平行投影与直观图分析
第二章 直线的投影

2.已知直线 AB 平行直线 CD,试完成直线
例:已知直线AB平行直线CD,试完成直线AB
AB 和 CD 的三面投影。 和CD的三面投影。
题解: c′〝
c
NEW
c
c
b
点C的投影在直线的同面投影上,并 符合点的投影规律。
二、D点不在 直线AB上。
a A d b a b
NEW
a b
D
d
B
d
例:判断点M是否在直线CD 上 解法1:
NEW
点M的投影不符合点在直线上的投影规律, 故M点不在直线CD上。
例:判断点M是否在直线CD 上
直线 水 平 线
直观图
投影图
投影特征 1、水平投影ab 反映实长 及直线的倾角β 和γ 。 2、正面投影a b //o x轴, 侧面投影a"b "//oy w 轴,且 均短于实长。 1、正面投影e f 反映实长 及直线的倾角α 和γ 。 2、水平投影ef //o x轴,侧 面投影e"f "//oz 轴,且均 短于实长。 1、侧面投影e"f" 反映实 长及直线的倾角α 和β 。 2、水平投影e f//oy H 轴,正 面投影e f //oz 轴,且均 短于实长。
• 1. 直线上的点,其投影必在该直线的同面投影上。 • 2. 直线上的点,分割线段之比,在投影后保持不变。
三.直线上的点 (一) 直线上点的投影特性
点C在直线上 AB上
1.直线上的点,
其投影必在该 直线的同面投 影上。
2.直线上的点,
三视图(第1课平行、中心、正投影)资料

2、同一时刻阳光下的影子长的物体比影子短的物体 高。对吗?
3、太阳光下转动一个正方体,它的投影最多是 边形,最少是 边形
9
你能指出这些图形分别从哪个角度观察得到的吗?
视图
三视图法:从正面、上面和侧面 (左面或右面)三个不同的方向 看一个物体,然后描绘三张所看
左视图:
第二列的方块有 2 个,
动手设计
请画出下面立体图形的三视图。 俯视方向 注意:根据“长对正,高平齐,宽相等” 画 三视图必须遵循的法则作图.
挑战中考
2008年中招试题
4.如图(1)是一些大小相同的小正方体组 成的几何体,其主视图如图(2)所示,则 其俯视图是( B)
图(1)
图(2)
A
B
C A
B
D
3
3、中心投影规律及画法:
灯光下,不同物体的影子 方向可能同也可能不同; 等高物体垂直地面,离光 源近影子短,离光源远影 子长;等长物体平行地面, 离光源近影子长,离光源 远影子短。影长与物长不 一定成比例。
例:如图根据小明和小红的影子确定路灯的位置,并画 出塔的影子。
4
二、正投影(特殊的平行投影)
中的数字表示在该位置小正方
1
体的个数。
你能摆出这个几何体吗?
试画出这个几何体的主 视图与左视图。
主视图:
左视图:
21 2
21
不用摆出这个几何体,你能画出 这个几何体的主视图与左视图吗?
12
思考方法
先根据俯视图确定主视图有 列,
主视图:
再根据数字确定每列的方块有 个,
主视图有 3 列,第一列的方块有 1 个, 第二列的方块有 2 个,第三列的方块有 1 个, 左视图有 2 列, 第一列的方块有 2 个,
三视图课件

1 4
5
练习
1 4
5
1 4
5 1
5
1 4
5
练习
新课教学
上一节学习的棱柱、棱锥、棱台以及圆台 的三视图是怎样的?
思考
问:已知三视图如下,该几何体是什么?
1 4
1 4
1 4
5
5
5
1
5
例题讲解
例1: 某几何体的如左图所示,则该几何体的俯
视图是( A )
例题讲解 观察几何体的三视图,说说它们的几何结构特征
正投影得到的投影图
光线从几何体的上面 向 俯视图
下面 正投影得到的投影图
一个几何体的正视 图和侧视图高度 一 样,正视图和俯视图 长度 一样,侧视图 与俯视图宽度 一样
[双基自测] 1.一个几何体的三视图如图所示,则该几何体可以是( )
A.棱柱 C.圆柱 答案:D
B.棱台 D.圆台
2.沿圆柱体上底面直径截去一部分后的物体如图所示,它的俯视图是 ()
例2:
2
2 4
正视图
4
2 4
侧视图
圆柱和圆锥构 成的组合体
俯视图
(1)
题型二:由三视图还原空间几何体
例3: 观察下列几何体的三视图,想象并说明它 们的几何结构特征,画出示意图。
备用例题
上面是一个圆柱, 下面是一个四棱柱
(3)
2.如图,在正方体ABCDA1B1C1D1中,M、N分别是BB1、
BC的中点,则图中阴影部分在平面ADD1A1上的A投影为(
新课教学
二、平行投影:
斜投影:投影方向与投影面倾斜 的投影。
概念辨析
中心投影形成的直观图能非常逼真地反映原来 的物体,主要运用于绘画领域。
新必修二 8.2 立体图形的直观图(斜二测画法) 教案+练习

8.2 立体图形的直观图(斜二测画法)【要点梳理】要点一、平行投影(选讲)1.中心投影我们把光由一点向外散射形成的投影叫做中心投影.中心投影的投影线交于一点,它的实质是一个点光源把一个物体射到一个平面上,这个物体的影子就是它在这个平面上的中心投影.2.平行投影我们把在一束平行光线照射下形成的投影叫做平行投影.投影线正对着投影面时,叫做正投影,否则叫做斜投影.3.中心投影与平行投影的区别与联系(1)平行投影包括斜二测画法和三视图.中心投影后的图形与原图形相比虽然改变较多,但直观性强,看起来与人的视觉效果一致,最像原来的物体.(2)画实际效果图时,一般用中心投影法,画立体几何中的图形时,一般用平行投影法.要点二、斜二测画法在立体几何中,空间几何体的直观图通常是在平行投影下画出的空间图形.要画空间几何体的直观图,首先要学会水平放置的平面图形的直观图画法.对于平面多边形,我们常用斜二测画法画它们的直观图,斜二测画法是一种特殊的平行投影画法.斜二测画法的步骤:(1)在已知图形中取互相垂直的z轴和y轴,两轴相交于点O.画直观图时,把它们画成对应的x'轴与y'轴,两轴交于点O',且使∠x'O'y'=45°(或135°),它们确定的平面表示水平面.(2)已知图形中,平行于x轴、y轴的线段,在直观图中分别画成平行于x'轴、y'轴的线段,并使它们和所画坐标轴的位置关系与已知图形中相应线段和原坐标轴的位置关系相同.(3)已知图形中,平行于x轴或z轴的线段,在直观图中保持长度不变,平行于y轴的线段,长度变为原来的一半.画图完成后,擦去作为辅助线的坐标轴,就得到了平面图形的直观图.要点诠释:用斜二测画法画图的关键是在原图中找到决定图形位置与形状的点并在直观图中画出.一般情况下,这些点的位置都要通过其所在的平行于x、y轴的线段来确定,当原图中无需线段时,需要作辅助线段.要点三、立体图形的直观图(1)用斜二测画法画空间几何体的步骤①在已知图形中,取互相垂直的x轴和y轴,再取z轴,使∠xOz=90°,且∠yOz=90°;②画直观图时,把它们画成对应的轴x′,y′,z′,使∠x′O′y′=45°(或135°),∠x′O′z′=90°,x′O′y′所确定的平面表示水平平面;③已知图形中平行于x轴,y轴或z轴的线段,在直观图中分别画成平行于x′轴,y′轴或z′轴的线段;④在已知平面图形中平行于x轴和z轴的线段,在直观图中保持原长度不变,平行于y轴的线段,长度变为原来的一半;⑤擦去作为辅助线的坐标轴,就得到了空间几何体的直观图.(2)斜二测画法保留了原图形中的三个性质①平行性不变,即在原图中平行的线在直观图中仍然平行;②共点性不变,即在原图中相交的直线仍然相交;③平行于x,z轴的长度不变.(3)画立体图形与画水平放置的平面图形相比多了一个z轴,其直观图中对应于z轴的是z'轴,平面x'O'y'表示水平平面,平面y'O'z'和x'O'z'表示直立平面.平行于z轴(或在:轴上)的线段,其平行性和长度都不变.(4)三视图与直观图的联系与区别三视图与直观图都是用平面图形来刻画空间图形的位置特征与度量特征,二者有以下区别:①三视图从细节上刻画了空间几何体的结构,由三视图可以得到一个精确的几何体,如零件、建筑图纸等都是三视图.②直观图是对空间几何体的整体刻画,可视性高,立体感强,由此可以想象实物的形状.要点四、已知三视图画直观图三视图和直观图是空间几何体的两种不同的表现形式.直观图是在某一定点观察到的图形,三视图是投射线从不同位置将物体按正投影向投影面投射所得到的图形,对于同一个物体,两者可以相互转换.由三视图画直观图,一般可分为两步:第一步:想象空间几何体的形状.三视图是按照正投影的规律,使平行光线分别从物体的正面、侧面和上面投射到投影面后得到的投影图,包括正视图、侧视图和俯视图.正视图反映出物体的长和高,侧视图反映出物体高和宽,所以正视图和侧视图可以确定几何体的基本形状,如柱体、锥体或台体等.俯视图反映出物体的长和宽.对于简单几何体来说,当俯视图是圆形时,该几何体是旋转体;当俯视图是多边形时,该几何体是多面体。
2020-2021学年高一数学人教A版高中数学必修2第一章1.2.1中心投影与平行投影课件

探究二 :空间几何体的三视图 长
正视图
方
体
的
三
视
侧 视
图
c(高)
图
b(宽)
a(长)
俯视图
三视图能反映物体真实的形状和长、宽、高.
正
视 图
c(高)
a(长)
高 平
长对正 齐
侧
c(高)
视 图
b(宽)
俯
a(长)
视
b(宽)
图
宽相等
c(高)
b(宽)
a(长)
正侧俯 视视视 图图图 反反反 映映映 了了了 物物物 体体体 的的的 高高长 度度度 和和和 长宽宽 度度度
(D)三棱柱
2020-2021学年高一数学人教A版高中 数学必 修2第一 章1.2. 1中心 投影与 平行投 影课件 【精品 】
2020-2021学年高一数学人教A版高中 数学必 修2第一 章1.2. 1中心 投影与 平行投 影课件 【精品 】
5、一空间几何体的三视图如图所示, 则该几何体是___
巩固提高:简单组合体的三视图
例2:画出下面几何体的三视图。
正视图
侧视图
俯视图 注意:不可见的轮廓线,用虚线画出。
正视图
侧视图
俯视图
正视图
侧视图
俯视图
2020-2021学年高一数学人教A版高中 数学必 修2第一 章1.2. 1中心 投影与 平行投 影课件 【精品 】
例3:(1)一个几何体的三视图如下,你 能说出它是什么立体图形吗?
2020-2021学年高一数学人教A版高中 数学必 修2第一 章1.2. 1中心 投影与 平行投 影课件 【精品 】
俯视图
2020-2021学年高一数学人教A版高中 数学必 修2第一 章1.2. 1中心 投影与 平行投 影课件 【精品 】
8.2三视图和直观图

授课主题:三视图和直观图教学目标1.了解中心投影和平行投影的特征.2.能画出简单空间图形如长方体、球、圆柱、圆锥、棱柱等的简易组合的三视图,能识别上述的三视图所表示的立体模型.3.会用平行投影与中心投影两种方法,画出简单空间图形的三视图,了解空间图形的不同表示形式.4.掌握斜二测画法画水平放置的平面图形的直观图.5.会用斜二测画法画出长方体、球、圆柱、圆锥、棱柱等的直观图.教学内容1.投影由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影.其中,我们把光线叫做投影线,把留下物体的影子的屏幕叫做投影面.FMF 'M 'l2.平行投影(1)定义:我们把在一束平行光线照射下形成的投影,叫做平行投影.平行投影的投涉线是平行的.在平行投影中,投影线正对着投影面时,叫做正投影,否则叫做斜投影.(2)性质:若图形中的直线或线段不平行于投射线时,平行投影具有以下性质:①直线或线段的平行投影仍是直线或线段;②平行直线的平行投影是平行或重合的直线;③平行于投射面的线段,它的投影与这条线段平行且等长;④平行于投射面的平面图形,它的投影与这个图形全等;⑤在同一直线或平行直线上,两条线段平行投影的比等于这两条线段的比.(3)正投影概念:在平行投影中,如果投射线与投射面垂直,则称这样的平行投影为正投影.性质:①垂直于投射面的直线或线段的正投影是点;②垂直于投射面的平面图形的正投影是直线或直线的一部分.3.中心投影一个点光源把一个图形照射到一个平面上,这个图形的影子就是它在这个平面上的中心投影.中心投影的直观性强,看起来与人的视觉效果一致,常在绘画时使用,在立体几何中,一般用平行投影原理来画图.4.三视图(1)正视图:光线从几何体的前面向后面正投影得到的投影图形称为几何体称为正视图(主视图).(2)侧视图:光线从几何体的左面向右面正投影得到的投影图形称为几何体称为侧视图(左视图).(3)俯视图:光线从几何体的上面向下面正投影得到的投影图形称为几何体称为俯视图.将空间图形向这三个平面作正投影,然后把这三个投影按一定的布局放在一个平面内,这样构成的图形叫做空间图形的三视图.如右图为圆锥的三视图:俯视图左视图主视图5.三视图的对应关系正俯视图长相等、正侧视图图的高相等、俯侧视图图的宽相等,简称“长对正,宽平齐,高相等”或说“主左一样高,主俯一样长,俯左一样宽”.6.直观图定义:用来表示空间图形的平面图形,叫做空间图形的直观图.画法:斜二测画法和正等测画法.7.斜二测画法规则(1)在已知图形所在的空间中取水平平面,作相互垂直的轴Ox,Oy,再作Oz轴,使90xOz∠=︒,90yOz∠=︒.(三维空间中)(2)画直观图时,把Ox,Oy,Oz画成对应的轴O x O y O z'''''',,,使45x O y'''∠=︒或135︒,90x O z'''∠=︒,x O y'''所确定的平面表示水平平面.(二维平面上)(3)已知图形中,平行于x轴,y轴或z轴的线段,在直观图中分别画成平行于x'轴,'y轴或z'的线段.并使它们和所画坐标轴的位置关系,与已知图形中相应线段和原坐标轴的位置关系相同.(4)已知图形中平行于x轴和z轴的线段,在直观图中保持长度不变,平行于y轴的线段,长度为原来的一半.画图完成后,擦去作为辅助线的坐标轴,就得到了空间图形的直观图.题型一投影的概念例1判断对错(对的在括号内打“√”,错的打“×”):(1)矩形的平行投影一定是矩形;()(2)梯形的平行投影一定是梯形;()(3)平行四边形的平行投影可能是正方形;()(4)正方形的平行投影一定是菱形;()(5)两条相交直线的平行投影可能平行;()(6)如果一个三角形的投影仍是三角形,那么它的中位线的平行投影,一定是这个三角形的平行投影的中位线.()解析:利用平行投影的概念和性质进行判断.答案:(1)×(2)×(3)√(4)×(5)×(6)√点评:平面图形经过平行投影后一般要改变形状,平行直线的平行投影是平行或重合的直线.两条相交直线的平行投影不可能平行.巩固如图所示,在正方体ABCDA′B′C′D′中,E,F分别是A′A,C′C的中点,则下列判断中正确的是______.①四边形BFD′E在底面ABCD内的投影是正方形;②四边形BFD′E在面A′D′DA内的投影是菱形;③四边形BFD′E在面A′D′DA内的投影与在面ABB′A′内的投影是全等的平行四边形.解析:①四边形BFD′E的四个顶点在底面ABCD内的投影分别是点B、C、D、A,故投影是正方形,正确;②设正方体的棱长为2,则AE=1,取D′D的中点G,则四边形BFD′E在面A′D′DA内的投影是四边形AGD′E,由AE∥D′G,且AE=D′G,∴四边形AGD′E是平行四边形,但AE=1,D′E=5,故四边形AGD′E不是菱形.对于③,由②知是两个边长分别相等的平行四边形,从而③正确.答案:①③题型二画空间几何体的三视图例2画出如图所示几何体的三视图解析:三视图如下图所示.点评:三视图的画法关键是分清楚观察者的方向,应从正面、侧面、上面三个方向去观察图形,然后画出三视图.巩固画出右面几何体的三视图.解析:三视图如下:题型三由三视图还原成实物图例3下图所示的是三个立体图形的三视图,请说出其立体图形的名称.解析:由图可知甲的俯视图是圆,则该几何体是旋转体,又正视图和侧视图均是矩形,则甲是圆柱;乙的俯视图是三角形,则该几何体是多面体,又正视图和侧视图均是三角形,则该多面体的各个面都是三角形,则乙是三棱锥;丙的俯视图是圆(及圆心),则该几何体是旋转体,又正视图和侧视图均是三角形,则丙是圆锥.点评:根据三视图还原几何体要具备一定的空间想象能力,想象整个几何体的几何特征,从而判断三视图所描述的几何体.通常先判断是多面体还是旋转体,再结合正视图和侧视图确定具体的几何结构特征,最终确定是简单几何体还是简单组合体.巩固下图是由小正方体组成的几何图形的三视图,则组成它的小正方体的个数是________.解析:还原为实物图易知.答案:5题型四画水平放置的平面图形的直观图例1用斜二测画法画水平放置的正五边形的直观图.解析:建立坐标系xOy后,B,E两点不在平行于坐标轴的直线上,故需作BG⊥x轴于G,EH⊥x轴于H.(1)建立如图①所示的直角坐标系xOy,再建立如图②所示的坐标系x′O′y′,使∠x′O′y′=45°.(2)在图①中作BG⊥x轴于G,EH⊥x轴于H,在坐标系x′O′y′中作O′H′=OH,O′G′=OG,O′A′=OA,O′F′=OF.过F′作C′D′∥x′轴且C′D′=CD.(3)在平面x′O′y′中,过G′作G′B′∥y′轴,且G′B′=BG,过H′作H′E′∥y′轴,且H′E′=HE,连接A′B′,B′C′,C′D′,D′E′,E′A′,得五边形A′B′C′D′E′,这就是正五边形ABCDE的平面直观图.点评:用斜二测画法画水平放置的平面图形一要注意坐标系的选取,二要注意平行于x轴的长度不变,平行于y 轴的长度变为原长度的一半.巩固(多解题)用斜二测画法画边长为4 cm的水平放置的正三角形的直观图.解析:解法一:(1)如图①所示,以BC边所在的直线为x轴,以BC边上的高线AO所在的直线为y轴.(2)画对应的x′轴,y′轴,使∠x′O′y′=45°.在x′轴上截取O′B′=O′C′=2 cm,在y′轴上截取O′A′=12OA.连接A′B′,A′C′,则三角形A′B′C′即为正三角形ABC的直观图,如图②所示.解法二:(1)如图③所示,以BC边所在的直线为y轴,以BC边上的高AO所在的直线为x轴.(2)画对应的x′轴、y′轴,使∠x′O′y′=45°.在x′轴上截取O′A′=OA,在y′轴上截取O′B′=O′C′=12OC=1 cm,连接A′B′,A′C′,则三角形A′B′C′即为正三角形ABC的直观图,如图④所示.题型五画空间几何体的直观图例5下图是已知几何体的三视图,用斜二测画法画出它的直观图.解析:由几何体的三视图知,这个几何体是一个简单组合体,它的下部是一个圆台,上部是一个圆锥,并且圆锥的底面与圆台的上底面重合,我们可以先画出下部的圆台,再画出上部的圆锥.(1)画轴.如图甲,画x轴,y轴,z轴,使∠xOy=45°,∠xOz=90°.(2)画圆台的两底面.选择椭圆模板中适当椭圆,画出底面⊙O,在z轴上截取OO′,使OO′等于三视图中相应高度,过O′作Ox的平行线O′x′,作Oy的平行线O′y′,利用O′x′与O′y′画出上底面⊙O′(与画⊙O一样).(3)画圆锥的顶点.在Oz上截取点P,使PO′等于三视图中相应的高度.(4)成图.连接P A′,PB′,A′A,B′B,整理得到三视图表示的几何体的直观图,如图乙.点评:利用斜二测画法画空间图形的直观图应遵循的基本原则:①画空间图形的直观图在要求不太严格的情况下,长度和角度可适当选取.为了增强立体感,被挡住的部分通常用虚线表示.②画法规则可简记为:两轴夹角为45°,竖轴垂直仍不变,平行不变,长度变,横竖不变,纵折半.③画空间几何体的直观图,要注意选取适当的原点,建系画轴.巩固根据下图所示的三视图想象物体原形,并画出物体的实物草图.解析:(1)由俯视图并结合其他两个视图可以看出,这个物体是由一个圆柱和一个正四棱柱组合而成,圆柱的下底面圆和正四棱柱的上底面正方形内切,它的实物草图如图①所示.(2)由三视图知,该物体下部分是一个长方体,上部分的表面是两个等腰梯形和两个等腰三角形,它的实物草图如图②所示.题型六 将直观图还原为平面图形例6 下图是一梯形OABC 的直观图,其直观图面积为S ,求梯形OABC的面积.解析:设O ′C ′=h ,则原梯形是一个直角梯形且高为2h .C ′B ′=CB ,O ′A ′=OA .过C ′作C ′D ⊥O ′A ′于D ,则C ′D =22h .由题意知12C ′D (C ′B ′+O ′A ′)=S ,即24h (C ′B ′+O ′A ′)=S . 又原直角梯形面积为S ′=12·2h (CB +OA )=h (C ′B ′+O ′A ′)=4S 2=22S .所以梯形OABC 的面积为22S .点评:将水平放置的平面图形的直观图还原为原来的实际图形,其作法是运用斜二测画法,也就是使平行于x ′轴的线段的长度不变,而平行于y ′轴的线段长度变为原来的2倍.巩 固 如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )A .2+ 2 B.1+22C.2+22D .1+ 2解析:画出其相应平面图易求,故选A.答案:A1.观察图中的投影过程,回答问题.(1)它们的投影过程有什么不同?(2)图②、③是平行投影,它们有什么不同? (3)中心投影和平行投影有什么不同?解析:(1)图①的投影线交于一点.把光由一点向外散射形成的投影称为中心投影;图②、③的投影线平行,把在一束平行光线照射下形成的投影称为平行投影.(2)图③中的投影是正对着投影面.这种平行投影称为正投影;图②中的投影线不是正对着投影面,这种平行投影称为斜投影.它们的不同在于投影线是否正对着投影面.(3)与投影面平行的平面图形在平行投影下留下的影子与原平面图形是全等的平面图形;而在中心投影下留下的影子与原平面图形是相似的平面图形.2.(1):圆锥的正视图是等腰三角形,对吗?答案:错.要看如何放置,当底面正对你时是圆,底面水平时是等腰三角形.(2):底面水平的圆柱的左视图是矩形,对吗?答案:对.(3):水平放置的圆台的俯视图是一个与下底面大小相同的圆,对吗?答案:错.是两个同心圆.3.有一个几何体的三视图如下图所示,则这个几何体应是一个()A.棱台B.棱锥C.棱柱D.都不对答案:A4.一个几何体的正视图如图,它一定不是()A.棱柱B.棱台C.圆柱D.长方体答案:B5.对几何体三视图,下列说法中正确的是()A.正视图反映物体的长和宽B.俯视图反映物体的长和高C.侧视图反映物体的长和宽D.正视图反映物体的高和长答案:D6.两条相交直线的平行投影是()A.两条相交直线B.一条直线C.一条折线D.两条相交直线或一条直线答案:D7.如下图所示的几何体,其俯视图正确的是()答案:C8.下列几何体各自的三视图中,有且仅有两个视图相同的是()A.①②B.①③C.①④D.②④答案:D9.四个正方体按如图所示的方式放置,其中阴影部分为我们观察的正面,则该物体的三视图正确的为()答案:B10.一个几何体的三视图如图所示,则该几何体可以是()A.棱柱B.棱台C.圆柱D.圆台答案:D11.下面两个几何体的侧视图和俯视图一样吗?解析:侧视图一样,俯视图不同.12.根据如图所示俯视图,找出对应的物体(1)对应________;(2)对应________;(3)对应________;(4)对应________;(5)对应________.答案:D A E C B13.如图,点O为正方体ABCDA′B′C′D′的中心,点E为面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的面上的正投影可能是________(填所有可能的序号).答案:①②③1.在画三视图时,务必做到正视图、侧视图高平齐,正视图、俯视图长对正,俯视图、侧视图宽相等.2.若相邻两物体表面相交,表面的交线是它们的分界线,分界线和可见轮廓线用实线画出,不可见轮廓线用虚线画出.3.确定正视、俯视、侧视的方向,同一物体放置的方向不同,所画的三视图可能不同.1.梯形的直观图是()A.梯形B.矩形C.三角形D.任意四边形答案:A2.如图,直观图表示的平面图形是( )A .任意三角形B .锐角三角形C .直角三角形D .钝角三角形解析: A ′B ′∥y ′轴,B ′C ′∥x ′轴,∴相应的∠ABC =90°. 答案:C3.关于斜二测直观图的画法,以下说法不正确的是( )A .原图形中平行于x 轴的线段,其对应线段平行于x ′轴,长度不变B .原图形中平行于y 轴的线段,其对应线段平行于y ′轴,长度变为原来的12C .画与直角坐标系xOy 对应的x ′O ′y ′时,∠x ′O ′y ′必须是45°D .在画直观图时,由于选轴的不同,所得的直观图可能不同 答案:C4.利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论,正确的是( )A .①②B .①C .③④D .①②③④解析:因平行性不改变,故②正确,①也正确;平行于y 轴的线段,长度变为原来的一半,故③,④不正确,从而选A.答案:A5.如图,用斜二测画法画一个水平放置的平面图形的直观图为一个正方形,则原来图形的形状是( )解析:直观图的正方形的对角线在y ′轴上且长度为2,故原来图形的对角线在y 轴上且长度为2 2.故选A. 答案:A6.对于一个底边在x 轴上的三角形,采用斜二测画法作出其直观图,其直观图的面积是原三角形面积的( )A .2倍 B.22倍 C.24倍 D.12倍 解析:直观图的底面边长与实际三角形底面边长相同,而直观图的高为12×h ×sin 45°=24h ,所以直观图的面积是实际三角形面积的24倍. 答案:C7.右图为水平放置的正方形ABCO,在直角坐标系中点B的坐标为(2,2),则在用斜二测画法画出的正方形的直观图中,顶点B′到O′x′轴的距离为()A.12 B.22C.1 D. 2解析:如图,为正方形ABCO在x′O′y′中的直观图,作B′D′⊥x′轴于D′,则在Rt△B′C′D′中,∠B′C′D′=45°,|B′C′|=1,∴B′D′=|B′C′|·sin 45°=1×22=22.即B′到x′轴的距离为22.答案:B8.下图中长方体的长、宽、高分别为5,4,3,侧视图矩形的面积为________.解析:长方体的侧视图是长为4,宽为3的长方形,故面积为3×4=12.答案:129.根据三视图想象物体原形,并画出物体直观图.解析:由几何体的三视图知道几何体是一个简单组合体,下部是个圆柱,上部是个圆台,且圆台下底与圆柱面重合.画法如图(1)所示,图(2)为三视图所表示的物体的直观图.10.有一个正六棱锥(底面为正六边形,侧面为全等的等腰三角形的棱锥),底面边长为3 cm,高为3 cm,画出这个正六棱锥的直观图.解析:(1)先画出边长为3 cm 的正六边形的水平放置的直观图,如图①所示;(2)过正六边形的中心O ′建立z ′轴,画出正六棱锥的顶点V ′,在z ′轴上截取O ′V ′=3 cm ,如图②所示; (3)连接V ′A ′、V ′B ′、V ′C ′、V ′D ′、V ′E ′、V ′F ′,如图③所示;(4)擦去辅助线,遮挡部分用虚线表示,即得到正六棱锥的直观图,如图④所示.11.如图,等腰直角△O ′A ′B ′是△OAB 的直观图,它的斜边长为O ′A ′=a ,求△OAB 的面积.解析:∵A ′,B ′在轴上,∴∠AOB =90°. 又O ′B ′=22a ,故OB =2a , ∴S △OAB =12a ·2a =22a 2.12.已知几何体的三视图如下,画出它的直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).解析:直观图如下图所示,画法略.13.如图所示,AB 和CD 两根木杆竖在平面上,有一灯使AB 和CD 这两根木杆有影子,试根据实物和影子确定灯的位置.解析:要确定灯的位置,就要了解灯光是向四面发散的,这样,致使两根木杆的影子如图所示,所以,灯的位置应在木杆AB顶部A和它的影子的顶部E的连线的那条直线上,同样,这个灯也在木杆CD顶部C和它的影子的顶部F的连线上.如下图,点O就是灯所放的位置.。
1.1.4平行投影与直观图

A′
x′
思考:
上述画水平放置的平面图形的直 观图的方法叫做斜二测画法,你能概括 出画平面图形直观图的基本步骤?
1、平面图形的直观图画法
(1)画轴.
y
y’
o
x
o’
( 450或1350 )
x’
(2)确定平行线段. 平行x轴的线段平行于x’ 轴 平行y轴的线段平行于y’ 轴 (3)确定线段长度. 平行x轴的线段的长度保持不变.
课堂小结
空间几何体的直观图的作法:
1、建系: 在已知图形中取互相垂直的的X轴和Y轴, 得到直角坐标系XOY,直观图中画成斜坐标系X 在空间坚直方向 ‘O’Y‘,两轴的夹角为450,X’轴水平. 上的线 段画成垂直于X’轴需要画立体图时,过O ‘点画Z‘轴,且使其垂直于X’轴 2、平行不变: 已知图形中平行于X轴或Y轴的线段, 在直观图中分别画成平行于X’轴或Y‘的线段。 3、长度规则: 已知图形中平于X轴的的线段,在直观 图中保持长度不变;平行于Y轴的线段,长度变为原来 在空间坚直方向上的长度也不变。 的一半。
O’
X’
例3 画棱长为2cm正方体的直观图 .
z` D` A`
y`
解 画法按如下步骤完成 .
C` B`
第一步 作水平放置的正方形的 直观图 ABCD, 使BAD 450 , AB 2cm, AD 1 cm. 第二步 过A作z`轴, 使BAz` 900.分别 过点B, C , D作z`轴的平行线, 在z`轴及这 组平行线上分别截取AA` BB` CC ` DD` 2cm.
Y A 2 B O 2
已知某图形的直观图三角形ABC, AB=BC=2,请画出原图
Y’
A’
4 B’ O’
03中心投影、平行投影、直观图画法

第3课时平行投影中心投影直观图教学目标:掌握斜二侧画法的画图规则.会用斜二侧画法画出立体图形的直观图.重点难点:用斜二侧画法画图一、问题情景1.“手影戏”演员在屏障后边用手的组合表演各种人物、动物的造型,用现代灯光的反打技术,把各种造型投射到屏幕上形成手影,同时配以口技模拟声音,这样就把一种独特的视听艺术展现在观众面前,观众不但可以听到动物之间嬉笑亲昵的声音,还能通过手影看到可爱逗人的逼真形象。
用十指灵动,演艺天上飞、地上跑、水里游的动物,惟妙惟肖,令人惊叹。
如图,你也能做出兔子的手影的哦!2.有一个正方形的纸片,你能画出它水平放置的直观图吗?二、概念、方法生成1.平行投影、中心投影、斜投影、正投影的有关概念.(1)按投影线的方向分类:①平行投影___________________________________;②中心投影____________________________________;(2)按投影方向与投影面是否垂直:①斜投影___________________________________;②正投影____________________________________;2.斜二侧画法:(1)平面的图形的斜二测画法步骤:①____________________________________________________________.②____________________________________________________________.③____________________________________________________________.④____________________________________________________________.试一试:画水平放置的正三角形的直观图.(2)空间几何体的直观图的斜二测画法步骤:①____________________________________________________________.②____________________________________________________________.③____________________________________________________________.④____________________________________________________________.2的正方体的直观图.试一试:画棱长为cm三、数学运用例1.(1)用斜二测画法画出水平放置的正五边形的直观图例2.(1)关于斜二测画法,有说法:①互相垂直的直线的直观图一定是相互垂直的两条直线;②矩形的直观图可能是梯形;③在原来的图形中,两条线段平行且相等,则在直观图中对应的两条线段平行且相等;④平行于坐标轴的线段在直观图中仍然保持不变,4种说法中正确的是______________(2)一个水平放置的三角形的面积为4,按斜二测画法所得的直观图仍是一个三角形,这个三角形的面积是____________三、总结(1)投影;(2)斜二测画法四、课后练习1. 用斜二测画法画出空间图形的直观图时,已知图形中平行于x 轴、y 轴、z 轴的线段,在直观图分别画成________的线段,平行于x 轴的线段,在直观图中其长度为_______;平行于y 轴的线段,在直观图中其长度为_______;平行于z 轴的线段,在直观图中其长度为_______;2. 关于“斜二测”直观图的画法,下列说法中正确的是__________(1)正三角形的直观图是正三角形;(2)平行四边形的直观图是平行四边形;(3)矩形的直观图是矩形;(4)圆的直观图是圆3. 关于斜二测画法的叙述正确的是______________(1)相等的线段在直观图中仍然相等;(2)相等的角在直观图中仍然相等;(3)平行的线段在直观图中仍然平行;(4)垂直的线段在直观图中仍然垂直4. 如图,△C B A '''中,135='∠B ,2=''=''C B B A ,那么原平面图形的面积_____________________________________________.5. 画出图中水平放置的平面图形的直观图(不要求写画法).6. 如图,△C B A '''是水平放置的平面图形的直观图,试画出原平面图形△ABC .A 'B ' 图1-26 y 图1-257. 用斜二测画法画长、宽、高分别为cm 2、cm 4、cm 3的长方体的直观图.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
去掉辅助线,将被遮挡住的部分改为虚线 ,
就可得到长方体的直观图.
D
C
B
C
A
D
A
B
3、画长、宽、高分别为4cm、3cm、2cm的
长方体的直观图.
D1
z
C1
y
A1 D M A P Q
B1 C N B
o
x
规则:
(1)在已知图形中取水平平面,取互相垂直的轴ox、 oy,再取oz轴,使∠xoy=450,且∠xoz=900 ;
(2)已知图形中平行于x轴、y轴的线段,在直观 图中分别画成平行于 x ' 或轴 y'轴的线段; (3)已知图形中平行于x轴的线段,在直观图中 保持长度不变;平行于y轴的线段,长度为原来的 一半。
(1)“斜”:互相垂直的Ox、Oy轴画线 O’x’、O’y’轴,使 x' o' y' 450 或1350
2.中心投影
P19
读书
1.平行性不变,但形状、 长度、夹角会改变; 2.平行直线段或同一直线上 的两条线段的比不变; 3.在太阳光下,平行于 地面的直线在地面上的 投影长不变.
平行投影性质: 1.直线或线段的平行投影仍是直线或线段;
2. 平行直线的平行投影是平行或重合的直线;
3.在同一直线或平行直线上,两条线段平行投 影的比等于这两条线段的比.
D
C
x
N
3 连接AB,CD,EF,FA,并擦去辅助线x轴和y轴,
y
F
M
便获得正六边形ABCDEF水平放置的直观图ABCDEF
E D
C
A
y
F M E
N
A
B
O
x
B
O
D
C
x
N
3 连接AB,CD,EF,FA,并擦去辅助线x轴和y轴,
O
x
画底面.以O为中心,在x轴上取线段MN,使MN= 4 cm; 在Y轴上取线段PQ,使PQ=1.5 cm;分别过点M和N作y 轴的平行线,过点P和Q作x轴的平行线,设它们的交 点分别为A,B, C,D四边形ABCD就是长方形的底 面ABCD
Z
y
Q
M
D
O
C
A
N
B,C,D,各点分别作z轴的平行线,并在这些平行线
便获得正六边形ABCDEF水平放置的直观图ABCDEF
y
F
M
E D
C
A
B
O
x
N
斜二测画法规则:
(1)在已知图形中取互相垂直的x轴和y轴,两轴相交 于点O.画直观图时,把它们画成对应的 x '轴和 y'轴,两 轴相交于O′,且使 x ' o ' y ' 450 或1350 ,它们确定 的平面表示水平面;
“二测”:横不变,纵折半。
(2)画空间图形时,首先画与坐标轴平行的线段 (平行性不变),与坐标轴不平行的线段通过与 坐标轴平行的线段确定它的两个端点,然后连 接成线段。
平行性不变,相交及交点不变。但垂直 性会变,形状、长度、夹角也会改变;
y
C
例1 画水平放置的正三角形 的 直观图.
B
A
O
x
y`
B`
第三步 连结A`C`, B`C`, 所得 的 三 角 形A`B`C`就是正三角形 ABC的直观图 .
图1 1 29
例2.用斜二测画法画长,宽,高分别是 4cm,3cm,2cm的长方体的直观图
1 画轴.画x轴,y轴,z轴,三轴交于点O,使xOy=45 ,
xOz 90 .
Z
y
F A
M
E D
x
O
O
x'
B
N C
2 以O为中心,在X上取AD=AD,在y轴上取
1 M N= MN .以点N 为中心,画BC平行于x轴, 2 并且等于BC;再以M为中心,画EF平行于x轴, 并且等于EF.
y
y
M
F
E D
C
A
F M E
N
A
B
O
x
B
O
上分别截取2cm长的线段AA,BB,CC,DD.
D
Z
B
O
C
Q
A
y
M
D
P
C
N
B
A
x
4 成图.顺次连接A ,B,C,D,并加以整理
去掉辅助线,将被遮挡住的部分改为虚线 ,
就可得到长方体的直观图.
D
Z
B
O
C
Q
A
y
M
D
P
C
N
B
A
x
4 成图.顺次连接A ,B,C,D,并加以整理
(2)画直观图时,把它们画成对应的 o' x' , o' y' , o' z ' 轴,使 x' o' y' 450 或1350 , x' o' z' 900. x' o' y' 所确定 的平面表示水平平面;
(3)已知图形中平行于x轴、y轴或z轴的线段,在 直观图中分别画成平行于 x ' 轴 y'轴或 z '轴的线段; (4)已知图形中平行于x轴和z轴的线段,在直观 图中保持长度不变;平行于y轴的线段,长度为原 来的一半.
4.平行于投射面的线段,它的投影与这条线段 平行且等长; 5.与投射面平行的平面图形,它的投影与这个 图形全等;
用来表示空间图形的平面图形叫做空 间图形的直观图
立体几何中常用平行投影来画空 间图形的直观图,这种画法叫斜二测 画法.
例1、用斜二测画法画水平放置的正六边形 的直观图 (1)在六边形ABCDEF中,取AD所在的直线为 X轴,对称轴MN所在直线为Y轴,两轴交于点 ' ' O.画对应的 X , Y 轴,两轴相交于点O ' ,使 ' X ' OY 45 y y'
画法按如下步骤完成 : 第一步 在已知的正三角形 ABC中,
C`
45 0
A`
O`
B` x`
第二步 在x`轴上取O`A` OA, O`B` 1 OB, O`C ` OC. 2
取AB所在的直线为 x轴, 取对称轴 CO为y轴. 画对应的 x` 轴、y` 轴, 使 使x`O`y` 450.
C` A`