圆柱和圆锥的整理和练习1教案

合集下载

圆柱和圆锥 教案1

圆柱和圆锥 教案1

自评
《圆柱的认识》这节课的教学要求是:掌握圆柱的特征,认识圆柱的底面、侧面和高;知道圆柱侧面展开是长方形和平行四边形。

培养学生的空间观念。

教学重点是:理解掌握圆柱的特征。

教学难点是:使学生弄清圆柱侧面展开后得到一个长方形和平行四边形及展开图与圆柱侧面的关系。

教学过程:我是这样设计的,在课题引入时,我是从生活实际出发,让学生从手中的圆柱形实物感知圆柱。

教学圆柱底面侧面时,首先让学生通过看一看、摸一摸等直观方法,感知圆柱体底面和侧面特征,然后用测量比较的方法验证。

组织学生观察、测量、比较、分析,概括出圆柱高的特征。

使学生在形式多样的学习活动中,通过自己思考,获取知识,发展能力。

认识圆柱展开图时,我先让学生大胆设想圆柱侧面展开后的图形会是什么样的,然后动手操作验证得出结论。

再利用电脑演示将学生的思路进行整顿,对新知加以强化,培养学生的空间观念。

李振荣。

圆柱与圆锥教案(集锦7篇)

圆柱与圆锥教案(集锦7篇)

圆柱与圆锥教案(集锦7篇)篇1:圆柱与圆锥知识要点:圆柱:(1)特征:是由两个底面和一个侧面三部分组成的。

底面是两个完全相同的圆侧面是一个曲面。

(2)圆柱的侧面及其与底面之间的关系:沿高剪开的展开图是一个长方形(或正方形)这个长方形的长等于圆柱底面圆的周长,宽等于圆柱的高。

(3)圆柱的高:圆柱两个底面之间的距离叫做高,有无数条高。

(4)侧面积:圆柱的侧面积=底面周长某高,用字母表示为S侧?Ch(5)表面积:圆柱的表面积=侧面积+底面积某2(6)体积:圆柱的体积=底面积某高,用字母表示为V?Sh圆锥:(1)特征:由一个底面和一个侧面两部分组成,它的底面是一个圆,侧面是一个曲面。

(2)圆锥的高:从圆锥的顶点到底面圆心的距离是圆锥的高,圆锥只有一条高。

圆锥的体积等于和它等底等高的圆柱体积的?(3)体积:?11?公式:V?V?Sh圆锥圆柱?33?13解题大智慧一、用圆柱的特征解题1、填空(1)把圆柱的侧面沿高剪开,展开图是一个长方形,圆柱的底面周长就是它的(),圆柱的高就是它的()(2)当圆柱的()和()相等时,它的侧面展开图是一个正方形。

(3)把一个底面半径是 2 cm 的圆柱的侧面展开,得到一个正方形,这个圆柱的高是()cm。

2、把一个圆柱的侧面展开后得到一个正方形,那么这个圆柱的高与底面直径的比是多少?3、一个底面周长是9.42cm,高是5cm的圆柱,沿底面直径把它切割成两个半圆柱后,切割面的面积一共是多少平方厘米?二、用圆柱的侧面积和表面积解题1、一个圆柱,底面周长是31.4dm,高是10dm,求它的侧面积?如果不是已知底面周长,而是已知底面半径或直径呢?2、一个圆柱的底面周长是94.2cm,高是25cm,求它的表面积。

3、一顶圆柱形厨师帽,高28cm,冒顶直径20cm,做这样10顶帽子需要多少面料?4、用铁皮制作1节通风管,它的长是60cm,底面圆的直径是10cm。

至少需要铁皮多少平方厘米?5、做一对无盖的圆柱形铁皮水桶,高是40cm,底面直径是30cm,至少需要铁皮多少平方厘米?6、把一张长16cm,宽6.5cm的长方形围成一个圆柱形纸筒,这个圆柱形纸筒的侧面积是多少平方厘米?7、挖一个圆柱形的蓄水池,已知它的底面直径是3m,池深2.5m。

人教版数学六年级下册《圆柱圆锥整理和复习》教案教案

人教版数学六年级下册《圆柱圆锥整理和复习》教案教案

人教版数学六年级下册《圆柱圆锥整理和复习》教案教案一. 教材分析《圆柱圆锥整理和复习》是人教版数学六年级下册的一章内容。

本章主要让学生掌握圆柱和圆锥的基本概念、特性、计算方法及其应用。

通过本章的学习,学生能够进一步理解和掌握圆柱和圆锥的相关知识,提高解决问题的能力。

二. 学情分析六年级的学生已经具备了一定的空间想象能力和逻辑思维能力,对圆柱和圆锥有一定的了解。

但部分学生可能对一些概念和计算方法的理解不够深入,需要在教学中加以引导和巩固。

三. 教学目标1.知识与技能:理解和掌握圆柱和圆锥的基本概念、特性、计算方法及其应用。

2.过程与方法:通过观察、操作、思考、交流等数学活动,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和克服困难的勇气。

四. 教学重难点1.重点:圆柱和圆锥的基本概念、特性、计算方法及其应用。

2.难点:对一些概念和计算方法的理解和运用。

五. 教学方法采用问题驱动法、合作学习法、案例分析法等教学方法,引导学生主动探究、合作交流,提高学生的数学素养。

六. 教学准备1.教具准备:圆柱和圆锥模型、多媒体课件等。

2.学具准备:学生自带圆柱和圆锥模型、练习本等。

七. 教学过程导入(5分钟)教师通过提问方式引导学生回顾圆柱和圆锥的基本概念、特性、计算方法,为新课的学习做好铺垫。

呈现(10分钟)1.教师通过展示圆柱和圆锥的模型,引导学生观察和描述其特征。

2.教师利用多媒体课件,展示圆柱和圆锥的计算方法及其应用。

操练(10分钟)1.教师给出几个有关圆柱和圆锥的问题,让学生独立解答。

2.学生互相交流解题过程,教师进行点评和指导。

巩固(10分钟)1.教师学生进行小组讨论,探讨如何运用圆柱和圆锥的知识解决实际问题。

2.学生代表分享讨论成果,教师进行点评和指导。

拓展(10分钟)1.教师提出一些有关圆柱和圆锥的拓展问题,引导学生进行思考和探究。

2.学生互相交流解题过程,教师进行点评和指导。

六年级下册数学教案《 第3单元 圆柱与圆锥 整理和复习 》 人教版

六年级下册数学教案《 第3单元 圆柱与圆锥 整理和复习 》 人教版

六年级下册数学教案《第3单元圆柱与圆锥整理和复习》人教版一. 教材分析本节课为人教版六年级下册数学第3单元“圆柱与圆锥”的整理和复习。

本单元的主要内容是圆柱和圆锥的特征、体积计算以及应用。

教材通过复习和整理,使学生对圆柱和圆锥的概念、性质、计算方法等有一个清晰、系统的认识,提高学生的空间想象能力和解决问题的能力。

二. 学情分析六年级的学生已经学习了圆柱和圆锥的基本知识,对圆柱和圆锥的特征、体积计算有一定的了解。

但部分学生对一些概念和公式的理解不够深入,应用能力有待提高。

此外,学生的空间想象能力和解决问题的能力参差不齐,需要在教学中加以关注和培养。

三. 教学目标1.知识与技能:通过对圆柱和圆锥的复习,使学生掌握圆柱和圆锥的基本概念、性质和体积计算方法,提高空间想象能力和解决问题的能力。

2.过程与方法:通过自主学习、合作交流、探究发现等方法,培养学生的动手操作能力和思维能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的创新意识和团队协作精神,使学生感受到数学与生活的密切联系。

四. 教学重难点1.重点:圆柱和圆锥的基本概念、性质和体积计算方法的掌握。

2.难点:对圆柱和圆锥体积公式的理解与应用,以及空间想象能力的培养。

五. 教学方法1.自主学习:引导学生独立思考,自主探究,发现和总结圆柱和圆锥的特点和规律。

2.合作交流:鼓励学生与他人分享学习心得,互相讨论,共同解决问题。

3.探究发现:引导学生动手操作,观察分析,发现圆柱和圆锥的体积计算方法。

4.启发引导:教师通过提问、设疑,引导学生思考,激发学生的学习兴趣。

六. 教学准备1.教具:圆柱和圆锥模型、图片、课件等。

2.学具:学生每人准备一个圆柱和圆锥模型,以及相关计算工具。

七. 教学过程1.导入(5分钟)利用课件展示生活中的圆柱和圆锥物体,引导学生回顾已学的知识,为新课的复习打下基础。

2.呈现(10分钟)教师通过讲解和示范,呈现圆柱和圆锥的基本概念、性质和体积计算方法。

小学数学六年级下册《圆柱与圆锥》整理与复习教案

小学数学六年级下册《圆柱与圆锥》整理与复习教案

第三单元圆柱与圆锥第9课时整理与复习【学习目标】1.能够系统清晰地梳理本单元所学知识,正确理解知识间的联系与区别。

2.正确灵活地运用所学知识解决简单实际问题。

【学习过程】一、知识梳理在本单元我们都学习了哪些知识?用你喜欢的方法整理出来吧!我的问题:。

二、专项训练1.计算下面个图形的体积。

2.解决问题。

三、课堂达标1.填空。

你可以采用画图,列表格等不同方法哦!整理过程中你有什么问题吗?记录下来吧!计算中用到了哪些知识?说说你的思路!(1)一个圆柱和一个圆锥等底等高,圆锥的体积是24立方米,圆柱的体积是(),如果圆柱的体积比圆锥的体积大18立方米,圆柱的体积是(),圆锥的体积是()。

(2)用一张长15厘米,宽12厘米的长方形纸围成一个圆柱,这个圆柱的侧面积是()平方厘米。

(3)一个圆柱体削成一个与它等底等高的圆锥体, 削去的部分是圆锥体的( )%.2.同学们用彩纸制作了20个圆柱形灯罩,每个灯罩高35cm,底面圆的周长是47.1cm 。

至少需要用多少彩纸?想一想是要求圆柱的什么呀?3.一个圆锥形沙堆,底面积是28.26㎡,高是2.5m。

用这堆沙在10m宽的公路上铺2cm厚的路面,能铺多少米?计算时要注意单位哦!4.一块蜂窝煤大约需要用煤多少立方分米?(得数保留整数)四、课外拓展压路机的前轮是圆柱形,轮宽1.5米,直径1.2米,前轮每分钟转动10周,每分钟前进多少米?每分钟压路多少平方米?为什么要规定“先乘除后加减”?对于这个问题,我们分两层来谈。

第一层先谈谈规定运算顺序的必要性,第二层再谈谈为什么要规定“先乘除后加减”。

(1)规定运算顺序的必要性。

先举两个例子予以说明。

例1 小勇买了一块橡皮,价18分,又买了3支铅笔,每支12分,一共多少钱?综合算式18+12×3=18+36=54(分)=5角4分根据题意,这道题先算乘法后算加法是合情合理的。

例2 小春有18分钱,小敏有12分钱,小冬的钱数是他们俩人钱数之和的3倍,问小冬有多少钱?解答这道题的时候应该先求出小春与小敏两人钱数之和,即求出(18+12=)30分,然后再求出30分的3倍,即(30×3=)90分。

人教版六年级下册数学第三单元《圆柱和圆锥》教案

人教版六年级下册数学第三单元《圆柱和圆锥》教案

探索交流,分1.整体感知圆柱(1)课件出示岗亭,客家围屋,比萨斜塔,灯笼,蜡烛等实物图。

提问这些物体的形状有什么共同的特点?教师小结:这里的岗亭,客家围屋,比萨斜塔,灯笼,蜡烛的形状都是圆柱体,简称圆柱。

人们把许多建筑物设计成圆柱形状,以增加立体感和美感。

(2)投影出示上述实物图形中抽象出的圆柱几何图形。

(3)交流生活中的圆柱形的物体。

2.认识圆柱的底面,侧面和高。

(1)观察一个圆柱形的物体,看一看它是由哪几部分组成的,有什么特征。

同桌讨论:圆柱由哪几个部分组成,有什么特征。

(2)组织交流通过交流得出:圆柱是由3个面围成的,圆柱的上下两个面叫底面,圆柱周围的面叫做侧面,圆柱的两个底面之间的距离叫做高。

教师投影出示圆柱的几何图,并在图中显示底面,侧面和高。

(3)请学生说说手中圆柱各部分的名称。

(4)感知圆柱上下两个底面的关系和侧面的特征。

教师引导学生小结,圆柱的上下两个底面是完全相同的两个底面完全相同的两个圆。

学生可能会通过以下几种方法得出圆柱上下两个底面是完全相同的两个圆:a.可以剪下来比较;b.量半径、量直径;c.量周长;d.把模型的底面固定再纸上沿着它的周边再纸上从现实生活中具有圆柱特征的建筑物和生活用品的图片上抽象出圆柱的立体图形,整体感知圆柱形,通过动手操作认识圆柱的组成及其特征,以及圆柱侧面,底面及其之间的关系。

学生观察一个圆柱形的物体并同桌讨论、交流结果。

引导学生观察,议论,圆柱的上下两个底面有什么关系,么发现的?画出一个圆,再把模型倒换过来比较。

(5)做一做,把一张长方形的硬纸板贴在木棒上,快速转动木棒,看看转出来的是什么?(6)完成教材第18页的第1题。

学生独立完成,填写在教材上。

3.认识圆柱侧面展开图投影出示第19页的例2。

(1)圆柱的侧面展开后是什么形状?把罐头盒的商标如下图所示那样剪开,再展开。

学生观察猜测,它会是什么形状?剪一剪:请大家拿出贴有商标纸的饮料罐,沿着它的一条高剪开,然后展开摊平,会得到一个长方形。

2021最新北师大版六年级数学下册第一单元圆柱与圆锥 教案教学设计(11课时)

2021最新北师大版六年级数学下册第一单元圆柱与圆锥 教案教学设计(11课时)

一圆柱与圆锥第1课时面的旋转 (1)第2课时面的旋转 (2)第3课时圆柱的表面积 (4)第4课时圆柱的表面积 (5)第5课时圆柱的表面积 (6)第6课时圆柱的体积 (7)第7课时圆柱的体积(2) (8)第8课时圆锥的体积(1) (9)第9课时圆锥的体积(2) (10)第10课时练习一(1) (11)第11课时练习一(2) (13)第1课时面的旋转教学目标1.通过初步认识圆柱和圆锥,使学生感受到数学与生活的密切联系。

2.通过观察和动手操作等,初步体会“点、线、面、体”之间的关系,发展空间观念。

3.通过由面旋转成体的过程,认识圆柱和圆锥,了解圆柱和圆锥的基本特征,知道圆柱和圆锥的各部分名称。

教学重点联系生活,在生活中辨认有圆柱和圆锥特征的物体,并能抽象出几何图形的形状来。

教学难点通过观察,初步了解圆柱和圆锥的组成及其特点。

教学准备各种面、圆柱和圆锥模型。

教法小组合作交流法。

学法小组合作学习法。

教学课时1课时一、合作探究1.观察课本P2的各图,你发现了什么?2.如图:用纸片和小棒做成下面的小旗,快速地旋转小棒,观察并想象旋转后形成的图形,再连一连。

二、汇报点评(自学后完成下面问题)1.风筝的每一个节连起来看,形成了一条线的样子;雨刷器扫过后形成一个半圆形面;旋转门旋转成一个圆柱体。

学生体验:点动成线,线动成面,面动成体。

2.学生实际动手操作,然后根据想象的图形连线。

学生体验:面动成体。

3.介绍:圆柱、圆锥、球的名称。

并请学生根据自己的观察介绍一下这几个立体图形的特点。

指名请学生说。

小结:圆柱的上下两个面叫做底面,它们是完全相同的两个圆。

圆柱有一个曲面,叫做侧面。

圆柱两个底面之间的距离叫做高。

圆锥的底面是一个圆。

圆锥的侧面是一个曲面。

从圆锥顶点到底面圆心的距离是圆锥的高。

(教师画出平面图进行讲解。

并在图上标出各部分的名称。

)三、巩固练习判断:(1)一个圆柱有无数条高,一个圆锥也有无数条高。

(2)圆锥的表面有两个面(侧面和底面)。

六年级数学思维训练《圆柱与圆锥》教案

六年级数学思维训练《圆柱与圆锥》教案

第1讲:圆柱与圆锥例1:如右图所示,圆锥形容器中装有5升水,水面高度正好是圆锥高度的一半,这个容器还能装多少升水?例2 :用一块长60厘米、宽40厘米的铁皮做圆柱形水桶的侧面,另找一块铁皮做底。

这样做成的铁桶的容积最大是多少?(精确到1厘米3)例3:有一种饮料瓶的瓶身呈圆柱形(不包括瓶颈),容积是30分米3。

现在瓶中装有一些饮料,正放时饮料高度为20厘米,倒放时空余部分的高度为5厘米(见右图)。

问:瓶内现有饮料多少立方分米?例4: 皮球掉进一个盛有水的圆柱形水桶中。

皮球的直径为15厘米,水桶。

底面直径为60厘米,皮球有45 的体积浸在水中,问:皮球掉进水中后,水桶中的水面升高了多少厘米?例5: 有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见右图)。

如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?例6:右图是一顶帽子。

帽顶部分是圆柱形,用黑布做;帽沿部分是一个圆环,用白布做。

如果帽顶的半径、高与帽沿的宽都是a 厘米,那么哪种颜色的布用得多?例7:一个底面直径为20厘米的圆柱形木桶里装有水,水中淹没着一个底面直径为18厘米、高为20厘米的铁质圆锥体。

当圆锥体取出后,桶内水面将降低多少?例8:.用直径为40厘米的圆钢锻造长300厘米、宽100厘米、厚2厘米的长方形钢板,应截取多长的一段圆钢?第2讲 百分数的应用例1看图列式计算。

45吨例2:小军的妈妈一个月的工资是2400元,按国家有关规定,扣除1500元后,把余额的15作为个人所缴纳的税,这样小军妈妈一个月实际获得多少元的工资?例3:双休日,甲商场“全部商品打八折”的措施优惠,乙商场以“满100元送20元购物券”的形式促销。

小红的妈妈打算花400元用来购买商品。

请你帮忙计算哪家商场购物更合算,并简要说明你的想法。

例4:一个分数,分子与分母之和是30。

如果分子加上3,分母加上31,得到的新分数约分后是13,原来的分数是多少?吨50吨 3412吨多14例5:一口井深10米,一只蜗牛从井底往上爬。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“整理与练习”1
教学内容:九年义务教育六年制小学数学第十二册P33、34
教学目标:1、复习圆柱和圆锥的有关知识,掌握其特点,能借助图形说出公式推导过程,式形结合,构建体积计算公式系统,形成牢固的知识网络。

2、熟练地运用公式进行计算,让学生感受数学与生活的联系。

3、能综合运用所学知识,灵活地解决一些实际问题,培养学生运用知识解决实
际问题的能力。

教学重点:系统掌握体积公式的转化与推导过程,形成牢固的知识网络。

教学难点:灵活地运用相关知识解决实际问题。

设计理念:本节课让学生在梳理和交流中有所收获,并形成一定的知识网络。

通过自我整理、自我提高,有效地培养学生根据不同的问题情景解决问题的能力,并正确进行
自我评价和反思。

教学步骤教师活动学生活动
一、整
理知
识、形
成网
络。

1、谈话导入,今天我们一起来复习圆柱和圆锥的有关知识,请
各位同学把自己整理好的知识向大家展示一下。

2、圆柱和圆锥有什么特征?请同学们完整地表述一下。

3、强化公式的推导过程。

圆柱体体积公式是什么?请说一说它的转化和推导过程。

圆锥体体积公式是什么?说一说它的转化和推导过程?
4、根据学生的复习整理,让学生把下表填写完整。

图形特征计算公式
圆柱1、上下粗细一样
2、底面是两个相等的圆
3、侧面是一个曲面,沿高展开
是一个长方形或正方形
S底=πr
S侧=ch
=πdh
=2πrh
S底=2s底+s侧
V柱=sh
=πr h
圆锥1、有一个顶点
2、底面是一个圆
3、侧面是一个曲面,沿母线
展开是一个扇形
S底=πr
V锥=1/3sh
=1/3πr h
5、根据学生填写的表格教师质疑:根据圆柱和圆锥的特征能解
决什么问题?运用圆柱和圆锥的体积公式能解决哪些问题?
根据学生的讨论得出:
(1)根据圆柱和圆锥的特征判断圆柱和圆锥。

(2)针对有关条件计算圆柱和圆锥的体积,并进行有关的逆运算。

(3)能运用所学的知识解决现实生活中的许多有关体积和容积的实际问题。

学生先互相
交流一下自
己整理的结
果。

学生填写表
格,并互相
提问表格中
的有关内容
学生分组讨
论。

二、运用知
识、解决
问题。

1、相关概念分得清。

(1)把圆柱的侧面沿高展开后通常得到一个(),这
个长方形的长就是圆柱的(),这个长方形的宽就是
圆柱的(),这个长方形的面积就是圆柱的(),
所以圆柱的侧面积等于()。

当圆柱的
()和()相等时,圆柱的侧面展开后是一个正方形。

(2)一个圆柱底面半径是1厘米,高是 2厘米。

它的侧面积是
( )平方厘米。

(3)等底等高的圆柱和圆锥的体积相差16立方米,这个圆柱
的体积是()立方米,圆锥的体积是()立方
米。

(4)一个圆柱形水箱,从里面量底面周长是18.84米,高3米,
它最多能装()立方米水。

(5)一个圆锥形机器零件,体积是125.6立方厘米,底面半径
是2厘米,这个圆柱的高是( )厘米。

2、有关计算算得准。

(1)、一个圆柱形铁皮盒,底面半径2分米,
高5分米。

①如果沿着这个铁皮盒的侧面贴一圈商标纸,需要多少平方分
米的纸?
②某工厂做这样的铁皮盒100个,需要多少铁皮?
③如果用这个铁皮盒盛食品,最多能盛多少升?
(2)、一个圆锥形沙堆,底面直径8米,高3米,这个沙堆占
地多少平方米?如果每立方米沙重15千克,这堆沙一共重多少
千克?
3、解决问题用得妙。

(1)、一个长9分米的圆柱形木材,底面半径是4分米。

如果
将它加工成一个最大的圆锥,这个圆锥的体积是多少立方分
米?削去部分的体积是多少?
(2)、一个压路机的滚筒的横截面直径是1米,它的长是2米。

如果滚筒每分钟转动8周,5分钟能压路多少平方米?
(3)、一个圆柱形钢块,底面半径和高都是6分米,把它熔铸
成一个等高的圆锥,这个圆锥的底面积是多少平方分米?
学生说一说
求容积为什
么要从里面
量。

学生讨论一
下每一个问
题各是求什

三、综合运用、提高能力。

1、八仙过海,各显神通:
(1)在一个直径是20厘米的圆柱形容器里,放入一个底面半径3
厘米的圆锥形铁块,全部浸没在水中,这时水面上升0.3厘米。

圆锥形铁块的高是多少厘米?
(2)一根圆柱形木料,底面直径20厘米,长40厘米,现需要
沿直径把它对半锯开,锯开后每根木料的表面积和体积是多
少?”
2、总结复习,畅谈收获。

3、作业:34页3、4
学生分组讨
论。

相关文档
最新文档