去除表面的氧化物和污染物。
2.照射样品:将样品放在标本架上,并使用光源照射。
光源可以是可见光源或增强光源,例如荧光灯。
3.透镜系统聚焦:通过调整透镜系统的位置,将光线聚焦在样品上。
透镜系统中的凹透镜可以使光线集中并尽可能地进入样品。
4.物镜放大:样品被聚焦后,物镜将图像放大。
物镜可以具有不同的放大倍数,通常在50倍到2000倍之间。
5.目镜放大:被物镜放大后的图像通过目镜进一步放大,使得观察者能够清楚地看到细节。
6.调焦和调整图像质量:在观察过程中,可以使用调焦装置来调整焦点的位置,以实现更清晰的图像。
此外,还可以通过调整透镜的位置和样品的位置来改变图像的亮度和对比度。
7.观察和记录结果:通过目镜观察样品,并使用目镜上的刻度尺或摄像机等设备记录图像。
金相显微镜的工作原理主要依赖于光学理论和光在玻璃和透镜中的折射和聚焦原理。
当光线通过样品时,根据样品内部结构和组成的不同,光会发生反射、折射和散射。
物镜和目镜的组合形成了放大系统,可以将光线聚焦到观察者的眼睛中,使得样品的图像放大。
总之,金相显微镜的工作原理是利用光学原理将光线聚焦在金属样品上,并通过物镜和目镜的组合放大样品图像,使观察者能够清楚地看到样品的细微结构。
这种显微镜在金属材料的研究和分析中具有重要的应用价值。
实验1 金相显微镜的结构与使用资料

实验1. 金相显微镜的构造与使用一、原理概述:金相分析是人们通过金相显微镜来研究金属和合金显微组织大小、形态、分布、数量和性质的一种方法。
显微组织是指如晶粒、包含物、夹杂物以及相变产物等特征组织。
利用这种方法来考查如合金元素、成分变化及其与显微组织变化的关系:冷热加工过程对组织引入的变化规律;应用金相检验还可对产品进行质量控制和产品检验以及失效分析等。
1.金相显微镜的成象原理简介人眼对客观物体细节的鉴别能力是很低的,一般是在0.15~0.30mm 间。
因此,观察认识客观物体的显微形貌,必需藉助显微镜。
显微镜放大的光学系统由两级组成。
第一级是物镜,细节AB 通过物镜得到放大的倒立实角A 1B 1。
A 1B 1的细节虽已为被区分开,但其尺度仍很小,仍不能为人眼所鉴别,因此,还需第二次放大。
第二级放大是通过目镜来完成。
当经第一级放大的倒立实象处于目镜的主焦点以内时,人眼可通过目镜观察到二次放大的A 3B 3的正立虚象。
(1) 物镜的成象:根据几何光学可知,当被观察的物体处于该透镜的一倍焦距与二倍焦距之间时,物体的反射光通过物镜经折射后在透镜的另一侧可以得到一个放大的倒立实像。
为了充分发挥物镜的能力,一般设计时是让被观察物体处于很接近于焦点处,因此计算其放大倍数时可以用物镜的焦距f 。
见图1-1。
11A B LM AB f ''=≈物物式中:f 物——接物镜焦距;L ——F 1到实象间的距离;M 物——物镜放大倍数。
(2) 目镜的成象同样据几何光学成象规律可知,当被观察物体处于该透镜的一倍焦距以内时,人眼通过透镜观察,可以在250mm 远处看到一个放大了的正立虚象(250mm在这里称为明视距离)。
见图1-2。
目镜的放大倍数250M f目目式中:f 目——目镜的焦距; 250——人眼的明视距离(mm)/; 目——目镜的放大倍数。
M显微镜的成象(3) 被观察物体的细节经物镜放大后的实象落到目镜主焦点以内后,人眼观察可看到经两次放大后的虚象。
金相显微镜的工作原理

金相显微镜的工作原理
金相显微镜是一种用于金属材料显微组织分析的仪器。
其工作原理基
于光学显微镜的原理,但是在光学显微镜的基础上增加了一些特殊的装置
和技术,以便更好地观察金属材料的显微组织。
金相显微镜的主要工作原
理包括以下几个方面:1.光源:金相显微镜使用的光源通常是高亮度的白
光源或者是钨丝灯。
这些光源可以提供足够的光强度,以便在显微镜中观
察到金属材料的显微组织。
2.物镜:金相显微镜的物镜通常是高倍率的物镜,其放大倍数可以达到100倍以上。
这些物镜可以放大金属材料的显微
组织,使其更加清晰可见。
3.透射装置:金相显微镜的透射装置包括光源、准直器、滤光片和透镜等。
这些装置可以使光线经过样品后,只有特定波
长的光线通过,从而提高金属材料显微组织的对比度和清晰度。
4.相差装置:金相显微镜的相差装置可以使光线在经过样品后,产生相位差异,从
而提高金属材料显微组织的对比度和清晰度。
5.摄像装置:金相显微镜的
摄像装置可以将金属材料的显微组织图像记录下来,以便后续的分析和处理。
总之,金相显微镜的工作原理是通过光学原理和特殊的装置和技术,
使金属材料的显微组织更加清晰可见,从而实现对金属材料的显微组织分
析和研究。
简述金相显微镜的原理
简述金相显微镜的原理
金相显微镜的工作原理简述
金相显微镜是一种光学显微镜,通过反射照明成像来观察样本,其工作原理主要有:
1. 照明系统
金相显微镜使用聚光镜将光源聚集,经凸透镜滤光成单色光(通常为绿色),然后经筒镜专向照明于样本。
2. 反射成像
样本表面经过精心抛光处理,在照明光的作用下会产生反射。
反射光经物镜汇聚形成样本的倒立实像。
3. 物镜结构
物镜为复透镜结构,具有较高数值孔径,可以收集大角度反射光,确保光学分辨率,成像清晰。
4. 目镜成像
物镜形成的实像经目镜进一步放大成为虚像,进入使用者眼中。
目镜可调节以适应不同使用者的视力。
5. 表面形貌显微
光线照在抛光平整的样本表面, 根据表面形貌的微小起伏变化而产生不同的反射方向。
这种反射sigs的变化成为表面形貌的图像。
6. 金属镀膜
为增强反射,通常需要在非金属样本表面镀上一层金属,如金、钯等。
防止光线进入样本内部,只反射表面形貌。
7. 图像对比度
调节照明系统的照度及方向等参数,可以增强表面形貌的图象对比度。
也可以经图像处理进一步提高对比度。
8. 与光学显微镜区别
金相显微镜依靠表面反射成像,而光学显微镜是利用样本的透光性质成像。
二者
在显微原理上有根本区别。
综上所述,这些是金相显微镜的关键组件及成像原理。
金相显微镜因其表面形貌观测的独特优势,在材料和生物样品的微观表面结构分析中有着重要应用。
金相显微镜的观测原理
金相显微镜的观测原理金相显微镜是一种常用于金相组织分析的显微镜。
它是通过将金属试样固定在显微镜下,使用光学放大来观察金属组织的显微结构和相的分布情况。
金相显微镜的观测原理主要包括照明系统、光学系统和检测系统。
照明系统是将光源转化为均匀光线,并通过物镜来照射金属试样。
光源通常使用白炽灯或者卤素灯,它们发出的光线具有较高的亮度和连续的光谱。
为了保证光线的均匀性和稳定性,照明系统中还包括透镜或反射镜等对光线进行补正的元件。
照明系统的主要作用是提供足够的光照,以使观察者可以清晰地观察金属试样的显微结构。
光学系统是由物镜、目镜和倍率选择器等组成的。
物镜是位于试样下方,与试样接近的一侧,它的主要作用是将试样上的细小结构放大并使其清晰可见。
物镜通常采用高倍率的物镜,如10×、20×和50×等,以获得更高的放大倍数。
目镜位于观察者的一侧,通过它观察到的图像实际上是物镜放大后的图像。
倍率选择器通常由多个物镜组成,通过选择不同的物镜来改变观察的放大倍数。
光学系统的主要作用是将金属试样上的显微结构放大,使观察者能够清晰地观察到金属组织的细节。
检测系统是用于观察和记录金属试样上显微结构的系统。
通常使用目镜和目镜对焦装置来观察金属试样上的显微结构,并使用目镜上的刻度来测量金属组织中的某些特征。
目镜对焦装置通常由粗调节和细调节两个部分组成,以便观察者可以调整焦距来获取清晰的图像。
此外,检测系统还可以使用相机和计算机等设备来记录金属试样上的显微结构,并进行图像处理、分析和存储。
通过对图像进行处理和分析,观察者可以进一步了解金属组织的特点和相的分布情况。
总的来说,金相显微镜是通过将金属试样固定在显微镜下,利用光学放大来观察金属组织的显微结构和相的分布情况的。
它的观测原理主要包括照明系统、光学系统和检测系统。
照明系统提供足够的光照,光学系统将金属试样的显微结构放大并使其清晰可见,检测系统用于观察和记录金属试样上的显微结构。
金相显微镜的成像原理
金相显微镜的成像原理
金相显微镜是一种常用于材料表面形貌和组织结构观察的显微镜。
它的成像原理主要涉及光源、目镜、物镜和眼睛间的光学系统以及样品的调节。
以下是金相显微镜的成像原理:
1. 光源:金相显微镜通常使用透射光源,如白炽灯或氙灯。
光源发出的光经过准直透镜和聚光透镜集中到样品上。
2. 物镜:物镜是位于样品下方的镜头,它是成像的关键部分。
物镜的设计使其能够提供高倍率的放大,并保证成像的清晰度和分辨率。
物镜的放大倍率通常在10×到100×之间。
3. 样品:样品是需要观察的物体。
在金相显微镜中,样品通常是金属、陶瓷或塑料等材料的小片或薄片。
样品需要被切割、研磨和腐蚀等处理过程,以获得想要的表面形貌和组织结构。
4. 目镜:目镜是位于样品上方的镜头,用于放大物镜的成像。
目镜通常具有10×的放大倍率,使得用户可以观察到具体的细节。
5. 眼睛:人眼作为金相显微镜的最终观察器官,通过聚焦调整,观察样品上的放大图像。
为了方便观察和减少疲劳,一些金相显微镜还配备了数码相机或摄像机,将图像传输到计算机或显示器上。
通过以上的光学系统,金相显微镜能够放大并成像样品表面的纹理、颗粒、缺陷和微观组织等结构。
这种成像原理使得金相
显微镜成为了材料科学、材料工程以及金属、陶瓷和塑料等材料的质量检验和研究领域中不可或缺的工具。
金相显微镜实验报告
一、实验目的1. 了解金相显微镜的构造、原理及使用规则。
2. 掌握金相显微试样制备的基本操作方法。
3. 通过观察金相显微组织,分析材料性能和缺陷。
二、实验原理金相显微镜是一种用于观察金属、合金等材料内部组织和缺陷的显微镜。
其基本原理是利用光学显微镜的成像原理,通过物镜和目镜的放大,将金相试样上的微小组织放大到人眼可以观察到的程度。
三、实验仪器与材料1. 仪器:金相显微镜、金相试样制备设备(如砂轮机、抛光机、显微镜等)、金相显微镜专用光源。
2. 材料:金相试样、金相砂纸、抛光布、脱脂棉、3~5硝酸酒精溶液。
四、实验步骤1. 金相试样制备(1)试样切割:将材料切割成一定厚度的薄片。
(2)试样磨光:将切割好的试样用不同型号的砂纸进行磨光,直至表面光滑。
(3)试样腐蚀:将磨光后的试样放入腐蚀液中腐蚀,以显示出试样内部的组织。
(4)试样清洗:将腐蚀后的试样用清水冲洗干净。
2. 金相显微镜观察(1)开启金相显微镜,调整光源亮度。
(2)将制备好的试样放置在载物台上,调整焦距,直至观察到清晰的图像。
(3)观察试样组织,记录观察到的组织类型、形态、大小等信息。
(4)对观察到的组织进行分析,判断材料性能和缺陷。
五、实验结果与分析1. 实验结果通过金相显微镜观察,观察到以下组织:(1)晶粒组织:试样中存在大量晶粒,晶粒大小不一。
(2)相组织:试样中存在不同相,如α相、β相等。
(3)析出相:试样中存在析出相,如析出碳化物等。
2. 实验分析(1)晶粒组织:晶粒大小对材料性能有较大影响,晶粒细化可以提高材料的强度、硬度等性能。
(2)相组织:不同相的存在对材料性能有较大影响,如α相、β相等相的形态、大小、分布等。
(3)析出相:析出相的存在对材料性能有较大影响,如析出碳化物等可以提高材料的硬度、耐磨性等性能。
六、实验总结1. 通过本次实验,掌握了金相显微镜的构造、原理及使用规则。
2. 学会了金相显微试样制备的基本操作方法,为后续的金相分析工作打下了基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一金相显微镜的原理、构造及使用一.实验目的1)了解金相显微镜的成像原理、基本构造、各主要部件及元件的作用;2)学习和初步掌握金相显微镜的使用和维护方法。
二.实验概述金相分析是研究材料内部组织和缺陷的主要方法之一,它在材料研究中占有重要的地位。
利用金相显微镜将试样放大100~1500倍来研究材料内部组织的方法称为金相显微分析法,是研究金属材料微观结构最基本的一种实验技术。
显微分析可以研究材料内部的组织与其化学成分的关系;可以确定各类材料经不同加工及热处理后的显微组织;可以判别材料质量的优劣,如金属材料中诸如氧化物、硫化物等各种非金属夹杂物在显微组织中的大小、数量、分布情况及晶粒度的大小等。
在现代金相显微分析中,使用的主要仪器有光学显微镜和电子显微镜两大类。
这里主要对常用的光学金相显微镜作一般介绍。
金相显微镜用于鉴别和分析各种材料内部的组织。
原材料的检验、铸造、压力加工、热处理等一系列生产过程的质量检测与控制需要使用金相显微镜,新材料、新技术的开发以及跟踪世界高科技前沿的研究工作也需要使用金相显微镜,因此,金相显微镜是材料领域生产与研究中研究金相组织的重要工具。
三.金相显微镜的基本理论知识3.1 显微镜的成像原理众所周知,放大镜是最简单的一种光学仪器,它实际上是一块会聚透镜(凸透镜),利用它可以将物体放大。
其成像光学原理如图1-1所示。
当物体AB置于透镜焦距f以外时,得到倒立的放大实像A′B′(如图1-1(a)),它的位置在2 倍焦距以外。
若将物体AB放在透镜焦距内,就可看到一个放大正立的虚象A′B′(如图1-1(b))。
映象的长度与物体长度之比(A′B′/AB)就是放大镜的放大倍数(放大率)。
若放大镜到物体之间的距离a近似等于透镜的焦距(a ≈f),而放大镜到像间的距离b近似相当于人眼明视距离(250mm),则放大镜的放大倍数为:N=b/a=250/f(a)实像放大(b)虚像放大图1-1 放大镜光学原理图由上式知,透镜的焦距越短,放大镜的放大倍数越大。
一般采用的放大镜焦距在10~100mm范围内,因而放大倍数在2.5~25倍之间。
进一步提高放大倍数,将会由于透镜焦距缩短和表面曲率过分增大而使形成的映象变得模糊不清。
为了得到更高的放大倍数,就要采用显微镜,显微镜可以使放大倍数达到1500~2000倍。
显微镜不象放大镜那样由单个透镜组成,而是由两级特定透镜所组成。
靠近被观察物体的透镜叫做物镜,而靠近眼睛的透镜叫做目镜。
借助物镜与目镜的两次放大,就能将物体放大到很高的倍数(~2000倍)。
图1-2所示是在显微镜中得到放大物像的光学原理图。
图1-2 显微镜光学原理图被观察的物体AB 放在物镜之前距其焦距略远一些的位置,由物体反射的光线穿过物镜,经折射后得到一个放大的倒立实象B A '',目镜再将实像B A ''放大成倒立虚像B A '''',这就是我们在显微镜下研究实物时所观察到的经过二次放大后的物像。
在设计显微镜时,让物镜放大后形成的实像B A ''位于目镜的焦距f 目之内,并使最终的倒立虚像B A ''''在距眼睛250mm 处成像,这时观察者看得最清晰。
透镜成像规律是依据近轴光线得出的结论。
近轴光线是指与光轴接近平行(即夹角很小)的光线。
由于物理条件的限制,实际光学系统的成像与近轴光线成像不同,两者存在偏离,这种相对于近轴成像的偏离就叫做像差。
像差的产生降低了光学仪器的精确性。
按像差产生原因可分为两类:一类是单色光成像时的像差,叫做单色像差。
如球差、慧差、像散、像场弯曲和畸变均属单色像差;另一类是多色光成像时,由于介质折射率随光的波长不同而引起的像差,叫做色差。
色差又可分为位置色差和放大率色差。
透镜成像的主要缺陷就是球面差和色差(波长差)。
球面差是指由于球面透镜的中心部分和边缘部分的厚度不同,造成不同折射现象,致使来自于试样表面同一点上的光线经折射后不能聚集于一点(图1-3),因此使映像模糊不清。
球面像差的程度与光通过透镜的面积有关。
光圈放得越大,光线通过透镜的面积越大,球面像差就越严重;反之,缩小光圈,限制边缘光线射入,使用通过透镜中心部分的光线,可减小球面像差。
但光圈太小,也会影响成像的清晰度。
色差的产生是由于白光中各种不同波长的光线在穿过透镜时折射率不同,其中紫色光线的波长最短,折射率最大,在距透镜最近处成像;红色光线的波长最长,折射率最小,在距透镜最远处成像;其余的黄、绿、蓝等光线则在它们之间成像。
这些光线所成的像不能集中于一点,而呈现带有彩色边缘的光环。
色差的存在也会降低透镜成像的清晰度,也应予以校正。
通常采用单色光源(或加滤光片),也可使用复合透镜。
如图1-3所示。
(a)球面像差(b)色差图1-3 透镜产生像差的示意图3.2 显微镜的质量显微镜的质量主要取决于透镜的质量、放大倍数和鉴别能力。
3.2.1 透镜的质量3.2.1.1 物镜物镜是由若干个透镜组合而成的一个透镜组。
组合使用的目的是为了克服单个透镜的成像缺陷,提高物镜的光学质量。
显微镜的放大作用主要取决于物镜,物镜质量的好坏直接影响显微镜映像质量,它是决定显微镜的分辨率和成像清晰程度的主要部件,所以对物镜的校正是很重要的。
(1)物镜的类型根据对透镜球面像差和色差的校正程度不同,可将物镜分为消色差物镜、复消色差物镜、平面消色差物镜、平面复消色差物镜、半复消色差物镜等多种。
这些由若干透镜组合而成的透镜组,可以在一定程度上消除或减少透镜成像的缺陷,提高成像质量。
A.消色差物镜(Achromatic) 是较常见的一种物镜(表1-1),由若干组曲面半径不同的一正一负胶合透镜组成,只能矫正光谱线中红光和蓝光的轴向色差。
同时校正了轴上点球差和近轴点慧差,这种物镜不能消除二级光谱,只校正黄、绿波区的球差、色差,未消除剩余色差和其他波区的球差、色差,并且像场弯曲仍很大,也就是说,只能得到视场中间范围清晰的像。
使用时宜以黄绿光作照明光源,或在光程中插入黄绿色滤光片。
此类物镜结构简单,经济实用,常和福根目镜、校正目镜配合使用,被广泛地应用在中、低倍显微镜上。
在黑白照相时,可采用绿色滤色片减少残余的轴向色差,获得对比度好的相片。
表1-1 消色差物镜B.复消色差物镜(Apochromatic)由多组特殊光学玻璃和荧石制成的高级透镜组组合而成。
将红、蓝、黄光校正了轴向色差,消除了二级光谱,因此像质很好,但镜片多、加工和装校都较困难。
色差的校正在可见光的全部波区。
若加入蓝色或黄色滤光片效果更佳。
它是显微镜中最优良的物镜,对球面差、色差都有较好的校正,适用于高倍放大。
但仍需与补偿目镜配合使用,以消除残余色差。
C.平面消色差物镜(Plana chromatic) 采用多镜片组合的复杂光学结构,较好地校正像散和像场弯曲,使整个视场都能显示清晰,适用于显微摄影。
该物镜对球差和色差的校正仍限于黄绿波区,且还存在剩余色差。
D.平面复消色差物镜(PF, Planapochromat) 除进一步作像场弯曲校正外,其它像差校正程度均与复消色差物镜相同,使映像清晰、平坦;但结构复杂,制造困难。
E.半复消色差物镜(Halfapochromatic) 部分镜片用荧石制成,故又称荧石物镜,性能比消色差物镜好,价格比复消色差物镜便宜。
校正像差程度介于消色差与复消色差两种物镜之间,但其它光学性质都与后者相近;价格低廉,最好与补偿目镜配合使用。
(2)物镜的性质A.放大倍数:物镜的放大倍数,是指物镜在线长度上放大实物倍数的能力指标。
有两种表示方法,一种是直接在物镜上刻度出如8×、10×、45×等;另一种则是在物镜上刻度出该物镜的焦距f,焦距越短,放大倍数越高。
前一种物镜放大倍数公式为M物=L/f物,L是光学镜筒长度,L值在设计时是很准确的,但实际应用时,因不好量度,常用机械镜筒长度。
机械镜筒长度是指从显微镜目镜接口处之直线距离。
每一物镜上都用数字标明了机械镜筒长度。
B.镜筒长度:镜筒长度是指物镜底面到目镜顶面的距离。
由于物镜的像差是依据一定位置的映像来校正的,因此物镜一定要在规定的机械镜筒长度上使用,一般显微镜的机械镜筒长度多为160mm、170mm、190mm。
金相显微镜在摄影时,由于放大倍数不同,映像投射距离变化很大,因此,优良的物镜的像差是按任意镜筒长度校正的,即在无限长范围内,物镜像差均已校正。
C.数值孔径:数值孔径表征物镜的聚光能力,是物镜的重要性质之一,通常以“NA”表示。
物镜的数值孔径大小决定了物镜的分辨能力(鉴别)及有效放大倍数。
根据理论推导得出:NA=nsinθ式中n——物镜与观察物之间的介质折射率(空气为1,松柏油为1.515)θ——物镜的孔径半角,如图1-4所示。
增大物镜的数值孔径有两个途径:(1)增大透镜的直径或减小物镜的焦距即设计短焦距的物镜,以增大孔径半角θ。
但此法会导致像差增加及制造困难,一般不采用。
实际上sinθ的最大值只能达到0.95。
(2) 增大物镜与观察物之间的折射率n 。
干系物镜是以空气为介质的,折射率n=1,一般用于低倍物镜。
油系物镜常以松柏油(n=1.515,NA=1.4)、α-壹代溴萘(n=1.658,NA=1.60)为介质,用于高倍物镜。
油物镜的数值孔径此时可达1.30~1.40,其放大倍数可达100~140倍。
但干系物镜不能随便用油作为介质。
图1-4 物镜的聚光示意图D .物镜的标记:在物镜外壳上刻有不同的标记浸液记号、物镜类别、放大率、数值孔径、机械筒长度、盖玻片厚度。
油:表示浸液为松柏油;100×/1.25:表示物镜放大率为100倍,数值孔径1.25;160/0:表示机械镜筒长度为160mm ;“0”表示无盖玻片。
有些物镜刻有160/-:表示机械镜筒长度为160mm 。
“-”表示可有可无盖玻片。
在物镜上刻有色圈表示物镜的放大率。
高倍物镜通常都为油浸系,油镜头用“油”(或OiI ,ÖL ,HL )或外壳涂一黑圈来表示。
国家标准“GB/﹡2609—1981 物镜的系列和色圈”的规定见表1-2。
E .物镜的鉴别能力:显微镜的鉴别能力主要决定于物镜。
物镜的鉴别能力可分为平面和垂直鉴别能力。
平面鉴别能力即物镜的分辨率是指物镜所具有的将显微组织中两物点清晰区分的最小距离d 的能力。
如1-5所示。
根据光学衍射理论可知,显微组织中的一点经物镜放大成像后并不能获得一个真正的点像,而是具有相应尺寸的以白色圆斑为中心的许多个同心衍射环组成的。
中心光斑的强度最大,而衍射环的光强度随着环直径增大而逐渐减弱。
试样上若有两个点,如果两点之间的距离小于d ,则两点放大成像后的衍射环中心部分也相互重迭而不能清晰分辨。