X射线衍射法测定高岭石合成的NaY分子筛物相组成及结晶度分析

合集下载

材料分析基础实验报告之X射线衍射(XRD)物相分析

材料分析基础实验报告之X射线衍射(XRD)物相分析

实验一 X射线衍射仪的结构与测试方法一、实验目的1、掌握X射线衍射的基本原理;2、了解X射线衍射仪的基本结构和操作步骤;3、掌握X射线衍射分析的样品制备方法;4、了解X射线的辐射及其防护方法二、实验原理根据晶体对X射线的衍射特征-衍射线的位置、强度及数量来鉴定结晶物质之物相的方法,就是X射线物相分析法。

每一种结晶物质都有各自独特的化学组成和晶体结构.没有任何两种物质,它们的晶胞大小、质点种类及其在晶胞中的排列方式是完全一致的。

当X射线波长与晶体面间距值大致相当时就可以产生衍射。

因此,当X射线被晶体衍射时,每一种结晶物质都有自己独特的衍射花样,它们的特征可以用各个衍射晶面间距d和衍射线的相对强度I/I1来表征。

其中晶面间距d与晶胞的形状和大小有关,相对强度则与质点的种类及其在晶胞中的位置有关。

所以任何一种结晶物质的衍射数据d和I/I1是其晶体结构的必然反映,因而可以根据它们来鉴别结晶物质的物相。

三、实验设备丹东方圆仪器有限公司的D2700型X射线粉末衍射仪一台;玛瑙研体一个;化学药品或实际样品若干(Li4Ti5O12)。

四、实验内容1、采用玛瑙研体研磨样品,在玻璃样品架上制备一个合格试验样品;2、选择合适的试验参数,获得XRD图谱一张;3、理解样品、测试参数与XRD图谱特征的关系。

五、实验步骤1、开机1)打开总电源2)启动计算机3)将冷却水循环装置的机箱上的开关拨至运行位置,确认冷却水系统运行,水温正常(19-22℃);4)按下衍射仪ON绿色按键打开衍射仪主机开关5)启动高压部分(a)必须逐渐提升高压,稳定后再提高电流。

电压不超过40kV,管电流上限是40mA,一般为30mA。

(b)当超过4天未使用X光管时,必须进行光管的预热.在25kV高压,预热10分钟;30kV,预热5分钟;35kV,预热5分钟。

(c)预热结束关机后,至少间隔30分钟以上方可再次开机实验. 6)将制备好的样品放入衍射仪样品台上;7)关好衍射仪门。

X射线衍射法分析聚合物晶体结构

X射线衍射法分析聚合物晶体结构

实验16 X射线衍射法分析聚合物晶体结构1. 实验目的(1)掌握X射线衍射分析的基本原理。

(2)学习X射线衍射仪的操作与使用。

(3)对多晶聚丙烯进行X射线衍射测定。

(4)对实验结果进行处理,计算结晶度和晶粒度,并进行相分析。

2. 实验原理(1)X射线衍射基本原理X射线衍射基本原理是当一束单色X射线入射到晶体时,由于晶体是由原子有规则排列的晶胞所组成,而这些有规则排列的原子间距离与入射X射线波长具有相同数量级,迫使原子中的电子和原子核成了新的发射源,向各个方向散发X射线,这是散射,不同原子散射的X射线相互干涉叠加,可在某些特殊的方向上产生强的X射线,这种现象称为X射线衍射。

每一种晶体都有自己特有的化学组成和晶体结构。

晶体具有周期性结构,如图2-9所示。

一个立体的晶体结构可以看成是一些完全相同的原子平面网按一定的距离d平行排列而成,也可看成是另一些原子平面按另一距离d’平行排列而成。

故一个晶体必存在着一组特定的d值(如图2-9中的d,d’,d’’,…)。

结构不同的晶体其d值都不相同。

因此,当X 射线通过晶体时,每一种晶体都有自己特征的衍射花样,其特征可以用衍射面间距d和衍射光的相对强度来表示。

面间距d与晶胞的大小、形状有关,相对强度则与晶胞中所含原子的种类、数目及其在晶胞中的位置有关。

可以用它进行相分析,测定结晶度、结晶取向、结晶粒度、晶胞参数等。

图2-9 原子在晶体中的周期性排列图2-10 原子面网对X射线的衍射假定晶体中某一方向上的原子面网之间的距离为d,波长为λ的X射线以夹角θ射入晶体(如图2-10所示)。

在同一原子面网上,入射线与散射线所经过的光程相等;在相邻的两个原子面网上散射出来的X射线有光程差,只有当光程差等于入射波长的整数倍时,才能产生被加强了的衍射线,即:θnλ2(2-7)d=sin这就是布拉格(Bragg)公式,式中n是整数。

知道了入射X射线的波长和实验测得了夹角,就可以算出等周期d。

硅铝比、结晶度的测定

硅铝比、结晶度的测定

X 射线衍射法测定高岭石合成的NaY 分子筛物相组成、结晶度、晶胞参数及硅铝比研究程 群*(北京普析通用仪器有限责任公司 北京 100081)摘要:由高岭石合成的NaY 分子筛经如下处理:将试样放入玛瑙研钵中充分研细,经120℃,1小时烘干,然后置于氯化钙过饱和水溶液气氛中(室温20~30℃)吸水16至24小时;将处理后试样照X 射线衍射仪(XRD)进行测定,分析其物相组成、结晶度、晶胞参数及硅铝比。

该方法测得的NaY 分子筛各参数,比通常采用的化学分析方法省时、简便、重复性好,并为高岭石合成NaY 分子筛提供了有效的理论依据,从而可以及时监控合成NaY 分子筛的生产过程,降低了NaY 分子筛生产成本。

关键词:X 射线衍射仪;NaY 分子筛;物相组成;结晶度;晶胞参数;硅铝比Study on Determining Composition, crystallinity, cell parameter and ratio of silicate to aluminium of Zeolite NaY treated from kaolinite by X-rayDiffractometerAbstract: In this paper, Zeolite NaY treated from kaolinite continued to be treated, such as ground in the agate mortar , dried in 120℃ for an hour, damped in the surroundings of supersaturated calcium chloride solution(room temperature from 20℃ to 30℃) for 16 to 24 hours, The treated Zeolite NaY was determined by X-ray diffractometer, the Composition, crystallinity, cell parameter and ratio of silicate to aluminium of Zeolite NaY was analyzed. The Analytical result showed the feasibility of synthesizing Zeolite NaY from kaolinite, Then the cost is obviously reduced. Keywords: X-ray diffractometer ;Zeolite NaY ;Composition ;crystallinity ;cell parameter ;ratio of silicate to aluminium1 引言Hewell 等人首先利用高岭土矿物合成NaA 沸石以来,引起了国内外学者对以天然矿物合成NaY 沸石方法的广泛重视[1-3],而且矿物原料来源丰富,降低了成本,所以其在矿物合成NaY 沸石中,占有重要的地位。

NaCl单晶X射线衍射谱图的物相分析

NaCl单晶X射线衍射谱图的物相分析

NaCl单晶X射线衍射谱图的物相分析摘要:通过对X射线衍射的深入理解,晶体可以作为X射线的空间衍射光栅,即当一束X射线通过晶体时将发生衍射,衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。

分析在照相底片上得到的衍射花样,便可确定晶体结构。

当X射线波长λ已知时(选用固定波长的特征X射线),采用细粉末或细粒多晶体的线状样品,可从一堆任意取向的晶体中,从每一θ角符合布拉格方程条件的反射面得到反射,测出θ后,利用布拉格方程即可确定点阵晶面间距、晶胞大小和类型;根据衍射线的强度,还可进一步确定晶胞内原子的排布。

而在测定单晶取向的劳厄法中所用单晶样品保持固定不变动(即θ不变),以辐射束的波长作为变量来保证晶体中一切晶面都满足布拉格方程的条件,故选用连续X射线束。

如果利用结构已知的晶体,则在测定出衍射线的方向θ后,便可计算X射线的波长,从而判定产生特征X射线的元素。

关键词:X射线衍射单晶衍射物相分析1895年德国科学家伦琴(W.C.R?ntgen)在用克鲁克斯管研究阴极射线时,发现了一种人眼不能看到,但可以使铂氰化钡屏发出荧光的射线,称为X射线。

X射线具有很强的穿透物质的本领。

X射线在电场磁场中不偏转,说明X 射线是不带电的粒子流。

1912年劳厄(M.V on Laue)等人发现了X射线在晶体中的衍射现象,才证实了X射线本质上是一种波长很短的电磁辐射,其波长约为10nm到10-2nm之间。

由于X射线波长与晶体中原子间的距离为同一数量级,至今它仍然是研究晶体结构的有力工具。

通过这次我们进行对NaCl单晶X射线衍射谱图的物相分析实验,主要是为了了解X射线的产生、特点和应用;以及了解X射线管产生连续X射线谱和特征X射线谱的基本原理;最后研究了X射线在NaCl单晶上的衍射,并通过测量X射线特征谱线的衍射角测定X射线的波长和晶体的晶格常数以及晶胞参数。

本次实验中用到的仪器是Y-4Q型X射线衍射仪,另外还用到了粉末压片、研钵、药匙、试剂瓶,主要的实验试剂为食盐颗粒。

六:X-射线衍射法进行物相分析

六:X-射线衍射法进行物相分析

X-射线衍射法进行物相分析20104001032 黄妙菲 10新能源班【实验目的】学习了解X射线衍射仪的结构和工作原理;掌握X射线衍射物相定性分析的方法和步骤;给定实验样品,设计实验方案,做出正确分析鉴定结果。

【实验原理】根据晶体对X射线的衍射特征-衍射线的位置、强度及数量来鉴定结晶物质之物相的方法,就是X射线物相分析法。

每一种结晶物质都有各自独特的化学组成和晶体结构。

没有任何两种物质,它们的晶胞大小、质点种类及其在晶胞中的排列方式是完全一致的。

因此,当X射线被晶体衍射时,每一种结晶物质都有自己独特的衍射花样,它们的特征可以用各个衍射晶面间距d和衍射线的相对强度I/I0来表征。

其中晶面间距d与晶胞的形状和大小有关,相对强度则与质点的种类及其在晶胞中的位置有关。

所以任何一种结晶物质的衍射数据d和I/I0是其晶体结构的必然反映,因而可以根据它们来鉴别结晶物质的物相。

χ-射线衍射是研究药物多晶型的主要手段之一,它有单晶法和粉末χ-射线衍射法两种。

可用于区别晶态与非晶态、混合物与化合物。

可通过给出晶胞参数,如原子间距离、环平面距离、双面夹角等确定药物晶型与结构。

粉末法研究的对象不是单晶体,而是许多取向随机的小晶体的总和。

此法准确度高,分辨能力强。

每一种晶体的粉末图谱,几乎同人的指纹一样,其衍射线的分布位置和强度有着特征性规律,因而成为物相鉴定的基础。

它在药物多晶的定性与定量方面都起着决定性作用。

当χ-射线(电磁波)射入晶体后,在晶体内产生周期性变化的电磁场,迫使晶体内原子中的电子和原子核跟着发生周期振动。

原子核的这种振动比电子要弱得多,所以可忽略不记。

振动的电子就成为一个新的发射电磁波波源,以球面波方式往各个方向散发出频率相同的电磁波,入射χ-射线虽按一定方向射入晶体,但和晶体内电子发生作用后,就由电子向各个方向发射射线。

当波长为λ的χ-射线射到这族平面点阵时,每一个平面点阵都对χ-射线产生散射,如图1。

X衍射仪分析Y型分子筛的影响因素

X衍射仪分析Y型分子筛的影响因素

X衍射仪分析Y型分子筛的影响因素王建东;赵利桃;陈时辉;蒋邦开;伍欣华【摘要】以Y型分子筛为研究对象, 针对其强吸水性的特点, 考察了不同条件下对其结晶度和晶胞常数的影响.结果表明, 在(110±5) ℃的恒温条件下加热2 h, 取出放在干燥器中冷却10 min后, 并保持室内温度高、湿度低, 并把样品压制成平整光滑的样片进行测量最准确, 其硅铝比检测必须保证24 h以上吸水的稳化处理后再进行检测.%Effects of testing conditions on the crystallinity and cell constants of Y molecular sieve possessing strong water absorption characteristics had been investigated.The results showed that measurement was accurate when samples were heated at (110±5) ℃ for 2 h, then cooled down for 10 min in dryer, and pressed into smooth flat at high room temoerature and low humidity.The determination of silicon to aluminum ratio was measured after more than 24 h stabilization of water absorption.【期刊名称】《工业催化》【年(卷),期】2018(026)012【总页数】4页(P77-80)【关键词】催化剂工程;Y型分子筛;结晶度;硅铝比【作者】王建东;赵利桃;陈时辉;蒋邦开;伍欣华【作者单位】中国石化催化剂长岭分公司,湖南岳阳 414012;中国石化催化剂长岭分公司,湖南岳阳 414012;中国石化催化剂长岭分公司,湖南岳阳 414012;中国石化催化剂长岭分公司,湖南岳阳 414012;中国石化催化剂长岭分公司,湖南岳阳414012【正文语种】中文【中图分类】TQ426.6;TQ424.25Y型分子筛结晶度和晶胞常数是量化催化剂的重要指标。

X射线物相分析实验报告

X射线物相分析实验报告

实验X射线物相分析1.了解X射线衍射仪的结构及工作原理。

2.掌握X射线衍射物相定性分析的原理、实验方法以及物相检索方法。

二、实验原理当一束单色X射线照射到某一结晶物质上,由于晶体中原子的排列具有周期性,当某一层原子面的晶面间距d与X射线入射角之间满足布拉格(Bragg)方程:2d sin = (为入射X射线的波长)时,就会产生衍射现象。

X射线物相分析就是指通过比较结晶物质的X射线衍射花样来分析待测试样中含有何种或哪几种结晶物质(物相)。

任何一种结晶物质都有自己特定的结构参数,即点阵类型、晶胞大小、晶胞中原子或离子的数目、位置等等。

这些结构参数与X射线的衍射角和衍射强度I 有着对应关系,结构参数不同则X射线衍射花样也各不相同。

因此,当X射线被晶体衍射时,每一种结晶物质都有自己独特的衍射花样,不存在两种衍射花样完全相同的物质。

通常用表征衍射线位置的晶面间距d(或衍射角2)和衍射线相对强度I的数据来代表衍射花样,即以晶面间距d为横坐标,衍射相对强度I为纵坐标绘制X射线衍射图谱。

目前已知的结晶物质有成千上万种。

事先在一定的规范条件下对所有已知的结晶物质进行X射线衍射,获得一套所有结晶物质的标准X射线衍射图谱(即d-I数据),建立成数据库。

当对某种材料进行物相分析时,只需要将其X射线衍射图谱与数据库中的标准X射线衍射图谱进行比对,就可以确定材料的物相,如同根据指纹来鉴别人一样。

各种已知物相X射线衍射花样的收集、校订和编辑出版工作目前由国际性组织“粉末衍射标准联合委员会(JCPDS)”负责,每一种物相的X射线衍射花样制成一张卡片,称为粉末衍射卡,简称PDF卡,或称JCPDS卡。

通常的X射线物相分析即是利用PDF卡片进行物相检索和分析。

当多种结晶物质同时产生衍射时,其衍射花样也是各种物质自身衍射花样的机械叠加——它们相互独立,不会相互干涉。

逐一比较就可以在重叠的衍射花样中剥离出各自的衍射花样,分析标定后即可鉴别出各自物相。

X射线衍射的定量物相分析---精品管理资料

X射线衍射的定量物相分析---精品管理资料

摘要X射线在晶体中的衍射,实质上是大量原子散射波互相干涉的结果。

每种晶体所产生的衍射花样都是其内部原子分布规律的反映.研究X射线衍射,可归结为衍射方向和衍射强度两方面问题。

衍射方向由晶胞大小、晶胞类型和位向等因素决定,衍射强度主要与原子类型及其在晶胞中位置有关。

本文简单介绍了X射线衍射物相定量分析的基本原理以及几种典型的分析方法,即直接对比法、内标法和外标法。

0、引言X射线衍射物相定量分析已被广泛应用于材料科学与工程的研究中.X射线衍射物相定量分析有内标法、外标法、绝热法、增量法、无标样法、基本冲洗法和全谱拟合法等常规分析方法。

内标法、绝热法和增量法都需要在待测样品中加入参考标相并绘制工作曲线,如果样品含有物相较多,谱线较复杂,再加入参考标相会进一步增加谱线的重叠机会,给定量分析带来困难。

无标样法、基本冲洗法和全谱拟合法等分析方法,虽然不需要配制一系列内标标准物质和绘制标准工作曲线,但需要烦琐的数学计算,其实际应用也受到了一定限制.外标法虽然不需要在样品中加入参考标相,但需要用纯的待测物质制作工作曲线,这在实际应用中也是极为不便的。

1、X射线定量物相分析的基本原理物相分析与化学分析方法不同,化学分析仅仅是获得物质中的元素组分,物相分析则是得到这些元素所构成的物相,而且物相分析还是区分相同物质同素异构体的有效方法.X射线定量物相分析,是在已知物相类别的情况下,通过测量这些物相的积分衍射强度,来测算它们的各自含量。

多相材料中某相的含量越多,则它的衍射强度就越高.但由于衍射强度还受其它因素的影响,在利用衍射强度计算物相含量时必须进行适当修正.定量分析的依据,是物质中各相的衍射强度.设试样是由n 个相组成的混合物,则其中第j 相的衍射相对强度可表示为式中(2μl )-1对称衍射即入射角等于反射角时的吸收因子,μl 试样平均线吸收系数,V 试样被照射体积,V c 晶胞体积,P 多重因子,|F|2结构因子,L p 角因子,e—2M 温度因子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

X射线衍射法测定高岭石合成的NaY分子筛物相组成、结晶度、晶胞参数及硅铝比研究程群*(北京普析通用仪器有限责任公司北京100081)摘要:由高岭石合成的NaY分子筛经如下处理:将试样放入玛瑙研钵中充分研细,经120℃,1小时烘干,然后置于氯化钙过饱和水溶液气氛中(室温20~30℃)吸水16至24小时;将处理后试样照X射线衍射仪(XRD)进行测定,分析其物相组成、结晶度、晶胞参数及硅铝比。

该方法测得的NaY分子筛各参数,比通常采用的化学分析方法省时、简便、重复性好,并为高岭石合成NaY分子筛提供了有效的理论依据,从而可以及时监控合成NaY分子筛的生产过程,降低了NaY分子筛生产成本。

关键词:X射线衍射仪;NaY分子筛;物相组成;结晶度;晶胞参数;硅铝比Study on Determining Composition, crystallinity, cell parameter and ratio of silicate to aluminium of Zeolite NaY treated from kaolinite by X-rayDiffractometerAbstract: In this paper, Zeolite NaY treated from kaolinite continued to be treated, such as ground in the agate mortar , dried in 120℃ for an hour, damped in the surroundings of supersaturated calcium chloride solution(room temperature from 20℃to 30℃) for 16 to 24 hours, The treated Zeolite NaY was determined by X-ray diffractometer, the Composition, crystallinity, cell parameter and ratio of silicate to aluminium of Zeolite NaY was analyzed. The Analytical result showed the feasibility of synthesizing Zeolite NaY from kaolinite, Then the cost is obviously reduced.Keywords: X-ray diffractometer;Zeolite NaY;Composition;crystallinity;cell parameter;ratio of silicate to aluminium1 引言Hewell等人首先利用高岭土矿物合成NaA沸石以来,引起了国内外学者对以天然矿物合成NaY沸石方法的广泛重视[1-3],而且矿物原料来源丰富,降低了成本,所以其在矿物合成NaY沸石中,占有重要的地位。

本文中,研究了XRD测定由高岭石合成产物结晶度、晶胞参数及硅铝比,为高岭石合成NaY分子筛提供了有效的理论依据,从而可以及时监控合成NaY分子筛的生产过程,降低了NaY分子筛生产成本。

2 实验原理2.1 测定结晶度实验原理[4]为了排除高岭石特征衍射峰的干扰,本实验选择331,333,660,555四峰为被测峰,以NaY分子筛79Y-16为外标,用四峰的峰面积之和计量衍射峰强度,用外标法测定试样的相对结晶度,分别计算试样和外标衍射峰强度测I 和标I ,按照下式计算样品的结晶度Rc: ___________*E-mail: qun.cheng@Rc=标测I I ×90% 2.2 测定晶胞参数和硅铝比实验原理[4]本实验选择533衍射为被测衍射峰,以硅粉111衍射为外标,令外标硅粉111衍射的标准角度值为2标θ(本实验所用的硅粉2标θ=28.443°),外标硅粉111衍射的角度测量值为2'标θ,试样533衍射的角度测量值为2测θ,角度测量偏差Δ=2'标θ-2标θ,则试样533衍射的角度校正值2校θ=2测θ-Δ试样的衍射峰角度位置经外标校正后,即可按照关系式a =θλsin 2222l k h ++⨯计算出晶胞参数a ,在本实验条件下,上式可简化为a =米)(校1010sin 0509.5-θ。

硅铝比直接由经验公式SiO 2/Al 2O 3=21191.24a 19200868.0(⨯--⨯)得到。

3 实验部分3.1 仪器与试剂XD-2型多晶X 射线衍射仪(北京普析通用仪器有限责任公司),202-1电热干燥箱(黄骅市综合电器厂),氯化钙为分析纯(北京化工厂),水为二次蒸馏水。

3.2 物相分析实验方法将由高岭石处理一段时间得到的NaY 分子筛试样放入玛瑙研钵中充分研细,经120℃,1小时烘干,置于氯化钙过饱和水溶液气氛中(室温20~30℃)吸水16至24小时;将处理后的粉末试样于XRD 进行测定,测定条件:Cu 靶,管压:36kV ,管流:30mA ,连续扫描:2θ:4°~65°,步宽:0.02°,发散狭缝(DS ):1°,接收狭缝(RS ):0.3mm ,防散射狭缝(SS ):1°,石墨单色器。

3.3 测定结晶度实验方法试样前处理同上,将处理后的粉末试样于XRD 进行测定,测定条件:Cu 靶,管压:36kV ,管流:30mA ,步进扫描:2θ:14.5°~17°;18°~19.3°;30°~32°,步宽0.01°,预置时间:1s ,发散狭缝(DS ):1°,接收狭缝(RS ):0.3mm ,防散射狭缝(SS ):1°,石墨单色器。

3.4 测定晶胞参数和硅铝比实验方法试样前处理同上,将处理后的粉末试样于XRD 进行测定,重复测定11次,测定条件:Cu 靶,管压:36kV,管流:30mA,步进扫描:2θ:23°~25°,步宽0.01°,预置时间:1s,发散狭缝(DS):1°,接收狭缝(RS):0.3mm,防散射狭缝(SS):1°,石墨单色器。

4结果与讨论4.1样品物相分析样品连续扫描得到衍射图(如图1所示),2θ=6.08°,15.50°,23.48°,31.24°等一组峰均为NaY 分子筛(Na2Al2Si4.5O13▪xH2O,标准卡片PDF号43-0168);20°~30°区域出现比较宽大的衍射特征峰表明有高岭石存在,2θ=12.32°,20.22°,24.86°等一组峰均为高岭石(Al2Si2O5(OH)4,标准卡片PDF 号14-0164),2θ=20.81°,26.59°等一组峰均为石英(SiO2,标准卡片PDF号46-1045)的主要特征峰(可能由于其他组分的存在,使石英的2θ特征峰整体略微偏小)。

可见,样品主要物相是NaY分子筛,高岭石和石英。

由图1可知,此高岭石未处理完全,在20°~30°区域仍出现比较宽大的高岭石衍射特征峰,所以要合成更好的NaY分子筛,还须继续对此样品进行处理。

图1 样品全扫描衍射图4.2样品结晶度分析为了排除高岭石特征峰的干扰,因而选择NaY分子筛一组特征峰331,333,660,555四峰为被测峰,I=87250。

步进扫描得到衍射图(如图2所示),通过寻峰求峰面积得到样品此四峰的峰面积之和为测图2 样品步进扫描衍射图图3 NaY 标样步进扫描衍射图以NaY 标样(结晶度为90%)331,333,660,555四峰为被测峰步进扫描得到衍射图(如图3所示),通过寻峰求峰面积得到NaY 标样四峰的峰面积之和为标I =166192,按照样品的结晶度Rc 计算公式:Rc=标测I I×90%得到样品Rc=16619287250×90%=47.2%。

4.3 样品晶胞参数和硅铝比分析将处理后的粉末样品于XRD 进行测定,重复测定11次,按公式a =米)(校1010sin 0509.5-θ得到晶胞参数,并由经验公式SiO 2/Al 2O 3=21191.24a 19200868.0(⨯--⨯)得到硅铝比,结果如表1所示。

表1 样品晶胞参数分析结果由表1测定结果可见,其重复性和精密度均良好。

5 结论由以上对高岭石合成的NaY 分子筛样品进行的物相组成、结晶度、晶胞参数及硅铝比分析结果可知,此样品未处理完全,在20°~30°区域仍出现比较宽大的高岭石衍射特征峰,所以要合成更好的NaY 分子筛,还须继续对此样品进行处理。

可以根据其不同的工艺要求来控制结晶度、晶胞参数及硅铝比从而可以控制NaY 分子筛生产的工艺条件,为高岭石合成NaY 分子筛提供了有效的理论依据,从而可以及时监控合成NaY 分子筛的生产过程,降低了NaY 分子筛生产成本。

6致谢非常感谢北京大学江超华教授的热心指导!参考文献[1] 刘欣梅,阎子峰,王槐平,由煤系高岭土原位合成NaY分子筛,石油大学学报(自然科学版),2002,26(5):94-99[2] 许名灿,程谟杰,谭大力等,沸石分子筛在高岭土微球上的生长,催化学报,2001,22(1):31-34[3] 王建,董家禄,刘杨,偏高岭石合成4A沸石机理研究,无机化学学报,2000,16 (1):31-36[4] 张海明,刘凤仁,嵇掌山,超稳Y(USY)型分子筛晶胞参数和相对结晶度测定方法研究(内部报告),石油化工科学研究院第一研究室,1985。

相关文档
最新文档