2.2数学归纳法ppt课件
数学归纳法及其应用PPT教学课件

•
1
3 2
ak
.
因为
k
2
ak>0,1
3 2
ak>1
3 2
•
k
1
1
1
3 2k
>0, 2
所以
k
2 ak
•
(1
3 2
ak
)
[
k
2 ak
1
3 2
ak
2
]2
1 [
k
2
1
ak
1 ]2<[
(k
1) 2
•
k
1
1 ]2
2
2
2k 1 2
1
2k 2 2
<
1
2
1
2
1,
• 所以
无土栽培
1. 无土栽培就是利用溶液培养法的原理,把植 物体生长发育过程中所需要的无机盐,按照 一定的比例配制成营养液,并用这种营养液 来栽培植物的技术。
第二节 绿色植物从土壤中获得什么
无土栽培
2. 最大的特点是用人工创造的根系的生活 环境,来取代土壤环境,这样可以做到 用人工的方法直接调节和控制根系的环 境,从而使植物体能够良好地生长发育。
• 解:当n=1时,a1+b1=1.
• •
因所为以a2+bb22=11,b1a…12 由13,此a猜2 测a1:b2 an32+,bn=1.
• 证明:(1)当n=1时,a1+b1=1显然成立.
• (2)假设当n=k时,ak+bk=1, • 即bk=1-ak成立, • 则ak+1+bk+1=akbk+1+bk+1=(ak+1)bk+1
数学归纳法课件

3.在第二步的证明过程中一定要用上归纳假设,否则这样的证明
就不再是数学归纳法.
变式训练2 用数学归纳法证明:1+3×2+5×22+…+(2n-1)×2n1=2n(2n-3)+3(n∈N ).
+
证明:(1)当n=1时,左边=1,右边=2(2-3)+3=1,左边=右边,命题成
=
1
1 +1
1- 2
2
1
1-2
=1-
1 +1
,
2
1
1 1
正解(1)当 n=1 时,左边= ,右边=12
2
=
1
,命题成立.
2
(2)假设当 n=k(k≥1)时命题成立,
1
1
即 + 2
2 2
当
+
1
1
2
2
3 +…+ =1-
1
1
n=k+1 时, + 2
2 2
1
1
1
=1-
2
+
+
1
,
2
1
1
2
2
3 +…+
反思感悟用数学归纳法证明整除问题时,首先从要证的式子中拼
凑出假设成立的式子,然后证明剩余的式子也能被某式(数)整除.其
中的关键是“凑项”,可采用增项、减项、拆项和因式分解等方法分
析出因子,从而利用归纳假设使问题得到解决.
变式训练1 用数学归纳法证明:an+1+(a+1)2n-1能被a2+a+1整除,
数学归纳法完整PPT课件

“凑”:一是“凑”n=k时的形式(这样才好利用归纳假设),二 是“凑”目标式。
.
11
课后作业
1、阅读作业:通读教材 2、书面作业:习题2.3A组第1,2题 3、弹性作业:简析我国古代烽火传递军情的
合理性 (可以上网查阅)
问题 2:数列{an}的通项公式为an=(n2-5n+5)2,计算得 a1=1,a2=1, a3 =1, 于是猜出数列{an}的通项公式为:an=1。
问题3:三角形的内角和为180°,四边形的内角和为2•180°,五边形的内 角和为3•180°,于是有:凸n边形的内角和为(n-2) • 180°。
问题4:这是一盒白色粉笔,怎么证明他们是白的?一一检查 。
归纳基础;第二步是归纳假设,是推理的依据,是判断命题的正确性能
否由特殊推广到一般,它反映了无限递推关系,其中 “假设n=k时成立”
称为归纳假设(注意是“假设”,而不是确认命题成立)。如果没有第一步,
第二步就没有了意义;如果没有第二步,就成了不完全归纳,结论就没 有可靠性;第三步是总体结论,也不可少。
.
12
.
13
则 当n=k+1时,ak+1 = ak + d
= =
a
a
1 1
+(k-1)d+d +[(k+1)-1]d凑结论
∴当n=k+1时,结论也成立。
由(1)和(2)知,等式对于任何n∈ N *都成立。
.
7
注意
由以上可知,用数学归纳法需注意:
1、三个步骤却一不可:第一步是是奠基步骤,是命题论证的基础,称之为
归纳2.2数学归纳法.ppt

(2)假设当n=k时,结论成立,即ak k 上k归纳1. 假设!
则当n=k+1时,
1 11
1
Sk 2 (ak ak ) 2 ( k
k 1
k
) k 1
k.
ak 1
S k 1
Sk
1 2 (ak1
1 ) ak 1
k ak21 2
k ak1 1 0
ak1 k 1 k (ak1 0).
(3)为什么这些步骤缺一不可?
(4)数学归纳法是完全归纳法还是不完全归纳法?
最新.课件
7
(二)、数学归纳法的步骤
(1)证明当 n 取第一个值 n0 (n0 1 或 2) 时结论正确
(2)假设当 n k (k N , 且k n0 ) 时结论正
确,并证明当 n k 1时结论也正确。
根据(1)(2)知对任意的 n N 且n n0 时命题成立。 注:(1)两个步骤缺一不可:仅靠第一步不能说明结
最新.课件
9
例1.用数学归纳法证明
12 22 32 n2 n(n 1)(2n 1)
6
证明:1、当n=1时,左=12=1,右= 1(1 1)(2 第1)二步1的证明要用
∴n=1时,等式成立
6
上归纳假设!
2、假设n=k时,等式成立,即
12 22 32 k 2 k(k 1)(2k 1)
最新.课件
1
一、提出问题
问题 1:今天,据观察第一个到学校的是男同学,第二个到 学校的也是男同学,第三个到学校的还是男同学,于是得出: 这所学校里的学生都是男同学。
问题 2:三角形的内角和为180º,四边形的内角和为2•180º,五
边形的内 角和为3•180º,于是有:凸n边形的内角和为(n-2) •180º。
《数学归纳法》课件PPT

探究?
归纳奠基必不可少
1. 判断下列证明方法对不对?
假设n=k时,等式2+4+6+…+2n = n2+n+1成立,
就是 2+4+6+…+2k = k2+k+1. 那么n=k+1时,
2+4+6+…+2k+2(k+1)=k2+k+1+2(k+1)
等式也成立.
=(k+1)2+(k+1)+1
故,等式 2+4+6+…+2n=n2+n+1对任意的 n N * 都成立.
(1)在第一步中的初始值n0不一定从1取起,证明时应 根据具体情况而定.
(2)在证明递推步骤时,必须使用归纳假设. 分析“n=k+1时”命题是什么,并找出与“n=k” 时命题形式的差别, 弄清左端应增加的项.
(3)两个步骤、一个结论缺一不可,否则结论不能成立.
递推基础不可少, 归纳假设要用到, 结论写明莫忘掉.
12 23
k(k 1) k 1
则n k 1时,
111 1
1
12 23 34
k(k 1) (k 1)(k 2)
k
1
k 1 (k 1)(k 2)
k 1 k 1 k 2 (k 1) 1
即n)知,对一切正整数 n, 等式均成立.
练习: 1.用数学归纳法证明
数学归纳法
第一步 第n0块骨牌倒下 证明n=n0时命题成立
第二步
第k块倒下时, 第K+1块也会倒下
假设n=k(k≥n0)时命题 成立,证明n=k+1时 命题也成立
§2.2 反证法与数学归纳法

§2.2 反证法与数学归纳法1.结合已经学过的数学实例,了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点,会运用反证法证明一些简单的问题.2.通过对实例的分析、归纳与总结的过程,提高分析问题和解决问题的能力.3.了解数学归纳法的意义与数学归纳法的原理,能以递推思想作指导,理解数学归纳法的操作步骤.会运用数学归纳法证明一些简单的问题. .重点: 了解反证法的思考过程、特点, 数学归纳法及其应用.难点: 反证法的思考过程、特点 ,对数学归纳法原理的理解 .(一)基础知识探究:◆ 探究点:反证法1.反证法:一般地,假设_________不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明___________,从而证明了原命题成立,这样的证明方法叫做反证法.2.反证法的理论根据是什么?3.用反证法证明命题的一般步骤:第一步:假设命题的_______不成立,即假设结论的反面成立;第二步:从这个假设出发,经过推理论证,得出_______;第三步:由矛盾判定_______不正确,从而肯定原命题的结论正确.4.归谬包括哪些情形?◆ 探究点:数学归纳法一般地,证明一个与____________有关的命题,可按下列步骤进行:(1)(归纳奠基)证明当n 取第一个值0n (0n ∈N*)时命题成立;(2)(归纳递推)假设_______(k ≥0n ,k ∈N*)时命题成立,证明当n=k+1时命题也成立.只要完成这两个步骤,就可以断定命题对从______开始的所有正整数n 都成立.上述证明方法叫做数学归纳法.问题1:证明:2n >2n ,n 第一个数应取几?问题2:数学归纳法第一步中的“第一个值0n ”一定是1吗?问题3:用数学归纳法证明有关问题的关键是哪一步?问题4:用数学归纳法证明出来的结论一定正确吗?(二)知识综合应用探究:用反证法证明否(肯)定性命题(重点)【例1】 已知三个正数a ,b ,c 成等比数列,但不成等差数列, 求证:c b a ,,不成等差数列.【拓展提升】 已知a 、b 均为有理数,且 和 都是无理数,求证:b a 是无理数.●用反证法证明“至多”“至少”问题(重点)【例2】已知实数a,b,c,d满足a+b=c+d=1,ac+bd>1,求证:a,b,c,d中至少有一个是负数. 【拓展提升】求证:三角形ABC中至多只能有一个角是直角.【规律方法总结】1.当命题结论出现“至多”“至少”“唯一”等词时,一般用反证法来证明.2.注意“至少有一个”“至多有一个”“都是”的否定分别为“_____________________”“____________________”“________________”.●用数学归纳法证明与正整数有关的恒等式(重点)【例1】已知n∈N*,用数学归纳法证明:1+3+5+…+(2n-1)=2n.【拓展提升】已知*N n ∈,用数学归纳法证明:n n n n n 212111211214131211+++++=--++-+-证明与正整数有关的不等式(重点)【例2】用数学归纳法证明: *<(≥)22221111112,N .234n n n n++++-∈。
课件2 :2.3 数学归纳法

猜想其通项公式
1
a1
1
1
a2
2
1
an
n
1
a3
3
…
不完全归纳法
归纳法 :由一系列有限的特殊事例得出一般结论的推理方法
归纳法分为
完全归纳法
和
不完全归纳法
考察全体对象,得到一
般结论的推理方法
考察部分对象,得到一
般结论的推理方法
结论一定可靠
结论不一定可靠
问题情境二
如何解决不完全归纳法存在的问题呢?
即当 = + 1时等式也成立
由(1)和(2)可知等式对任何 ∈ ∗ 都成立
课堂练习:
1.用数学归纳法证明等式
+ + + ⋯ ( + ) = ( + )( + )时,
当=时,左边所得项是 1+2+3
;
当=时,左边所得项是1+2+3+4+5 ;
1−+2
+ + + ⋯ … + ( − ) = ,
当 = + 时:
+ + + ⋯ … + ( − ) + [( + ) − ] = + + = ( + ),
所以当 = + 时等式也成立。
由①和②可知,对n∈∗ ,原等式都成立。
(3)由(1)、(2)得出结论
写明结论
才算完整
用上假设
递推才真
2
+1
2.用数学归纳法证明 , ≠ 1 1 + + +⋯ +
完整版《数学归纳法》课件

完整版《数学归纳法》课件一、教学内容二、教学目标1. 理解数学归纳法的概念,掌握其基本步骤。
2. 能够运用数学归纳法解决简单的数学问题。
3. 培养学生的逻辑思维能力和归纳推理能力。
三、教学难点与重点教学难点:数学归纳法在实际问题中的应用。
教学重点:数学归纳法的概念、证明步骤及注意事项。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:练习本、笔。
五、教学过程1. 实践情景引入:以“楼梯问题”为例,引导学生发现规律,引出数学归纳法的概念。
2. 知识讲解:a. 介绍数学归纳法的概念。
b. 详细讲解数学归纳法的证明步骤。
c. 分析数学归纳法在实际问题中的应用。
3. 例题讲解:讲解数学归纳法在数列求和、不等式证明等方面的应用。
4. 随堂练习:布置23道数学归纳法相关的练习题,让学生独立完成。
5. 课堂小结:回顾本节课所学内容,强调数学归纳法的重点和注意事项。
六、板书设计1. 数学归纳法2. 内容:a. 数学归纳法的概念b. 数学归纳法的证明步骤c. 数学归纳法在实际问题中的应用d. 注意事项七、作业设计1. 作业题目:a. 证明:1+2+3++n = n(n+1)/2b. 证明:对于任意正整数n,有2^n > n。
c. 应用数学归纳法解决实际问题。
2. 答案:八、课后反思及拓展延伸1. 反思:本节课学生对数学归纳法的理解和掌握程度,以及课堂互动情况。
2. 拓展延伸:a. 探讨数学归纳法在更广泛领域中的应用。
b. 引导学生了解数学归纳法的局限性。
c. 介绍数学归纳法的其他变体,如强数学归纳法、反向数学归纳法等。
重点和难点解析一、教学难点与重点的关注细节1. 数学归纳法在实际问题中的应用2. 数学归纳法的证明步骤及注意事项3. 实践情景引入的设计与例题讲解的深度二、重点和难点解析1. 数学归纳法在实际问题中的应用a. 选择合适的实际问题作为例子,让学生感受数学归纳法的实用价值。
b. 通过分析问题,引导学生发现数学归纳法的应用场景,从而理解其内涵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、提出问题
问题 1:今天,据观察第一个到学校的是男同学,第二个到 学校的也是男同学,第三个到学校的还是男同学,于是得出: 这所学校里的学生都是男同学。
问题 2:三角形的内角和为180º,四边形的内角和为2•180º,五
边形的内 角和为3•180º,于是有:凸n边形的内角和为(n-2) •180º。
9
例1.用数学归纳法证明
12 22 32 n2 n(n 1)(2n 1)
6
证明:1、当n=1时,左=12=1,右= 1(1 1)(2 第1)二步1的证明要用
∴n=1时,等式成立
6
上归纳假设!
2、假设n=k时,等式成立,即
12 22 32 k 2 k(k 1)(2k 1)
②在步骤(2)的证明过程中,突出两个“凑”字:一凑假设,二凑结论,关键是明确 n= k+1 时证明的目标,充分考虑由 n=k 到 n=k+1 时,命题形式之间的区别和联系.
11
请你来批作业
1
用数学归纳法证明:1 2
1 23
1 n(n 1)
n (n N ) n 1
证明:
(1)当n 1时,左边 1 ,右边 1 ,左边 右边,等式成立;
【例 2】用数学归纳法证明:(n+1)(n+2)…(n+n)=2n×1×3×5×…×(2n-1)(n∈N*).
证明:(1)当 n=1 时,等式左边=2,右边=2×1=2,
∴等式成立. (2)假设 n=k(k∈N*)时等式成)=2k×1×3×5×…×(2k-1)成立.上归纳假设!
(4)数学归纳法是完全归纳法还是不完全归纳法?
7
(二)、数学归纳法的步骤
(1)证明当 n 取第一个值 n0 (n0 1 或 2) 时结论正确
(2)假设当 n k (k N , 且k n0 ) 时结论正
确,并证明当 n k 1时结论也正确。
根据(1)(2)知对任意的 n N 且n n0 时命题成立。 注:(1)两个步骤缺一不可:仅靠第一步不能说明结
即n k 1时等式成立。
左边 k
1
k 1 (k 1)(k 2)
k(k 2) 1 (k 1)2 (k 1)(k 2) (k 1)(k 2)
问题 3:教师根据成绩单,逐一核实后下结论:“全班及格”
请问:以上三个结论正确吗?为什么? ❖得出以上结论所用的方法有什么共同点和什么不同点
1、错
2、对
3、对
❖ 共同点:均用了归纳法得出结论;不同点:问题1、2是用的不完全
归纳法,问题3是用的完全归纳法。
2
问题情境二法:国数的数学学家家费费马(马Pie运rre用de 不Fer完mat全) 归纳法得出十七费(世16纪马01最年猜卓~越1想6的6数5的年学)事家。之例一,
那么,当n=k+1时
6
左=12+22+…+k2+(k+1)2= k(k 1)(2k 1) (k 1)2
6
k(k 1)(2k 1) 6(k 1)2 (k 1)(k 2)(2k 3)
=右
6
6
∴n=k+1时,原等式成立
由1、2知当nN*时,原等式都成立
10
题型一 用数学归纳法证明等式问题
2
2
(2)假设当n k时等式成立,即
第二步的证明没有
1 1 1 1 k
1 2 23 3 4
k(k 1) k 1
用上归纳假设!
当n k 1时,
左边 (1 1) (1 1) ( 1 1 )
2 23
k 1 k 2
1 1 k 1 k 1 右边 k 2 k 2 (k 1) 1
提
出 问
如何寻找一种严格推理的归纳法?
题
4
二、挖掘内涵、形成概念:
证明某些与自然数有关的数学题,可用下列方法来
证明它们的正确性:
(1)验证当n取第一个值n0(例如n0=1)时命题成立,
【归纳奠基】
(2)证假明设当当nn==kk+(1k时N命* 题,也k成n0立)时【命题归成纳立递,推】
完成这两步,就可以断定这个命题对从n0开始的所 有正整数n都成立。这种证明方法叫做数学归纳法。
论的普遍性;仅有第二步没有第一步,就失 去了递推的依据。 (2)只有把第一、二步的结论结合在一起才能得 出普遍性结论。因此完成一二两步后,还要 做一个总的结论。 (3)数学归纳法用来证明与正整数有关的命题。
8
数学归纳法的应用
题型一 用数学归纳法证明等式问题 题型二 用数学归纳法证明不等式问题 题型三 用数学归纳法证明整除问题 题型四 用数学归纳法证明几何问题 题型五 用数学归纳法解决探究性问题
验证n=n0时命 题成立
若当n=k(kn0 )时命题成立, 证明当n=k+1时命题也成立
命题对从n0开始的所 有正整数n都成立。
5
问题情境三
多 米 诺 骨 牌 课 件 演 示
6
3、数学归纳法
思考题:
(1)数学归纳法能证明什么样类型的命题?
(2)数学归纳法有几个步骤?每个步骤说明什么问 题?
(3)为什么这些步骤缺一不可?
二、概念
1、归纳法定义: 对于某类事物,由它的一些特殊事例或其全部可
能情况,归纳出一般结论的推理方法,叫归纳法。
2、归纳法分类:
完全归纳法
归纳法 不完全归纳法
想一想:
由两种归纳法得出的结论一定正确吗?
说 (1)不完全归纳法有利于发现问题,但结论
明:
不一定正确。 (2)完全归纳法结论可靠,但一一核对困难。
他在数学许多领域中都有极大的贡献, 因为他的本行是专业的律师, 为了表彰他的数学造诣,
世人冠以“业余王子”之美称,
费马观察到: 220 1 3 221 1 5 222 1 17 223 1 257 224 1 65537 ......
猜想:
Fn 22n 1(n N)
都是质数
3
那么 n=k+1 时,
(k+2)(k+3)…(k+k)(2k+1)(2k+2)
=2(k+1)(k+2)(k+3)×…×(k+k)(2k+1)
=2k+1×1×3×5×…×(2k-1)[2(k+1)-1]
即 n=k+1 时等式成立.
由(1)、(2)可知,对任何 n∈N*等式均成立.
①用数学归纳法证明与正整数有关的等式,关键在于“先看项”,弄清等 式两边的构成规律,等式两边有多少项,项的多少与 n 的取值是否有关,由 n=k 到 n=k+ 1 时等式两边会增加多少项,增加怎样的项.