33二阶系统解析
33-56 线性定常系统稳定性及劳斯稳定判据

2
tr
d tp d
1 2
c(tp ) c() Mp c(tp ) 1 e c ( )
ts 1
d
(ln
1 1 ln ) 2 1
ess
e
n t
n
, t 0
0 0
s
1
34.6
s
0
2.3 104
由于该表第一列系数的符号变化了两次,所以该方程中 有两个根在 s 的右半平面,因而系统是不稳定的。
P83
例2:D(s)=s4+5s3+7s2+2s+10=0 试用劳斯判据判别该系统的稳定性。 解:列劳斯表 1 7 10
5 7 2 33 5 5
s4 s3
2 K 1 3
系统闭环稳定与开环稳定之间没有直接关系
例9: 系统结构图如右, (1)确定使系统稳定的参数(K, )的范围; (2)当 =2时,确定使全部极点均位于s=-1之左的K值范围。 解: (1) G( s)
Ka s ( s 2 20 s 100)
Ka 100
K
D( s) s3 20 s 2 100 s 100K 0
s s2 s1 s0
3
1 20
2000 100 K 20
100 100K
0
0 K 20 K 0
100K
(2)当 =2 时,确定使全部极点均位于s=-1之左的K值范围。
当=2时,进行平移变换: s s 1
D( s) s 3 20 2 s 2 100s 100K 0
2
2 1 sin d t arctan
32-3 二阶系统时域响应

《自动控制理论》
§3.3 3.3 §3.3.1 3.3
二阶系统的时间响应及动态性能
传递函数标准形式及分类
2 D(s) = s 2 + 2ξωn s + ωn = 0
《自动控制理论》
二阶系统的时域响应
R-L-C电路,其传递函数为: 电路,其传递函数为:
Uc( s) 1 G( s) = = Ur( s) LCs2 + RCs +1
s1, 2 = ± jωn
对应的单位阶跃响应为
c(t ) = 1 − cos ωnt
由此表明系统在无阻尼时,其瞬态响应呈等幅振荡,振荡 由此表明系统在无阻尼时,其瞬态响应呈等幅振荡, 频率为 wn 。 wn
《自动控制理论》
二阶系统的时域响应
(2)临界阻尼 (ξ = 1)
ξ =1时 系统具有两个相等的实根, 当ξ =1时,系统具有两个相等的实根,即 s1, 2 = −ωn 。此时 系统输出的拉氏变换为
《自动控制理论》
§3.3.4 二阶系统阶的动态校正
比例微分(PD)校正 例1. 比例微分 校正
校正前图3-7b所示系统的特征方程为: 所示系统的特征方程为: 校正前图 所示系统的特征方程为
Js 2 + fs + K = 0
对应的
ωn =
K F , ξ= J 2 KJ
(3 - 33)
图3-15 具有PD校正的二阶系统 具有 校正的二阶系统
π −β ωd
(3-18) 18) (3-19) 19)
ξπ
1−ξ 2
π ωd
c(tp) − c(∞) − (3)超调量 Mp = = c(tp) −1 = e c(∞) 1 1 1 ts = (ln + ln ) (4)调整时间 2 ∆ ξ ωd 1− ξ
二阶系统响应

分析欠阻尼二阶系统单位阶跃响应表达式,可以得出如下结论: 第一,暂态响应为)sin(1)(=e t c t 2βωξξω+−−t d t n ,稳态响应为 第二,暂态响应为按指数衰减的正弦振荡形态;第三,阻尼比ξ的减小将导致系统响应的振荡加剧,且衰减速度变慢;(2)无阻尼(0=ξ)响应特征根:j s n ω±=,单位阶跃响应:2,1cos 1)(−=t c 分析结论:无阻尼二阶系统的单位阶跃响应曲线呈等幅振荡形式,其振荡频率为(3)临界阻尼(1=ξ)响应特征根:n s ω−=2,1,单位阶跃响应:()1(1n tc t e ξω−=−分析结论:临界阻尼二阶系统的单位阶跃响应曲线按指数单调上升形式,但由于是重极点,所以响应中增加了一项。
(4)过阻尼(tn n teξωω−1>ξ)响应特征根:122,1−±−=ξωξωnn s ,1()1T c t e 21T T =+−式中:2121(11)1(1T s T n n +=−=−−=ξωξξω,解:从响应曲线明显可以看出,在单位阶跃函数作用下,系统响应的稳态值为数形式应为:,而是3,因此系统 的传递函n 22ns 2s3)s (ωξωω++=Φ⎪⎪⎩⎪⎪M ⎨⎧−===×−=×∞∞−=2n p p p1)s (1.0t %100334%100)(c )(c )t (c %ξωπ]K +《自动控制原理》电子教案 解:系统地闭环传递函数为:4T K K ●系统传递函数的开环极点的实部均小于零,从s 平面来看,所有极点均位于其左半平面,则其模态就会随着时间t 的增长而衰减,最终消失。
系统响应的自由运动分量(即能得到稳态响应)能够消失的称为稳定系统,因此系统的稳定性由其全部极点的位置来决定。
●对于稳定的系统,即所以极点均位于S 左半平面,每个极点所对应的运动模态,随着时间t 衰减的因此(3比重”,因而也就影响系统响应的曲线形状,因此也就会影响系零点离极点较远时,相应于该极点模态所占的比重较大,离极点较近时,相应于该极点模态所占的比重较小。
二阶系统的阶跃响应

由于实际响应曲线的收敛速度比包络线的收敛速度要快, 因此可用包络线代替实际响应来估算调节时间。即认为响应曲 线的包络线进入误差带时,调整过程结束。
当t=t’s时,有:
e nts %
1 2
C(t)
1 1 1 2 e nt 1 1 2
1
Δ=5
ln( 1 2 %)
ts
tr
1
d
tg 1(
1 2
)
tg1( 1 2 ) tg1( 1 2n )
n
tg( ) n
1 2
n
tg1( 1 2 )
1 2
tr
d
n 1 2
称为阻尼角,这是由于 cos 。
20
n
n
jn 1 2
180
jn 1 2
3.3 二阶系统的阶跃响应
c(t) 1
1
e e ( 2 1)nt
( 2 1)nt
2 2 1 ( 2 1) ( 2 1)
特征方程还可为
12
s2
2
ns
2 n
(s
1 )(s T1
1 T2
)
3.3 二阶系统的阶跃响应
两阶系统的瞬态响应
式中
T1
n (
1
2
1)
T2
n (
1
2
1)
这里 T1 T2
,
2 n
1 T1T2
3.3 二阶系统的阶跃响应
第三节 二阶系统的阶跃响应
1
3.3 二阶系统的阶跃响应
一、典型二阶系统的数学模型
由二阶微分方程描述的系统称为二阶系统。它在控制工程
中的应用极为广泛。许多高阶系统在一定的条件下,也可简化
二阶系统瞬态响应和稳定性分析

2020年第10期136信息技术与信息化电子与通信技术二阶系统瞬态响应和稳定性分析李明辉* LI Ming-hui摘 要 在控制工程中,二阶系统的应用极为普遍,其重要性不言而喻。
本文利用MATLAB 软件对二阶系统三种阻尼情况下的响应及稳定性情况进行分析,并结合磁盘驱动读取系统具体分析其在实际工程中的应用,仿真结果直观明了。
关键词 磁盘驱动读取系统;二阶系统;稳定性doi:10.3969/j.issn.1672-9528.2020.10.043* 泰州学院 江苏泰州 225300[基金项目] 泰州学院2020年大学生创新训练计划项目校级项目(项目编号:2020CXXL049)0 引言在现代科学技术的众多领域中,自动控制技术展现出愈加关键的作用。
如何对控制系统进行设计分析已得到广泛关注[1-3]。
实际工程之中有许多控制系统都可以建立起高阶系统[4-6],但在某些条件下,可以忽略一些次要因素,把高阶系统视为二阶系统来研究[7]。
因此,分析和理解二阶系统特点有着重要意义。
1 原理及说明典型Ⅰ型二阶单位反馈闭环系统如图1所示。
图1 典型Ⅰ型二阶单位反馈闭环系统Ⅰ型二阶系统的开环传递函数为:(1)Ⅰ型二阶系统的闭环传递函数标准式为:(2)其中,为自然频率(无阻尼振荡频率),为阻尼比。
2 二阶系统的单位阶跃响应令(2)式的分母为零,得到二阶系统的特征方程,可以发现值的大小决定了二阶系统的特征根。
当,说明方程有两个实部大于0的特征根,系统单位阶跃响应为:式中,。
或者因为阻尼比,指数部分为正,该系统的动态过程展现为发散正弦振荡或单调发散,说明系统是不稳定的。
当,那么方程有一对纯虚根,,与s 平面上一组共轭极点照应,系统的阶跃响应为等幅振荡,该系统对应无阻尼状态。
当,那么特征方程有一对共轭复根,,与s 平面左半部分的共轭复数极点照应,其阶跃响应是一个衰减的振荡过程,该系统对应欠阻尼状态。
当,特征方程有两个相等的负实根,,与s平面负实轴上的两个相等的实极点照应,其阶跃响应非周期地趋于稳态输出,系统处于临界阻尼状态。
33-4 5 高阶系统时域响应及线性系统的稳定性PPT资料24页

C (s)K (sz1 )s(z2) (szm ),nm R (s) (sp 1 )s(p2) (sp n )
(3-43)
式中, z1 , z2 , zm 为闭环传递函数的零点; p 1 , p 2 , p n
为闭环传递函数的极点。令系统所有的零极点互不相同,且
j1
k1
q
C s
A j r B ksk nk C k nk 1 k 2
j 1sp j k 1
s2 2k nsk n 2k
g t q A je p jt rB k e k n tc k n o 1 k k 2 s t C k e k n ts k n i1 n k k 2 t
C (s ) 特 解A s 0 稳j态q 1 分s A 量jp j零 状k r 态1B 响k ( 应s 强s 2 k 制 n 分2 )量k n C s k nn 2 k 1 k 2
对上式拉氏反变换得
q
r
C(t)A0 Ae j pjt Be k kntkcosnk 1 k2t
《自动控制理论》 网址:
§3 控制系统的时域分析
§3.1 典型的试验信号 §3.2 一阶系统的时域响应 §3.3 二阶系统的时域响应 §3.4 高阶系统的时域响应 §3.5 线性定常系统的稳定性 §3.6 劳斯稳定判据 §3.7 控制系统的稳定误差
课程回顾
《自动控制理论》 网址:
§3.5.2 稳定的充要条件
根据系统稳定的定义,若 limk(t)0 ,则系统是稳定的。
t
必要性: (s)M (s)b m (sz1)(sz2) (szm )
D (s) a n (s1)(s2) (sn )
3-2 测试系统的特性-静态与动态特性1

3.3 测试系统的动态特性
机械工程测试技术
h (t )
M 超调量
时域性能指标
允许误差 ±Δ
1.0 h(∞) 0.9 h(∞ )
td
0 .5 h(∞)
延 时 时 间
0.05或0.02
0.1 h(∞) 0
t r 上升 时间 t p 峰值时间 t s 调整时间
t
3.3 测试系统的动态特性
机械工程测试技术
本课程中研究的测试系统都是定常线性系统,可以 用常系数线性微分方程来描述该系统以及输入x(t)和 输出y(t)间的关系。
对于一个线性系统如何更有效的描述 装置的特性与输出、输入的关系?
利用微分方程来描述有许多不便。如果通过拉氏变换 建立与其相应的“传递函数”,通过傅氏变换建立与 其相应的“频率特性函数”,就可更简单、有效地描 述装置的动态特性和输出与输入之间的关系。
0.5
1
1.5
2
2.5
0
0.5
1
1.5 (c)
2
2.5
3
3 t
叠加特性示例
3.3 测试系统的动态特性
机械工程测试技术
b)比例性 常数倍输入所得的输出等于原输入所得输出的常 数倍,即 若 x(t) → y(t) , 则 kx(t) → ky(t)
10 5
20 10 mm 0 -10
0 0.5 1 1.5 (a) 2 2.5 3
y
Y ( s ) bm s m bm 1 s m 1 b1 s b0 H ( s) X ( s) an s n an 1 s n1 a1 s a0
H(s)与输入及系统的初始状态无关,只表达测试 系统的传输特性。对于具体系统,H(s)不会因输 入变化而不同,但对于任一具体输入都能确定地 给出相应的、不同的输出。
二阶系统课程设计

二阶系统课程设计一、教学目标本课程的教学目标是使学生掌握二阶系统的理论知识,能够运用二阶系统解决实际问题。
具体分为以下三个部分:1.知识目标:学生需要掌握二阶系统的定义、特点和应用;了解二阶系统的求解方法和相关理论。
2.技能目标:学生能够运用二阶系统的理论知识分析和解决实际问题;能够熟练使用相关软件工具进行二阶系统的分析和设计。
3.情感态度价值观目标:培养学生对科学研究的兴趣和热情,提高学生的问题解决能力和创新意识。
二、教学内容根据课程目标,本课程的教学内容主要包括以下几个部分:1.二阶系统的定义和特点:介绍二阶系统的定义、特点和应用领域,使学生了解二阶系统的基本概念。
2.二阶系统的求解方法:讲解二阶系统的求解方法,包括解析法和数值法,让学生学会求解二阶系统的方法。
3.二阶系统的分析和设计:介绍二阶系统的分析和设计方法,使学生能够运用二阶系统解决实际问题。
4.相关软件工具的使用:教授相关软件工具的使用方法,让学生能够熟练使用工具进行二阶系统的分析和设计。
三、教学方法为了实现课程目标,本课程将采用多种教学方法,包括:1.讲授法:通过讲解二阶系统的理论知识,使学生掌握基本概念和理论。
2.讨论法:学生进行小组讨论,引导学生主动思考和探索,提高问题解决能力。
3.案例分析法:分析实际案例,让学生学会将理论知识应用于实际问题的分析和设计中。
4.实验法:让学生动手进行实验,培养学生的实践能力和创新意识。
四、教学资源为了支持课程内容和教学方法的实施,本课程将准备以下教学资源:1.教材:选用权威、实用的教材,为学生提供系统的理论知识学习。
2.参考书:提供相关领域的参考书,丰富学生的知识体系。
3.多媒体资料:制作精美的多媒体课件,提高学生的学习兴趣和效果。
4.实验设备:准备实验所需的设备,让学生能够进行实践活动,提高实践能力。
五、教学评估本课程的评估方式包括平时表现、作业、考试等多个方面,以全面、客观、公正地评价学生的学习成果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 近似原则:用其中一个惯性环节近似原二 阶系统,需要保证近似前后初值和终值相 等,并且要用到待定系数法!
过阻尼系统稳态值和最终误差
c() lim sG(s)R(s) lim s
2
1 1;
s0
s0 (s s1)(s s2 ) s
e() 0 过渡过程时间(按近似后一阶系统求出)
为二阶系统。
二、二阶系统的特征根(极点)分布 求解二阶系统特征方程,
s2 2ns n2 0
可得两个特征根(极点)
s1, s2 n n 2 1 ( 1) n jn 1 2 ( <1) j
j
[s]
s1
jn 1 2
讨论:
过阻尼系统是两个惯性环节的串联。
有关分析表明,当 1时,两极点s1和s2与虚轴的
距离相差很大,此时靠近虚轴的极点所对应的惯性 环节的时间响应与原二阶系统非常接近,可以用该 惯性环节来近似原来的二阶系统。即有
C(s) n n 2 1 s1 R(s) s n n 2 1 s s1
s(s2
n2 2ns
n2 )
s(s
n2
s1 )( s
s2 )
A0 A1 A2 s s s1 s s2
A0
C(s)s s0
1
A1
C
(s)(s
s1
) s
s1
2
1
2 1(
2 1)
A2
C
(s)(s
s2
) s s2
2
1
2 1(
2 1)
拉氏反变换可得过阻尼系统的单位阶跃响应:
c(t) 1
1
e( 2 1)nt
2 2 1( 2 1)
1
e( 2 1)nt (t 0)
2 2 1( 2 1)
稳态分量:1 暂态分量:两个指数函数之和, 指数部分由系统传递函数极点确定。
s(s2
n2 2ns
n2 )
1 s
(s
s n n )2 (1
2 )n2
(s
n n )2 (1
2 )n2
1 s
(s
s n n )2 d2
n 0
s2
jn 1 2
(a) 0 1
j
[s]
s1
s2
0
(c) 1
j
[s]
s1 s2
n
0
(b) 1
j
[s]
s1
ห้องสมุดไป่ตู้n
0
s2
(d) 0
(1). 欠阻尼 0 1
s1, s2 n jn 1 2 是一对共轭复数根。
单位阶跃响应的变化率为:
dc(t) dt
n2tent
dc(t) 0 dt t0
dc(t) 0 dt t0
dc(t) 0
dt t
表明临界阻尼系统的阶跃响应是单调上升的。
单位阶跃响应变化率最大的时刻:
d 2h(t) dt 2
dh(t ) max
e2 nt n
3.3 二阶系统的时域分析
一、 二阶系统数学模型及其标准形式
R(s) +
-
K1
s 1
K2
C(s)
s
RLC电路、电动机转速控制系统
R(s)
n2 s2 2ns n2
C(s)
G(s) C(s)
K1K2
R(s) s2 s K1K2
• 典型二阶系统是一个前向通道为惯性环节和积分 环节串联的单位负反馈系统。
(1
nt
)
0
dt
解得 t 1/ n 。 整个暂态过程中,临界阻尼系统阶跃响应都是单调 增长的没有超调。如以达到稳态值的95%所经历的时
间做为调整时间,则
ts
1 4.7
n
临界阻尼二阶系统多在记录仪表中使用。
3. 欠阻尼(0<ζ<1) 此时,系统具有一对共轭复数极点,则
C(s)
•令
K1K2
n2
1
2n
则二阶系统传递函数的标准形式为
G(s)
C(s) R(s)
s2
n2 2n s
n2
其中ζ称为阻尼比,τ为时间常数,ωn为系统的自然 振荡角频率(无阻尼自振角频率)。
注意: • 控制工程中,二阶系统的典型应用极为普
遍; • 为数众多的高阶系统在一定条件下可近似
ts (3 ~ 4)
(
1
2 1)n
单调上升,无振荡,过渡过程时间长,无稳态误差。
过阻尼系统单位阶跃响应的变化率
dc(t)
( 2 1)n
e( 2 1)nt
dt 2 2 1( 2 1)
( 2 1)n
e( 2 1)nt
2 2 1( 2 1)
dc(t ) dt
0
0
t 0 t 0
所以,整个暂态过程中, 阶跃响应都是单调增长的.
2. 临界阻尼(ζ=1)
此时,系统具有二重负实极点,则
C(s)
n2
A0 A1
A2
s(s n )2 s s n (s n )2
A0 1
A1
d ds
C
(s)(s
n
)2
s n
1
A2 C(s)(s n )2 sn n
单位阶跃响应为
c(t) 1 ent (1 nt)
临界阻尼系统单位阶跃响应的误差及终值
e(t) r(t) c(t) ent (1 nt) e() 0
(2). 临界阻尼 1
s1, s2 n (3). 过阻尼 1
是两个相同的负实根。
s1, s2 n n 2 1 是两个不同的负实根。
(4). 无阻尼 0
s1, s2 jn 是一对共轭纯虚数根。
三、二阶系统的单位阶跃响应
对于单位阶跃输入
于是
r(t) 1(t)
R(s) 1 s
C(s)
s2
n2 2ns n2
1 s
由拉氏反变换可以得到二阶系统的单位阶跃响应为
c(t) L1[C(s)]
下面按阻尼比分别讨论。
1. 过阻尼(ζ>1)
n n 2 1
这种情况下,系统存在两个不等的负实根,则
C(s)