因式分解的常用方法(最全版)
因式分解方法大全

因式分解方法大全以下是一些常用的因式分解方法:方法一:提取公因式法如果一个多项式的各项系数可以同时被一个常数整除,那么可以将这个常数提取出来,然后再对多项式进行因式分解。
例如:2x+4y=2(x+2y)方法二:两项提取公因式法当多项式的两项具有相同的因子时,可以将这个因子提取出来,然后再对多项式进行因式分解。
例如:3x^2+6x=3x(x+2)方法三:平方差公式如果多项式是两个平方数相减,那么可以使用平方差公式进行因式分解。
平方差公式为:a^2-b^2=(a+b)(a-b)例如:9x^2-4=(3x+2)(3x-2)方法四:差平方公式如果多项式是两个平方数相加,那么可以使用差平方公式进行因式分解。
差平方公式为:a^2 + b^2 = (a + b)^2 - 2ab例如:x^2+4=(x+2)^2-4方法五:分组法当多项式含有多项之和时,可以根据各项的共同因子进行分组,然后进行因式分解。
例如:2ab + 4bc + 6ca = 2a(b + 2c) + 2c(2b + 3a)方法六:完全平方公式当多项式是一个完全平方时,可以使用完全平方公式进行因式分解。
完全平方公式为:a^2 + 2ab + b^2 = (a + b)^2例如:x^2+4x+4=(x+2)^2方法七:配方法对于一些多项式,可以通过将其形式转化为一个平方差或平方和的形式,然后使用平方差公式或完全平方公式进行因式分解。
例如:4x^2+12x+9=4(x^2+3x)+9=4(x^2+2x+1)然后使用完全平方公式进行因式分解。
方法八:综合运用多项式的因式分解方法往往需要综合运用多种方法,根据具体情况选择合适的方法进行因式分解。
对于较复杂的多项式,可能需要多次分解才能得到最简形式。
因此,需要对各种方法进行熟练运用,并根据具体情况进行灵活组合。
以上是一些常用的因式分解方法,它们可以用来解决不同类型的多项式因式分解问题。
需要注意的是,进行因式分解时要善于观察和发现多项式中的模式和规律,以便选择合适的方法进行分解。
因式分解的十二种方法

因式分解的十二种方法因式分解是代数中的一个非常重要的概念,它可以帮助我们将一个复杂的代数表达式简化为更简单的乘积形式。
在因式分解的过程中,有许多不同的方法可以使用。
下面将介绍因式分解的十二种常见方法。
一、公因式提取法(通用方法):公因式提取法是因式分解中最基础也是最常见的一种方法。
它的基本思想是通过提取出一个或多个公因式,将原表达式分解为因子相乘的形式。
例如,对于表达式6x+9y,可以提取出3作为公因式,从而得到3(2x+3y)。
二、配方法(分组法):配方法是一种将高次项与低次项相乘的方法。
通过将原表达式分组,然后将每组中的项相乘,最后将各组之间的结果相加。
例如,对于表达式x^2+5x+6,可以将其写成(x^2+2x)+(3x+6),然后将每组中的项相乘,即得到x(x+2)+3(x+2),再进行合并得到(x+2)(x+3)。
三、分解差平方:分解差平方是一种将平方差分解为两个因数相乘的方法。
它的基本思想是将一项的平方与另一项的平方的差分解为两个因数的乘积。
例如,对于表达式x^2-4,可以将其分解为(x+2)(x-2)。
四、分解和差平方:分解和差平方是一种将平方和分解为两个因数相乘的方法。
它的基本思想是将一项的平方与另一项的平方的和分解为两个因数的乘积。
例如,对于表达式x^2+4,可以将其分解为(x+2i)(x-2i),其中i是虚数单位。
五、完全平方差公式:完全平方差公式是一种将二次三项式分解为两个完全平方的差的方法。
它的基本形式可以表示为a^2-b^2,其中a和b可以是任意代数式。
根据完全平方差公式,可以将a^2-b^2分解为(a+b)(a-b)。
例如,对于表达式x^2-4,可以将其分解为(x+2)(x-2)。
六、分组分解法:分组分解法是一种将多项式分解为若干个二次三项式相加的方法。
它的基本思想是通过分组,将多项式分成多个二次三项式的和,然后对每个二次三项式进行因式分解。
例如,对于表达式x^3+x^2+x+1,可以将其分为(x^3+x^2)+(x+1),然后对每个二次三项式进行因式分解,得到x^2(x+1)+1(x+1),再进行合并得到(x^2+1)(x+1)。
因式分解的八种方法

因式分解的八种方法一、提公因式法。
这就好比是从一群小伙伴里找出那个大家都有的东西。
比如说多项式3x + 6,3就是公因式呀,提出来就变成3(x + 2)啦。
有时候公因式可能不太好找,像是4x²y - 8xy²,这里的公因式就是4xy,提出来就成了4xy(x - 2y)。
提公因式法是最基础的方法,就像盖房子的地基一样重要。
二、公式法。
这里面有好几个小公式呢。
像平方差公式a² - b² = (a + b)(a - b),超级好用。
比如说9x² - 25,9x²就是(3x)²,25就是5²,那按照公式就可以分解成(3x + 5)(3x - 5)啦。
还有完全平方公式,a² + 2ab + b² = (a + b)²,a² - 2ab + b² = (a - b)²。
像x² + 6x + 9,这里的x相当于公式里的a,3相当于b,因为2ab = 2×x×3 = 6x,所以就可以分解成(x + 3)²。
三、分组分解法。
这个方法就像是给多项式里的项分组,让每一组都能找到分解的办法。
比如说ax + ay + bx + by,咱们可以把前面两项ax + ay看成一组,提出公因式a就得到a(x + y),后面两项bx + by看成一组,提出公因式b就得到b(x + y),这样整个式子就变成了(a + b)(x + y)。
有时候分组可能要试几次才能找到最合适的分组方法,不过没关系呀,就当是玩拼图游戏啦。
四、十字相乘法。
这个方法很神奇呢。
对于二次三项式ax²+bx + c(a≠0),咱们要把a分解成两个因数,把c也分解成两个因数,然后交叉相乘再相加等于b。
就像x²+5x + 6,把1分解成1×1,6分解成2×3,1×3+1×2 = 5,那这个式子就可以分解成(x + 2)(x + 3)。
因式分解的十二种方法

因式分解的十二种方法因式分解是一种将一个数或代数式分解成更简单的乘积的方法。
在数学中,有很多种因式分解的方法可以使用,根据不同的情况可以采用不同的方法,下面将介绍十二种常见的因式分解方法。
1.提取公因子法:当一个式子存在公因子时,可以先将公因子提取出来,然后再进行进一步的因式分解。
2. 公式法:利用公式进行因式分解,例如(a+b)^2=a^2+2ab+b^23.分组法:将一个多项式按照不同的组合方式进行分组,然后再分别进行因式分解,最后将得到的结果合并。
4.平方差公式法:对于一个二次型式,可以利用平方差公式进行因式分解,例如a^2-b^2=(a+b)(a-b)。
5. 完全平方公式法:对于一个完全平方式,可以通过完全平方公式进行因式分解,例如a^2+2ab+b^2=(a+b)^26. 二次因式法:对于一个二次多项式,可以通过二次因式法进行因式分解,例如ax^2+bx+c=a(x-x1)(x-x2),其中x1和x2为方程ax^2+bx+c=0的根。
7.和差立方公式法:对于一个和差立方的多项式,可以通过和差立方公式进行因式分解。
8. 因式分解的配方法:通过配方法进行因式分解,例如ab+ac=a(b+c)。
9.分解因式法:将一个多项式根据不同的性质进行因式分解,例如差平方分解、和的平方分解等。
10.二次根与一次根相结合法:对于一个多项式,通过将二次根与一次根相结合,得到更简单的因式分解结果。
11. 分组求积法:对于一个多项式,可以通过分组求积法进行因式分解,例如(a+b)(c+d)=ac+ad+bc+bd。
12.全等公式法:利用全等公式进行因式分解。
以上是常见的十二种因式分解方法。
不同的方法适用于不同的情况,需要根据具体的问题选择合适的方法进行因式分解。
因式分解是数学中的一个重要概念,通过因式分解可以简化计算过程,提高解题效率。
因此,掌握不同的因式分解方法对于提高数学能力和解决实际问题都有很大的帮助。
因式分解方法大全

因式分解方法大全因式分解是数学中非常重要的一种运算方法,它在解题中具有广泛的应用。
本文将为你介绍常见因式分解的方法,希望可以帮助你更好地理解和运用因式分解。
一、提取公因数法提取公因数法是因式分解中最基本的方法,它适用于多项式的每一项都有公因数的情况。
具体步骤如下:1.找出多项式中的最大公因数。
2.将最大公因数提取出来,剩下的部分即为因式分解后的结果。
例如,对于多项式4x+8,我们可以提取出公因数4,得到4(x+2)。
二、公式法公式法是基于一些常见的公式进行因式分解的方法。
以下是一些常见的公式:1.平方差公式:a²-b²=(a+b)(a-b)。
2. 完全平方公式:a² + 2ab + b² = (a + b)²。
3. 二次差分公式:a² - 2ab + b² = (a - b)²。
4.二次平方差公式:a⁴-b⁴=(a²+b²)(a²-b²)。
5. 立方和公式:a³ + b³ = (a + b)(a² - ab + b²)。
6. 立方差公式:a³ - b³ = (a - b)(a² + ab + b²)。
根据这些公式,我们可以快速进行因式分解。
例如,对于多项式x²-4,我们可以使用平方差公式得到(x+2)(x-2)。
三、分组法分组法是一种常用的因式分解方法,适用于多项式中含有多个项时。
具体步骤如下:1.将多项式按照其中一种规则分成两组,使得每一组内的项有相同的因式。
2.对每一组内的项进行提取公因数的操作。
3.对两组提取出的因式进行化简。
例如,对于多项式x³-x²+x-1,我们可以将其分成两组:(x³-x²)+(x-1)。
然后,我们可以对每一组内的项进行提取公因数,得到x²(x-1)+1(x-1)。
因式分解的14种方法讲解

因式分解的14种方法讲解因式分解是数学中常用的重要方法,它可以将一个多项式表达式分解为一个或多个乘积的形式。
在因式分解过程中,有多种方法可以使用。
下面我将为您介绍14种常见的因式分解方法。
方法一:公因式提取法1.公因式提取法是最基本的一种因式分解方法,适用于多项式中存在公共的因式。
例如,对于多项式2x+6,可以提取出公因式2,得到2(x+3)。
方法二:配方法2. 配方法适用于二次型多项式的因式分解。
对于ax² + bx + c形式的多项式,可以通过配方法将其分解为两个一次因式相乘的形式。
例如,对于多项式x² + 3x + 2,可以找到两个因数(x + 1)(x + 2)。
方法三:x平方差3.x平方差适用于形如x²-a²的多项式,其中a是一个常数。
这种情况下,可以将其分解为两个因子(x+a)(x-a)。
方法四:因式分解公式4.因式分解公式适用于一些特殊的多项式形式。
例如,x²-y²可以通过公式(x-y)(x+y)分解。
方法五:完全平方公式5. 完全平方公式适用于形如a² ± 2ab + b²的多项式。
这种情况下,可以将其分解为平方项的和或差。
(a ± b)²。
方法六:两个平方差的乘积6.两个平方差的乘积适用于形如(a+b)(a-b)(c+d)(c-d)的多项式。
这种情况下,可以分解为两个平方差相乘。
方法七:立方公式7. 立方公式适用于形如a³ ± b³的多项式。
这种情况下,可以将其分解为立方项的和或差。
(a ± b)(a² ∓ ab + b²)。
方法八:差的立方8. 差的立方适用于形如a³ - b³的多项式。
这种情况下,可以分解为差的立方公式(a - b)(a² + ab + b²)。
方法九:高次幂差的因式分解9.高次幂差的因式分解适用于形如aⁿ-bⁿ的多项式,其中n为正整数。
因式分解十二种方法公式

因式分解十二种方法公式因式分解是数学中的一个重要概念,它可以将一个多项式分解为若干个因子的乘积。
在因式分解中,有许多不同的方法和公式可以使用。
下面将介绍十二种因式分解的方法和公式。
一、公式法公式法是一种较为常用和简便的因式分解方法。
它利用一些已知的公式,将多项式分解为更简单的形式。
例如,我们可以利用平方差公式将一个二次多项式分解为两个一次多项式的乘积。
又如,利用差平方公式可以将一个二次多项式分解为两个一次多项式的乘积。
二、提公因式法提公因式法是一种常见的因式分解方法。
它利用多项式中的公因式,将多项式分解为公因式和余项的乘积。
通过提取公因式,可以简化多项式的形式,便于后续的计算和分解。
三、配方法配方法是一种常用的因式分解方法,它适用于多项式中存在二次项的情况。
配方法通过将多项式中的一部分进行配方,从而将多项式分解为两个简化的多项式的乘积。
这种方法常用于分解二次多项式,可以将其分解为两个一次多项式的乘积。
四、分组分解法分组分解法是一种适用于四项多项式的因式分解方法。
它通过将多项式中的项进行分组,从而将多项式分解为多个简化的多项式的乘积。
这种方法常用于分解四项多项式,可以将其分解为两个二次多项式的乘积。
五、和差化积法和差化积法是一种常用的因式分解方法,它适用于多项式中存在和差项的情况。
和差化积法通过将多项式中的和差项进行化简,从而将多项式分解为简化的多项式的乘积。
这种方法常用于分解多项式中的高次项。
六、平方差公式平方差公式是一种常用的因式分解公式,它用于将一个二次多项式分解为两个一次多项式的乘积。
平方差公式的形式为(a-b)(a+b)=a^2-b^2,其中a和b可以是任意实数或变量。
七、差平方公式差平方公式是一种常用的因式分解公式,它用于将一个二次多项式分解为两个一次多项式的乘积。
差平方公式的形式为(a-b)(a+b)=a^2-b^2,其中a和b可以是任意实数或变量。
八、立方差公式立方差公式是一种常用的因式分解公式,它用于将一个立方多项式分解为两个一次多项式的乘积。
因式分解方法大全

因式分解方法大全因式分解是一个常用的数学方法,用于将一个多项式或一个数分解为较小因子的乘积。
在这篇文章中,我将为您详细介绍一系列因式分解的方法。
一、公因式提取法:公因式提取法是最基本的因式分解方法之一、它的思想是找到多个表达式的一个公共因子,并将其提取出来。
例如,对于多项式2x+6,我们可以发现2是两项的公因子,于是可以将其因式分解为2(x+3)。
二、分组分解法:分组分解法适用于由四个及四个以上的项组成的多项式。
它的思想是将多项式内的项进行分组,并利用分组的特点进行因式分解。
例如,对于多项式x²+5x+6,我们可以将其分解为(x²+2x)+(3x+6),然后分别提取出每个分组的公因子,得到x(x+2)+3(x+2),进而因式分解为(x+3)(x+2)。
三、辗转相除法:辗转相除法是一种用于分解整数的方法,适用于当我们要将一个整数分解为两个较小的因数时。
例如,对于整数15,我们可以找到一个较小的因数3,并将15除以3得到5,即15=3*5四、差的平方公式:方形式时,可以利用差的平方公式进行因式分解。
例如,对于多项式x²-4,我们可以利用差的平方公式(x+2)(x-2)进行因式分解,得到(x+2)(x-2)。
五、平方差公式:平方差公式是一个常用的因式分解方法,适用于当我们遇到平方差形式时,可以利用平方差公式进行因式分解。
例如,对于多项式x²-y²,我们可以利用平方差公式(x+y)(x-y)进行因式分解,得到(x+y)(x-y)。
六、完全平方公式:完全平方公式是一个常用的因式分解方法,适用于当我们遇到完全平方形式时,可以利用完全平方公式进行因式分解。
例如,对于多项式x² + 2xy + y²,我们可以利用完全平方公式(x + y)²进行因式分解,得到(x + y)²。
七、和的立方公式:和的立方公式是一个常用的因式分解方法,适用于当我们遇到和的立方形式时,可以利用和的立方公式进行因式分解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因式分解的常用方法第一部分:方法介绍因式分解:因式分解是指将一个多项式化成几个整式的积的形式,主要有提公因式法,公式法,十字相乘法,分组分解法,换元法等因式分解的一般步骤是:(1 )通常采用一“提”、二“公”、三“分”、四“变”的步骤。
即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解;(2 )若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法;。
注意:将一个多项式进行因式分解应分解到不能再分解为止。
一、提公因式法. :ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:( 1 ) (a+b)(a - b) = a 2 - b 2 ----------- a 2 - b 2 =(a+b)(a - b) ;(2) (a ± b) 2 = a 2 ± 2ab+b 2 --------- a 2 ± 2ab+b 2 =(a ± b) 2 ;(3) (a+b)(a 2 - ab+b 2 ) = a 3 +b 3 --------- a 3 +b 3 =(a+b)(a 2 - ab+b 2 ) ;(4) (a - b)(a 2 +ab+b 2 ) = a 3 - b 3 -------- a 3 - b 3 =(a - b)(a 2 +ab+b2 ) .下面再补充两个常用的公式:(5)a 2 +b 2 +c 2 +2ab+2bc+2ca=(a+b+c) 2 ;(6)a 3 +b 3 +c 3 - 3abc=(a+b+c)(a 2 +b 2 +c 2 - ab - bc - ca) ;例. 已知是的三边,且,则的形状是()A. 直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形解:三、分组分解法.(一)分组后能直接提公因式例1 、分解因式:分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有 a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
解:原式== 每组之间还有公因式!=例2 、分解因式:解法一:第一、二项为一组;解法二:第一、四项为一组;第三、四项为一组。
第二、三项为一组。
解:原式= 原式== == =练习:分解因式1 、 2 、(二)分组后能直接运用公式例3 、分解因式:分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。
解:原式===例4 、分解因式:解:原式===练习:分解因式3 、 4 、综合练习:(1 )( 2 )(3 )( 4 )(5 )( 6 )(7 )(8 )(9 )(10 )(11 )(12 )练习9 、分解因式:( 1 )( 2 )综合练习10 、( 1 )( 2 )(3 )( 4 )(5 )( 6 )(7 )(8 )(9 )(10 )思考:分解因式:五、换元法。
(1) 、换单项式例1 分解因式x 6 + 14x 3 y + 49y 2 .分析:注意到x 6 = (x 3 ) 2 ,若把单项式x 3 换元,设x 3 = m ,则x 6 = m 2 ,原式变形为m 2 + 14m y + 49y 2 = (m + 7y) 2 = ( x 3 + 7y) 2 .(2) 、换多项式例2 分解因式(x 2 +4x+6) + (x 2 +6x+6) +x 2 .分析:本题前面的两个多项式有相同的部分,我们可以只把相同部分换元,设x 2 +6= m ,则x 2 +4x+6= m+4x ,x 2 +6x+6= m+6x ,原式变形为(m+4x)(m+6x)+x 2 = m 2 +10mx+24x 2 +x 2 = m 2 +10mx+25x 2= (m+5x) 2 = ( x 2 +6+5x) 2= [(x+2)(x+3)] 2 = (x+2) 2 (x+3) 2 .以上这种换元法,只换了多项式的一部分,所以称为“局部换元法” . 当然,我们还可以把前两个多项式中的任何一个全部换元,就成了“整体换元法” . 比如,设x 2 +4x+6=m ,则x 2 +6x+6=m+2x ,原式变形为m(m+2x)+ x 2 = m 2 +2mx+x 2 = (m+x) 2 = ( x 2 +4x+6+x) 2 = ( x 2 +5x+6) 2= [(x+2)(x+3)] 2 = (x+2) 2 (x+3) 2 .另外,还可以取前两个多项式的平均数进行换元,这种换元的方法被称为“均值换元法”,可以借用平方差公式简化运算. 对于本例,设m= [(x 2 +4x+6) + (x 2 +6x+6)]= x 2 +5x+6 ,则x 2 +4x+6=m-x ,x 2 +6x+6=m+x ,(m+x)(m-x)+x 2 = m 2 -x 2 +x 2 = m 2 = (x 2 +5x+6) 2 = [(x+2)(x+3)] 2= (x+2) 2 (x+3) 2 .例3 分解因式(x-1)(x+2)(x-3)(x+4)+24.分析:这道题的前面是四个多项式的乘积,可以把它们分成两组相乘,使之转化成为两个多项式的乘积. 无论如何分组,最高项都是x 2 ,常数项不相等,所以只能设法使一次项相同. 因此,把(x-1)(x+2)(x-3)(x+4) 分组为[(x-1) (x+2)][(x-3)(x+4)] = (x 2 +x-2) (x 2 +x-12) ,从而转化成例2 形式加以解决.我们采用“均值换元法”,设m= [ (x 2 +x-2)+ (x 2 +x-12)]=x 2 +x-7 ,则x 2 +x-2=m+5 ,x 2 +x-2= m-5 ,原式变形为(m+5)(m-5)+24= m 2 -25+24= m 2 -1=(m+1)(m-1)= ( x 2 +x-7+1)( x 2 +x-7-1)= ( x 2 +x-6)( x 2 +x-8)= (x-2)(x+3)( x 2 +x-8).(3) 、换常数例1 分解因式x 2 (x+1)-2003 × 2004x.分析:此题若按照一般思路解答,很难奏效. 注意到2003 、2004 两个数字之间的关系,把其中一个常数换元. 比如,设m=2003 ,则2004=m+1. 于是,原式变形为x 2 (x+1) – m(m+1)x= x[x(x+1)-m(m+1)] = x(x 2 +x-m 2 -m)= x[(x 2 -m 2 ) +(x-m)]= x[(x+m) (x-m)+(x-m)]= x(x-m)(x+m+1)= x(x-2003)(x+2003+1)= x(x-2003)(x+2004).例13 、分解因式( 1 )(2 )解:(1 )设2005= ,则原式===(2 )型如的多项式,分解因式时可以把四个因式两两分组相乘。
原式=设,则∴原式= == =练习13 、分解因式(1 )(2 )(3 )例14 、分解因式( 1 )观察:此多项式的特点——是关于的降幂排列,每一项的次数依次少1 ,并且系数成“轴对称”。
这种多项式属于“等距离多项式”。
方法:提中间项的字母和它的次数,保留系数,然后再用换元法。
解:原式= =设,则∴原式= == == ==(2 )解:原式= =设,则∴原式= == =练习14 、( 1 )(2 )六、添项、拆项、配方法。
例15 、分解因式( 1 )解法1——拆项。
解法2——添项。
原式= 原式== = == = == =(2 )解:原式====练习15 、分解因式(1 )( 2 )(3 )( 4 )(5 )( 6 )七、待定系数法。
例16 、分解因式分析:原式的前3 项可以分为,则原多项式必定可分为解:设=∵=∴=对比左右两边相同项的系数可得,解得∴原式=例17 、( 1 )当为何值时,多项式能分解因式,并分解此多项式。
(2 )如果有两个因式为和,求的值。
(1 )分析:前两项可以分解为,故此多项式分解的形式必为解:设=则=比较对应的系数可得:,解得:或∴当时,原多项式可以分解;当时,原式= ;当时,原式=(2 )分析:是一个三次式,所以它应该分成三个一次式相乘,因此第三个因式必为形如的一次二项式。
解:设=则=∴解得,∴= 21练习17 、( 1 )分解因式(2 )分解因式(3 )已知:能分解成两个一次因式之积,求常数并且分解因式。
(4 )为何值时,能分解成两个一次因式的乘积,并分解此多项式。
第二部分:习题大全经典一:一、填空题1 . 把一个多项式化成几个整式的_______ 的形式,叫做把这个多项式分解因式。
2 分解因式:m3 -4m = .3. 分解因式:x 2 -4y 2 = __ _____.4 、分解因式:=___________ ______ 。
5 . 将x n -y n 分解因式的结果为(x 2 +y 2 )(x+y)(x-y) ,则n 的值为.6 、若,则=_________ ,=__________ 。
二、选择题7 、多项式的公因式是( )A 、B 、C 、D 、8 、下列各式从左到右的变形中,是因式分解的是( )A 、B 、C 、D 、10 . 下列多项式能分解因式的是()(A)x 2 -y (B)x 2 +1 (C)x 2 +y+y 2 (D)x 2 -4x+411 .把(x -y )2 -(y -x )分解因式为()A .(x -y )(x -y -1 )B .(y -x )(x -y -1 )C .(y -x )(y -x -1 )D .(y -x )(y -x +1 )12 .下列各个分解因式中正确的是()A .10ab 2 c +6ac 2 +2ac =2ac (5b 2 +3c )B .(a -b )2 -(b -a )2 =(a -b )2 (a -b +1 )C .x (b +c -a )-y (a -b -c )-a +b -c =(b +c - a )(x +y - 1 )D .(a -2b )(3a +b )-5 (2b -a )2 =(a -2b )(11b -2a )13. 若k-12xy+9x 2 是一个完全平方式,那么k 应为()A.2 B .4 C .2y 2 D.4y 2三、把下列各式分解因式:14 、15 、16 、17 、18 、19 、;五、解答题20 、如图,在一块边长= 6.67cm 的正方形纸片中,挖去一个边长= 3.33cm 的正方形。