串联补偿电路与并联补偿电路的问题
电力系统并联补偿装置中的LC串联电路

摘要 : 在电力系统中, 并联补偿装置可以补偿 系统中的无功功率、 降低网络损耗 、 提高功率因数和电压质量。并联 电容器装置是电力系统 中 最常用的并联补偿装置, 电容器和电抗器串联连接就构成 了L C串联电路。电容器主要用于补偿系统中的感性无功 , 通常与 系统 负荷端并联连 接; 而为 了降 低 电容 器合 闸投运 过程 中的涌 流倍数 , 以及抑 制 电 网电压 波形 畸 变和控 制 流过 电容 器的谐 波分 量 , 需给 电容 器 配套 选 用 串联 电 还
・
3 4・
价值 工程
电力 系统并联 补偿装置 中的 L 串联 电路 C
LC r e r u ti t we s e r le m pe s i n vie Se is Ci c i n he Po r Sy t m Pa a llCo n ato De c
陈 春娥 ①C e h ne张 长 宇 ②Z a gC a g u hnC u '; hn h ny
抗 器。本 文在讨 论 了 L 串联 电路之 后 , 出 了与 电容 器配套 使 用的 电抗 器电抗 率的 选取 方法 。 C 提
Absr c :I 出e p we y tm,p r llc mp n ain d vc a o e s t h e cie p we n te s se tat n o rs se aa e o e s to e ie e r c mp n ae t e ra t o ri h y tm。r d c ewo k ls e n mp o e l v e u e n t r os s a d i r v p owe a tra d v l g u ly rfco n ot e q ai .Th aallc p ctrde ie i h s o a t e p l e a a i vc st e mo tc mmo a allc mp ns t n d vc s i o rs se r o n p l e o e ai e ie n p we y tm.Th e e o ne to r o es r sc n cin i o a a i r n e cos i fc p ct sa d ra tr sLC e e ic i.Ca a iosa e u e o id cie ra t e i h o e ain s se o s r scr ut i p ctr r s d t n u t e ci n te c mp nsto y tm,US al o n ce t o d sd f v v U l c n e td wi la ieo y h te s se i rallfr ,a d i r e o rd e t nus u rn li e fc p ctri h o e so lsn h a e a o rtto ,rsri h y tm n pa l o e m n n od rt e uc hei r h c re tmut so a a i n t eprc s fco ig te brk nd p wesaln etan pl o te wa eo itrin fte newok v la e a d c n rlte h r nc c mp n nt h tfo n h o g h a a io ,si e d o u e t e co o h v fr dsoto o h t r otg n o to h amo i o o e s ta wi g tr u h t e c p ctr tl n e t s he ra tr t m l l s p o h a a i rs re . i a e ic s e h u p r te c p ct e s Th sp p rds u s d teLC e iscru t h n p o o e to o sl c h e co e ca c aet u ott eu e o h t o i s re ic i,te rp s d meh d t ee tt er a trra tn ert os pp r h s fte
电力系统课后解答题答案

第一章1、电力系统的额定电压是如何定义的?电力系统中各元件的额定电压是如何确定的?答:电力系统的额定电压:能保证电气设备的正常运行,且具有最佳技术指标和经济指标的电压。
电力系统各元件的额定电压:a.用电设备的额定电压应与电网的额定电压相同。
b.发电机的额定电压比所连接线路的额定电压高5%,用于补偿线路上的电压损失。
c.变压器的一次绕组额定电压等于电网额定电压,二次绕组的额定电压一般比同级电网的额定电压高10%。
2、电力线路的额定电压与输电能力有何关系?答:相同的电力线路,额定电压越高,输电能力就越大。
在输送功率一定的情况下,输电电压高,线路损耗少,线路压降就小,就可以带动更大容量的电气设备。
3、什么是最大负荷利用小时数?答:是一个假想的时间,在此时间内,电力负荷按年最大负荷持续运行所消耗的电能,恰好等于该电力负荷全年消耗的电能。
第二章1、分裂导线的作用是什么?分裂导线为多少合适?为啥?答:在输电线路中,分裂导线输电线路的等值电感和等值电抗都比单导线线路小,分裂的根数越多,电抗下降也越多,但是分裂数超过4时,电抗的下降逐渐趋缓。
所以最好为4分裂。
2、什么叫变压器的空载试验和短路试验?这两个试验可以得到变压器的哪些参数?答:变压器的空载试验:将变压器低压侧加电压,高压侧开路。
此实验可以测得变压器的空载损耗和空载电流变压器的短路试验:将变压器高压侧加电压,低压侧短路,使短路绕组的电流达到额定值。
此实验可以测得变压器的短路损耗和短路电压。
3、对于升压变压器和降压变压器,如果给出的其他原始数据都相同,它们的参数相同吗?为啥?答:理论上只要两台变压器参数一致(包含给定的空载损耗,变比,短路损耗,短路电压),那么这两台变压器的性能就是一致的,也就是说可以互换使用,但是实际上不可能存在这样的变压器,我们知道出于散热和电磁耦等因数的考虑,一般高压绕组在底层(小电流),低压绕组在上层(大电流,外层便于散热)。
绕组分布可以导致一二次绕组的漏磁和铜损差别较大,故此无法做到升压变压器和降压变压器参数完全一致。
电容器串联并联详解-互联网类

电容器串联并联详解-互联网类关键信息项:1、电容器串联并联的定义与原理2、串联与并联的电路特点3、串联与并联对电容值的影响4、串联与并联在电路中的能量存储与释放特性5、串联与并联在实际应用中的场景与优势6、串联与并联电路的故障诊断与排除方法11 电容器串联并联的定义电容器的串联是指将多个电容器依次首尾相连,形成一个单一的电路元件。
在串联连接中,电流只有一条路径通过各个电容器。
而电容器的并联则是将多个电容器的正极与正极相连,负极与负极相连,使得每个电容器都处于相同的电压下。
111 串联的原理在电容器串联时,由于电荷在串联电路中是守恒的,所以每个电容器所带的电荷量相等。
总电压等于各个电容器电压之和。
112 并联的原理在电容器并联时,总电荷量等于各个电容器电荷量之和,而每个电容器两端的电压相等。
12 串联与并联的电路特点串联电路中,总电容值会减小,其倒数等于各个电容器电容值倒数之和。
串联电容器的分压与其电容值成反比。
在并联电路中,总电容值增大,等于各个电容器电容值之和。
并联电容器的分流与其电容值成正比。
121 串联电路的特点串联电容器能够承受更高的电压,但电容值会减小。
串联电路中的电流处处相等。
122 并联电路的特点并联电容器能够提供更大的电容值,从而存储更多的电荷。
并联电路中,各个支路的电压相等。
13 串联与并联对电容值的影响串联时,电容值减小,适用于需要提高耐压能力但对电容值要求不高的场合。
并联时,电容值增大,适用于需要增大电容存储电荷量的情况。
131 串联电容值计算通过公式 1/C 总= 1/C1 + 1/C2 ++ 1/Cn 计算串联后的总电容值。
132 并联电容值计算通过公式 C 总= C1 + C2 ++ Cn 计算并联后的总电容值。
14 串联与并联在电路中的能量存储与释放特性在串联电路中,由于总电容值减小,存储的能量相对较少,但在放电时,各个电容器的电压会依次降低,释放能量相对较平稳。
在并联电路中,由于总电容值增大,能够存储更多的能量,放电时能够提供更大的电流。
串联补偿装置与并联补偿装置兼容运行

行分析 , 目的在于逐步地完善和提高其应用水平 , 并有助于在配电系统中推广和使用串补技术¨ 。
线路末端 电压过低 的问题。串补装置装于哈工变 52 1 开关两侧 , 如图 1 所示 ; 水一至彰武沿线为 分布负荷 , 负荷分布在水一、 海州、 哈工 、 彰武4 个 站点 , 高峰负荷下 , 水彰 系统负荷潮流如图 2所
第 21 年 第 1 3 卷 2月 期 21 0
电力 P w rC pc o & R at ePw r o p nao o e aai r电容器 与无 功补偿 est n t ec v o e m i C i
V 13 o1 o.2N .
F b 2 1 .1 . e .0 1
串联 补 偿 装 置 与 并联 补 偿 装 置 兼 容 运 行
R N Qag, A GT o,I ihn WA G L F N a—e E i Y N a XEWe— eg , N i, E GJ nw i n z i ( . ia D Pw r yt o,t. ia 10 2 C ia 1X ’nX o e s m C . d, ’n70 8 , hn ; S e L X
3 线 路 损耗 较 大 。针 对上 述 问题 , 宁 省 电 ) 辽 力 公 司 选 择 了海 洲 与 彰 武 系 统 之 间 的 联 络 线 , 6 V 6k 哈沙线作为串补工程的试验线路 , 重点解决
程在辽宁省阜新电网水彰线投入运行 , 有效地提高
了线路各负荷点的电压质量。在肯定串补装置功效 的同时, 运行单位提出了串联补偿和并联补偿兼容 运行的问题, 原因是在线路末端投入大量的并联补 偿装置影响了串联补偿的电压提升效果。 本文将针对此问题 , 分别对 串联补偿 、 并联补 偿和串联 + 并联补偿的应用效果 以及相互影响进
三相电容的补偿原理

三相电容的补偿原理
三相电容的补偿原理主要包括:
1. 串联电容补偿:在三相电源输出端串联连接具有合适电容值的电容,使其产生的电容电抗与线路的感抗相抵消,从而提高功率因数。
2. 并联电容补偿:在三相负载端并联连接具有合适电容值的电容,使其向电源端呈现出等效的感性负载特性,从而提高功率因数。
3. 串-并联复合补偿:同时采用串联和并联两种补偿方式,通过两者共同作用实现对三相电路的补偿调节,适用于复杂负载情况。
4. 无源固定补偿:电容电抗值固定,补偿效果会随负载变化而改变。
5. 有源可控补偿:通过智能控制系统实时检测功率因数并相应调节电容的值,实现更优的补偿效果。
6. 分相补偿:分别对各相进行独立的电容补偿,增强对不平衡负载的适应性。
合理采用补偿方式,能显著提升三相电路中功率因数,减少线路损耗。
用并联电容器补偿无功功率的原理及相关方法

用并联电容器补偿无功功率的原理及相关方法无功补偿的原理:电网输出的功率包括两部分;一是有功功率;二是无功功率.直接消耗电能,把电能转变为机械能,热能,化学能或声能,利用这些能作功,这部分功率称为有功功率;不消耗电能;只是把电能转换为另一种形式的能,这种能作为电气设备能够作功的必备条件,并且,这种能是在电网中与电能进行周期性转换,这部分功率称为无功功率,如电磁元件建立磁场占用的电能,电容器建立电场所占的电能.电流在电感元件中作功时,电流超前于电压90℃.而电流在电容元件中作功时,电流滞后电压90℃.在同一电路中,电感电流与电容电流方向相反,互差180℃.如果在电磁元件电路中有比例地安装电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能作功的能力,这就是无功补偿的道理.集中补偿电容器作为补偿装置有两种方法:串联补偿和并联补偿。
串联补偿是把直接串联到高压输电线路上,以改善输电线路参数,降低电压损失,提高其输送能力,降低线路损耗。
这种补偿方法的电容器称作串联电容器,应用于高压远距离输电线路上,用电单位很少采用。
并联补偿是把电容器直接与被补偿设备并接到同一电路上,以提高功率因数。
这种补偿方法所用的电容器称作并联电容器,用电企业都是采用这种补偿方法。
按电容器安装的位置不同,通常有三种方式。
1.集中补偿电容器组集中装设在企业或地方总降压变电所的6~10kV母线上,用来提高整个变电所的功率因数,使该变电所的供电范围内无功功率基本平衡。
可减少高压线路的无功损耗,而且能够提高本变电所的供电电压质量。
2.分组补偿将电容器组分别装设在功率因数较低的车间或村镇终端所高压或低压母线上,也称为分散补偿。
这种方式具有与集中补偿相同的优点,仅无功补偿容量和范围相对小些。
但是分组补偿的效果比较明显,采用得也较普遍。
3.就地补偿将电容器或电容器组装设在异步或电感性用电设备附近,就地进行无功补偿,也称为单独补偿或个别补偿方式。
电力系统分析(下)2020第1学期作业-华工网络教育

《电力系统分析(下)》作业一、简答题1、采用分裂导线可以提高系统的静态稳定性吗?为什么?答:可以,因为采用分裂导线可以减小输电线路的电抗,可提高系统的传输功率极限,提高系统的静差稳定性。
2、为什么系统的有功电源的出力要留有适量的备用?如何进行主调频电厂的选择?答:系统的有功电源的出力要留有适量的备用的理由:(1)计算负载和实际负载的误差;(2)实际负载的过负荷运行;(3)变压器制造时容量误差;(4)为今后负载增加留有余度。
由于调频发电厂承担电网的频率调整任务,因此选择调频厂应考虑一下情况:(1)应有足够的调整容量和调整范围,以满足电网最大的负荷增、减变量需要。
(2)调频机组具有与负荷变化速度相适应的较快的调整速度,以适应电网负荷增、减最快的速度需要。
(3)机组具备实现自动频率的条件和电网中所处的位置及其与电网联络通道的输送能力。
(4)调整机组的有功功率时,应负荷安全和经济运行的原则。
(5)某些中枢点的电压波动不得超出允许范围。
(6)对联合电网,还要考虑由于频率而引起连路线上交换功率的波动是否超出允许范围。
3、PQ分解法的分解依据是什么?为什么PQ分解法较牛顿法的计算速度快?答:PQ分解法是由极坐标形式的牛顿法演化而来,以有功功率作为修正电压向量角度的依据,以无功功率作为修正电压幅值的依据,把有功功率和无功功率迭代分开进行。
PQ分解法较牛顿法的计算速度快的原因:(1)pq分解法用两个对角矩阵代替了以前的大矩阵,储存量小了;(2)矩阵是不变系数的,代替了牛顿法变系数矩阵,计算量小了;(3)pq分解法矩阵是对称矩阵,牛顿法是不对称矩阵;(4)pq分解法单次运算速度很快,但是计算是线性收敛,迭代次数增加;牛顿法单次运算很慢,但是平方收敛。
总体来看,pq分解法的速度要快于牛顿法。
4、简述电网电压运行水平和线损的关系,并说明为什么。
答:电网电压运行中,提高运行电压可以降低。
电压对线损的影响是直接的,负荷引起的损耗(线损和变压器铜损)与电压平方成反比,而变压器铁损与电压平方成正比。
串联补偿电路与并联补偿电路的问题

串联补偿电路与并联补偿电路的问题研究引言:无功补偿的两大类型手段,串联补偿与并联补偿, 基于对以上两种无功补偿电路的理解,我们来研究一下串联补偿电路中补偿电路的继电保护问题,并提出保护电路的方案,同时来讨论一下并联补偿与串联补偿的兼容性问题。
1串补电容对线路保护的影响1.1补偿原理串联补偿:通过在线路这种串联电容器(一般长距离输电线路呈感性),改变线路的阻抗特性,从而达到传输的目标。
串联补偿电容器对输电线路的控制是直接的,提供了很强的纵向潮流控制能力。
同时提供了无功补偿。
并联补偿:通过在线路这种并联电容器(或电抗器),通过电容器(或电抗器)向系统产生(或吸收无功功率)。
从而改善潮流分布的目标。
并联电容器向连接的节点提供无功功率,与补偿点相连的所有都将受到不可控的影响,尽管并联补偿是一种很好的电压控制方式,但对系统的纵向潮流控制能力较弱。
1.2串联补偿电路对继电保护向量的影响 1.2.1电压反相通常在非串补线路上,电源流出的短路电流落后于电源电势,母线电压与电源电势基本同相。
但在串补系统中,如从电源到保护安装处的感抗大于容抗,当靠近串补处发生故障时(如图1-1中F1点故障),将导致加在继电器上的电压相位和电源电势相差180°,即保护丈量的电压将发生反向。
在故障序网图中,也会发生电压反向。
图1-1 简易的串联补偿电路系统间隔保护或方向保护的电流方向不会因串补而改变。
这种电压方向的变化将对保护动作的正确性产生影响,但对不以丈量故障电压为参考量的保护(如电流差动保护),则不会造成影响。
1.2.2电流反向在串补线路上,以线路始端母线电压为基准,线路短路电流可能超前于电势,相位变化约180°,即发生电流反向。
当电源负序阻抗小于电容容抗时,保护测得的负序电流也将反方向。
以电流为参考量的保护,如间隔保护、方向保护、电流差动保护,在电流发生反向时,正常的选择性将受到影响。
1.3串联补偿电容对典型继电保护的影响 1.3.1串联补偿电容对间隔保护的影响当串补电容器的保护MOV将串补电容旁路时,间隔保护自然适应,故以下主要讨论串补电容不被旁路的情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
串联补偿电路与并联补偿电路的问题研究引言:无功补偿的两大类型手段,串联补偿与并联补偿, 基于对以上两种无功补偿电路的理解,我们来研究一下串联补偿电路中补偿电路的继电保护问题,并提出保护电路的方案,同时来讨论一下并联补偿与串联补偿的兼容性问题。
1串补电容对线路保护的影响1.1补偿原理串联补偿:通过在线路这种串联电容器(一般长距离输电线路呈感性),改变线路的阻抗特性,从而达到传输的目标。
串联补偿电容器对输电线路的控制是直接的,提供了很强的纵向潮流控制能力。
同时提供了无功补偿。
并联补偿:通过在线路这种并联电容器(或电抗器),通过电容器(或电抗器)向系统产生(或吸收无功功率)。
从而改善潮流分布的目标。
并联电容器向连接的节点提供无功功率,与补偿点相连的所有都将受到不可控的影响,尽管并联补偿是一种很好的电压控制方式,但对系统的纵向潮流控制能力较弱。
1.2串联补偿电路对继电保护向量的影响 1.2.1电压反相通常在非串补线路上,电源流出的短路电流落后于电源电势,母线电压与电源电势基本同相。
但在串补系统中,如从电源到保护安装处的感抗大于容抗,当靠近串补处发生故障时(如图1-1中F1点故障),将导致加在继电器上的电压相位和电源电势相差180°,即保护丈量的电压将发生反向。
在故障序网图中,也会发生电压反向。
图1-1 简易的串联补偿电路系统间隔保护或方向保护的电流方向不会因串补而改变。
这种电压方向的变化将对保护动作的正确性产生影响,但对不以丈量故障电压为参考量的保护(如电流差动保护),则不会造成影响。
1.2.2电流反向在串补线路上,以线路始端母线电压为基准,线路短路电流可能超前于电势,相位变化约180°,即发生电流反向。
当电源负序阻抗小于电容容抗时,保护测得的负序电流也将反方向。
以电流为参考量的保护,如间隔保护、方向保护、电流差动保护,在电流发生反向时,正常的选择性将受到影响。
1.3串联补偿电容对典型继电保护的影响 1.3.1串联补偿电容对间隔保护的影响当串补电容器的保护MOV将串补电容旁路时,间隔保护自然适应,故以下主要讨论串补电容不被旁路的情况。
对于图1-1中F1点故障,线路保护继电器的丈量电压取自母线侧电压互感器(TV)。
当|XC|<|ZS|时(XC为电容器容抗,ZS为保护安装处到S端电源的阻抗),电压发生反向,无记忆的姆欧继电器与以有限记忆为极化量的可变姆欧继电器的动作特性如图2-1(a),区内故障时,可变姆欧继电器在动态期间能动作,在稳态期间不能动作。
当|XC|>|ZS|时,电流发生反向,姆欧继电器与可变姆欧继电器的动作特性如图2-1(b),区内故障时,可变姆欧继电器在动态期间与稳态期间均不能动作。
a.|XC|<|ZS|b.|XC|<|ZS|图2-1 F1点短路时,MN线路M侧保护动作特性.注:图中阴影为电抗器动作边界,阴影区为非动作区对于串补相邻线路,如图1中F1处故障,MP线路的M侧的保护丈量的电压发生反向。
设MP线路M侧保护继电器的整定阻抗为ZY′,当|XC|<|ZY′|时,姆欧继电器与可变姆欧继电器的动作特性如图3(a),可见,对于反方向故障,可变姆欧继电器在稳态时误动作,在动态时不动作。
当|XC|>|ZY′|时,姆欧继电器与可变姆欧继电器的动作特性如图3(b),可见,对于区外故障,可变姆欧继电器在动态时会误动,在稳态时不动作。
对于串补相邻线路,如图1中F1处故障,MP线路的M侧的保护丈量的电压发生反向。
设MP线路M侧保护继电器的整定阻抗为ZY′,当|XC|<|ZY′|时,姆欧继电器与可变姆欧继电器的动作特性如图2-2(a),可见,对于反方向故障,可变姆欧继电器在稳态时误动作,在动态时不动作。
当|XC|>|ZY′|时,姆欧继电器与可变姆欧继电器的动作特性如图2-2(b),可见,对于区外故障,可变姆欧继电器在动态时会误动,在稳态时不动作。
a.|XC|<|ZY′|b.|XC|<|ZY′|图2-2 F1点短路时,MP线路M侧保护动作特性。
注:图中阴影为电抗器动作边界,阴影区为非动作区。
1.2.2对负序继电器及方向保护的影响假设在图1-1中F1点发生不对称短路。
若MN线路M侧保护继电器丈量电压取自线路TV,在负序网络中,当|Z2S|>|X2C|时,I2J超前U2J,负序方向继电器动作,但是当|Z2S|<|X2C|时,出现了电流反向,I2J 落后于U2J,负序继电器不动作。
当保护继电器丈量电压取自母线TV时,不论是否出现电流反向,负序方向继电器都动作,与串补电容无关。
对于图1中MP线路M侧的保护,当F2点短路,保护的动作决定于串补线路及R端电源的总阻抗与串补容抗的相对大校。
2串补线路保护动作原理2.1间隔保护设置电平检测器对于图1-1中的MN线路N侧的保护,如不采取其他措施,保护整定范围通常为(80%~90%)(XNM-XC)。
GE公司提出设置一个电平门槛检测器,将间隔保护的整定范围设为90%XNM,保护动作输出由间隔保护与电平检测器“与门”输出,构成过电流/间隔保护组合。
原理上电平检测器检测IZ-V的值,其中Z为电平检测器整定范围,V为继电器电压。
设Z整定为XNM,考虑在M母线出口故障,串补电容不被MOV旁路的情况,整定门槛值PL=IXNM-I(XNM-Xt)=IXt,Xt 为串补电容与MOV的并联值。
当串补电容被旁路时,电平检测器的检测电压为IXt′,Xt′为串补电容与MOV导通后的并联值,显然Xt′<xt,故不动作。
2.2工频变化量间隔保护在增加一电抗型继电器图2-1、图2-2示出了可变姆欧、姆欧、电抗器线以及工频变化量间隔保护的动作特性。
工频变化量动作方程为:|ΔUop|>Uz</xt,故不动作。
对接地故障:Uop=U-(I+3KI0)Zzd对相间故障:Uop=U-IZzd其中U为相间电压;I为相间电流;Zzd 为整定阻抗,Zzd取(80%~90%)(ZL-XC);I0为零序电流;K为零序电流补偿系数;Uz 为整定门槛,取故障前工作电压的记忆量。
可变姆欧继电器:90o<argU bcU bc−Z Y I bc<270o电抗型继电器:90o<U bc−Z Y I bcI bc<360O根据图2-1,2-2,得出以下结论见表1。
表1 各种保护动作特性由此,工频变化量间隔保护可借助电抗器根据上述结论来构成其保护的逻辑。
2.3方向保护中的补偿以负序方向为例,分析MN线M侧的保护。
在图1-1中,若正方向F1点故障,假设保护接线路TV,补偿前V2=-I2ZJ,ZJ为TV背后的等效负序阻抗,ZJ=ZS-XC。
当电容被旁路时,ZJ=ZS,为感抗特性;当电容不被旁路时,如ZS<z′|ZS-XC|,故在ZS<|xc|,故zr′-z′阻抗性质不变,保护丈量电压仍为反方向。
对于PM线M侧的保护,在图1-1中,若正方向F2点故障,V2=-(ZR′-XC)I2,由于ZL>|XC|,保护丈量电压为正方向。
若反方向F1点故障,V2=ZSI2,当XC>ZS时,出现电流反向的情况,同时也出现电压反向的情况,保护丈量电压仍为反方向,故保护均能正确动作。
<|xc|,故zr′-z′阻抗性质不变,保护丈量电压仍为反方向。
3串联补偿和并联补偿的调压作用3.1串联补偿的调压原理在分布负荷下,线路各段的电压损失取决于线路各段的阻抗和通过负荷潮流,各端电压损失为:式中:r l为线路电阻;x l为线路电抗;P为线路输送的有功功率;Q为线路输送的无功功率;j为线路各段富康的下标;i为线路各段电压、电阻和电抗的下标。
投入串联补偿后,各端电压损失为:从式中可以看出,串联补偿的投入,是线路的电抗变x l−x c,尤其在过补偿条件下,所在线路段将形成负电压降落,因此使得串联不愁的电压上翘。
还可以看出,串联补偿提高电压的作用与线路传输的无功功率有关,线路传输的无功越小,其补偿效果越弱。
3.2并联补偿的调压原理并联电容器通过减少线路传输的无功功率减少线路电压损失,从而起到提高受端电压的作用,线路损失为:式中,Q c为并联补偿容量从式中可以看出,并联补偿的投入,使线路的传输的无功功率由Q减少至Q−Q C,因此,减少了线路电压的损失。
与串联补偿不同,串联补偿装置通常与负荷并联,就地提供所需的无功功率,并联提高电压的作用于线路电抗值有关,线路电抗值越小,其补偿效果越好。
3.3串联补偿与并联补偿同时运行效果串联补偿和并联补偿欧诺同时运行时,模拟沿线电压分布如图3-1所示。
图3-1 串联补偿和并联补偿前后电压分布图从图中可以看出,串联补偿的作用减小了线路电抗,由此降低了线路电压损失。
在线路阻性分布较大时,串联补偿恤采用过补偿方式,在这种补偿状态下,容性阻抗通过感性电流引起的电压升为负值,可以抵消部分电压损失产生的电压上翘的结果,并联补偿投入的情况下,电路的无功功率减少了。
4结论根据以上的讨论分析,我们可以得出如下建议和结论:1.从保护原理上看,对间隔保护增加一电平检测器可防止保护超越,并能进步保护动作范围。
2.工频变化量间隔保护增加一电抗型继电器线,对保证保护的方向性是很有效果的。
3.方向保护的方向性与保护丈量电压取用线路TV位置有关,但对丈量电压取用电容器外侧TV进行补偿的方向保护,能够正确判定保护的方向性。
4.从调压的观点看待串补与并补的作用是相互抵消的,受端电压的补偿效果将会受到影响,这一类问题将是今后串补并补应用中的共性问题。