颚式破碎机参数选择计算

颚式破碎机参数选择计算
颚式破碎机参数选择计算

颚破机:www.shibangepoji.com

颚破机:www.shibangepoji.com

复摆式颚式破碎机设计

1 绪论 1 选题背景 凡是外力将大颗粒物料变成小颗粒物料的过程称为破碎,破碎所使用的机械为破碎机。物料碎磨得目的是:增加物料的比表面积;制备混凝土骨料与人造沙;使矿石中有用成分解离;为原料的下一步加工作准备或便于使用。 物料的破碎是许多行业(如冶金、矿山、建材、化工、陶瓷、筑路等)产品生产中不可缺少的工艺过程。由于物料的物理性质和结构差异很大,为适应各种物料的要求,破碎机的品种也是五花八门的。就金属矿选矿而言, 破碎是选矿厂的首道工序,为了分离有用矿物,不但分为粗碎、中碎、细碎, 而且还要磨矿。因为磨矿是选矿厂的耗能大户(约占全厂耗电的50%),为了节能和提高生产效率,所以提出了“多碎少磨”的技术原则。这使破碎机向细碎、粉碎和高效节能方向发展。另外随着工业自动化的发展,破碎机也向自动化方向迈进(如国外产品已实现机电液一体化、连续检测,并自动调节给料速率、排矿口尺寸及破碎力等)。随着开采规模的扩大, 破碎机也在向大型化发展,如粗碎旋回破碎机的处理能力已达6000t/h。至于新原理和新方式的破碎(如电、热破碎) 尚在研究试验中,暂时还不能用于生产。对粗碎而言,目前还没有研制出更新的设备以取代传统的颚式破碎机和旋回式破碎机主要是利用现代技术,予以改进、完善和提高耐磨性,达到节能、高效、长寿的目的。细碎方面新机型更多些。总的来看,值得提出的有:颚式破碎机、圆锥破碎机、冲击式破碎机和辊压机。 在破碎机类型中,应用最广泛的就是颚式破碎机。矿产的开采和破碎的环境

恶劣需要破碎机的性能对环境的适应性强,维修方便,运输容易。在现代设计中应以人为本、保护环境、提高产品性能。促进机械行业科技的发展。在破碎机中,我选择了复摆颚式破碎机。复摆颚式破碎机的原理很简单工作可靠。因此,被广泛在采矿业中使用,在超过150年的历史,这台机器的结构不断改善。 在此次设计中,我选用复摆式颚式破碎机。主要研究并分析其主要的零部件和主要参数,完成设计任务。 机架是基础,实际上是一个下端开口的方形桶,主要用于支撑偏心轴和轴承的破碎物料的反作用力,因此要求有足够的强度,一般采用整体铸钢铸造,小规模的可选用优质铸铁。大型破碎机机架由型材组成,然后用螺栓连接在一起,铸造过程更为复杂。国产小型颚式破碎机可焊接40~50毫米厚钢板,但其钢性能不如铸钢。 颚板包括活动颚板和固定颚板,颚板固定在床面上,用楔铁钳口和颌螺栓固定,防止磨损床。固定钳口是一种固定在偏心轴上的活动床架,由于它直接承受石材的挤压力,所以有足够的强度和刚度的颚床一般采用铸铁或钢制造。颚板与石材直接接触,除冲击力和冲击力外,还与石材有强烈的摩擦,因此要求用高强度耐磨材料制成。锰钢颚板常用,铸钢中锰含量约为12~14%。若条件有限,可改用白口铸铁,但易磨损断裂,使用寿命不长。为了有效地粉碎石材,颚板的表面通常是锯齿形和齿形。牙齿的峰值角度一般为90到110度,齿高和节距取决于放电材料的大小和产量。齿形小,齿距小,放电量小,输出功率低,功耗大。一般齿高与齿距的比值在1/2和1/3之间。由于复摆颚板的特性所造成的底磨损速度比上颌骨板快,所以常做成对称的形状,使磨损能够延长倒装装置的使用寿命。

颚式破碎机设计说明书

目录 一、概述 (1) 二、工作原理 (1) 三、结构分析 (2) 四、设计数据 (2) 五、机构的运动位置分析 (3) 六、机构的运动速度分析 (4) 七、机构运动加速度分析 (5) 八、静力分析 (6) 九、与其他结构的对比 (7) 十、设计总结 (9)

一、概述 破碎机械是对固体物料施加机械力,克服物料的内聚力,使之碎裂成小块物料的设备。破碎机械所施加的机械力,可以是挤压力、劈裂力、弯曲力、剪切力、冲击力等,在一般机械中大多是两种或两种以上机械力的综合。对于坚硬的物料,适宜采用产生弯曲和劈裂作用的破碎机械;对于脆性和塑性的物料,适宜采用产生冲击和劈裂作用的机械;对于粘性和韧性的物料,适宜采用产生挤压和碾磨作用的机械。在矿山工程和建设上,破碎机械多用来破碎爆破开采所得的天然石料,使这成为规定尺寸的矿石或碎石。在硅酸盐工业中,固体原料、燃料和半成品需要经过各种破碎加工,使其粒度达到各道工序所要求的以便进一步加工操作。 二、工作原理 图(一) 如图(一)所示,1 颚式破碎机是一种用来破碎矿石的机械,机器经带传动,使曲柄2 顺时针方向回转,然后通过构件3,4,5 使动颚板 6 作往复摆动,当动颚板 6 向左摆向固定于机架1 上的定额板7 时,矿石即被轧碎;当动颚板6 向右摆离定颚板7 时,被轧碎的矿石即下落。根据生产工艺路线方案,在送料机构送料期间,动颚板6 不能向左摆向定颚板7,以防止两颚板不能破碎矿石,只有当送料完成时,两颚板才能加压破碎。因此,必须对送料机构和颚板6、颚板7 之间的运动时间顺序进行设计,使三者有严格的协调配合关系,不致在运动过程发生冲突。 由于机器在工作过程中载荷变化很大,将影响曲柄和电机的匀速转动,为了减小主轴速度的波动和电动机的容量,在曲柄轴O2的两端各装一个大小和重量完全相同的飞轮,其中一个兼作皮带轮用。

(完整word版)母线技术参数计算方法.doc

母线主要性能参数的计算方法 1、 交流电阻的计算 l R 201 (T 20) K j K i b h 其中: R ——交流电阻( ); 20 —— 20℃时导体电阻率( mm 2 / m ); ——导体的电阻温度系数(℃ -1 ) ,TMY 0.00385 ; T ——导体实际工作温度 ( ℃ ) ; l ——导体长度( m ); b ——导体厚度( mm ); h ——导体宽度( mm ); K j ——集肤效应系数; b h 6X30 6X40 6X50 6X60 6X80 6X110 6X150 6X200 K j 1.015 1.026 1.04 1.055 1.09 1.15 1.21 1.25 K i ——邻近效应系数,取 1.03 。 2、 感抗计算 对于密集型母线: D j X 0.1445lg D z 其中: X ——母线每相感抗( m / m ); D j ——每相导体间的几何均距( mm )。 D j 3 D AB D BC D AC ,其中: D AB n n D aa ' D ab ' D an ' n D ba ' D bb ' D bn ' n D na ' D nb ' D nn ' n n (D aa D ab D an ' ) (D aa D ab D ')(D aa ' D ab D an ' ) an 式中: D aa ' b A , A 为导体间绝缘层厚度; D ab ' D aa 2 D ab 2 , D ab h K ,其中 n 1 D an ' D aa 2 D an 2 , D an h K ,其中 n 1 D an ' D na ' ; K 1; K n 1; 且 D BC 、 D AC 与 D AB 的计算方法相同。

500750颚式破碎机说明书(DOC)

目录 1、前言 1 2、主要技术参数 1 3、结构简述及装配 1 4、安装、调整和试车 5 5、使用与维护7 6、安全操作规程9 7、必须注意的事项9 8、易损件明细表10 9、PE-500*750颚式破碎机基础图11

1、前言 本说明书是为安装操作和维护复摆颚式破碎机的用户和现场操作人员编写的。本资料将帮助你熟悉破碎机的结构,并为安全操作和维护提供必要的常识。 在安装破碎机之前和破碎机运转期间,必须阅读和理解本说明书的内容,并付诸实施。 本破碎机适用于粗碎、中碎抗压强度不大于320Mpa的各种矿石或岩石。 2、主要技术参数 给料口尺寸(宽*长)500×750 mm 排料口宽度50~100 mm 最大进料尺寸425 mm 主轴转速275 mm 生产能力45~100 mm 电动机功率55 kw 外形尺寸(长×宽×高)1916×1890×1870 mm 重量(不包括电机)10.1 t 注:破碎机的生产能力受各种因素的影响,诸如给料方式、物料的形状、粒度组成、物料的干、湿、软、硬程度等等。对于硬而脆的物料要比硬而韧的物料容易破碎;片状物料要比球状物料容易破碎;由大小不同粒度组成的混合料要比单一大粒度组成的物料容易破碎,能获得较高的处理能力。相反,如果物料超过最大允许的进料粒度或者进料口堆满物料而出现阻塞现象时,往往就导致处理能力的降低。 为了提高本机的处理能力和使用寿命,必须满足其均衡进料的要求。因

此在使用本机时需由喂料机与之配套。 本机标定的性能参数是以破碎干且中等硬度的岩石为准,其堆比重为1.6吨/立方米。 3、结构简述及装配 本机主要由:机架部件、上边护板、下边护板、动颚部件、调整部件、拉杆部件、铁轨部件、润滑部件、电控部分等组成。 本机是以电动机为动力,通过电动机皮带轮,由三角皮带和槽轮驱动偏心轴,使动颚按预定轨迹作往复活动,从而将进入由固定颚板、活动颚板和边护板组成的破碎腔内的物料予以破碎,并通过下部的排料口将成品物料排出。 3.1机架部件 颚式破碎机的机架,在工作中受到很大的冲击载荷。因此它应具有足够的强度和刚度。 机架为焊接件(见图1)。机架的前墙装有固定颚板螺钉紧固的固定颚板,

SATWE参数选取原则第三版

SATWE参数选取原则(第三版) SATWE 2010版(2013年10月版本) 一、总信息: 1. 水平力与整体坐标夹角:取0度;(如周期计算结果中显示最大地震力方向与主坐标夹角大于15°,应在斜交抗侧力构件中输入角度,此处不必改动) 2. 混凝土容重:框架、框架-剪力墙取26;剪力墙及框筒结构取27;计算地下室底板配筋时取0; 3. 钢材容重:78; 4. 裙房层数:按实际计算层数输入(应计入地下室的层数); 5. 转换层所在层号:此参数为针对“部分框支剪力墙结构”及“底层带托柱转换层的筒体”而设置。对于部分构件的局部转换,只需要在特殊构件定义中设置转换构件即可,不必在此设置转换层号;此层号为PMCAD中的自然层号,包括地下室;(转换层自动默认为薄弱层). 6. 嵌固端层号:若嵌固端在基础上就为“1”,若嵌固端为地下室顶板则为“地下室层数+1”。 7. 地下室层数:除了对风荷载作用、地震作用及内力调整有关系外,该参数对高位转换的判别影响很大,应准确输入该参数(应注意地下室层数的判断);8. 对所有楼层采用刚性楼板假定:除内力及配筋计算以外,均勾选“是”;

注:进行内力和配筋计算时,部分特殊的结构应在特殊构件定义中修改弹性板的类型,如板柱结构应定义弹性板6、厚板结构应定义弹性板3、楼面开大洞时应定义弹性膜。 9. 地下室强制采用刚性楼板假定;地下室有跃层构件或开大洞时,可取消勾选; 10.墙梁跨中节点作为刚性楼板从节点:一般勾选,若连梁抗剪超限,可不勾选进行计算; 11.计算墙倾覆力矩时只考虑腹板和有效翼缘:一般应勾选;(砼规中9.4.3条有相关承载力计算内容,程序参照此条考虑到倾覆力矩上,此条对倾覆力矩比有轻微影响) 12.弹性板与梁变性协调:替代上个版本的“强制刚性楼板假定时保留楼板平面外刚度”,应勾选; 13.结构材料信息:按实际类型填写; 14.结构体系:按实际填写;仅设置少量剪力墙的框架结构应按框架结构填写,底层带托柱转换层的筒体仍按框筒或筒中筒结构输入,选砌体结构和底框结构无效; 15.恒活荷载计算信息:一般采用模拟施工加载3,如遇到有转换层、跃层柱、长悬挑或吊柱等情况时,应注意修改加载的次序和层数。有吊柱的结构、钢结构及体育场馆等应采用模拟施工加载1。计算基础时,尤其是框剪、框筒结构时,采用模拟施工加载2;(如有特殊结构,勾选“自定义施工顺序”进行人工排序)16.风荷载计算信息:一般结构选择“计算水平风荷载”即可,对于一些空旷建筑、体育馆及轻钢屋面等结构选择“计算特殊风荷载”; 17.地震作用计算信息:一般建筑“计算水平地震作用”即可。对于规范规定的需要考虑竖向地震的建筑按以下原则选择:多层建筑选择“计算水平和规范简化方法竖向地震”,高层建筑选择“计算水平和反应谱方法竖向地震”; 18.特征值求解方式:在选择“计算水平和反应谱方法竖向地震”时此项方可激活,一般情况不需考虑。“整体求解”考虑三向振动的耦联,但有效质量系数不易达到90%,应增加振型数;“独立求解”不能体现耦联关系,但易满足有效质量系数的要求; 19.“规定水平力”的确定方式:一般工程均选择“楼层剪力差方法”; 结构所在地区:按项目所在地区填写,分为全国、上海和广东;20. 二、风荷载信息: 1. 地面粗糙度:根据项目的具体地点选择,一般城市市区选C,郊区选B,湖边、海边取A,慎选D; 2. 修正后的基本风压:一般按《建筑结构荷载规范》GB50009-2012附表E.5中50年一遇的风压取值。如表中无相关数据,应与甲方了解当地的取值。对于山区、远海海面和海岛的建筑应依据荷载规范8.2条采用相应的修正系数,门式刚架也应乘以1.05的修正系数后填入; 3. X向、Y向结构基本周期:先按照“0.1x层数”输入初始值,待SATWE计算出准确的结构自振周期后,将新的周期值代入重新计算;

颚式破碎机机构综合设计说明书

颚式破碎机的机构设计说明书 一 设计题目简介 右图为一简摆式颚式破碎机的结构示意图。当与带轮固联的曲柄1绕轴心O 连续回转时,在构件2、3、4的推动下,动颚板5绕固定点F 往复摆动,与固定颚板6一起,将矿石压碎。 颚式破碎机设计数据如表所示。 为了提高机械效率,要求执行机构的最小传动角大于650;为了防止压碎的石料在下落时进一步碰撞变碎,要求动颚板放料的平均速度小于压料的平均速度,但为了减小驱动功率,要求速比系数k (压料的平均速度/放料的平均速度)不大于1.2。采用380V 三相交流电动机。该颚式破碎机的设计寿命为5年,每年300工作日,每日16小时。 二 设计任务 1.针对两图所示的颚式破碎机的执行机构方案,依据设计数据和设计要求,确定各构件的运动尺寸,绘制机构运动简图,并分析组成机构的基本杆组; 2.假设曲柄等速转动,画出颚板角位移和角速度的变化规律曲线; 3.在颚板挤压石料过程中,假设挤压压强由零到最大线性增加,并设石料对颚板的压强均匀分布在颚板有效工作面上,在不考虑各处摩擦、构件重力和惯性力的条件下,分析曲柄所需的驱动力矩; 4.取曲柄轴为等效构件,要求其速度波动系数小于15 %,确定应加于曲柄轴上的飞轮 简摆式颚式破碎机

转动惯量; 5.用软件(VB、MATLAB、ADAMS或SOLIDWORKS等均可)对执行机构进行运动仿真,并画出输出机构的位移、速度、和加速度线图。 6.图纸上绘出最终方案的机构运动简图(可以是计算机图)并编写说明书。 方案设计 三、方案分析 一凸轮摆杆机构:由于凸轮机构磨损严重,所以不适合破碎机。 二双摆杆机构:由于摆杆机构的主运动不好设计,所以不选用这种。 三曲柄滑块机构:曲柄滑块机构传动角较小,不适合受力大的机械。 机构原理分析 如图所示,机器经皮带(图中未画出)使曲柄2顺时针回转,然后通过构件3,4,5使动颚板6向左摆动向固定于机架1上的定颚板7时,矿石即被扎碎;当动颚板6向右摆动时,被扎碎的矿石即下落。

硬母线温升计算

硬母线温升计算 请教各位,低压成套开关设备垂直母线额定短时耐受电流如何选取? 在论坛一直潜水,学习帕版及各位老师的帖子,受益匪浅。本人有一事不明白,低压成套开关设备垂直母线的额定短时耐受电流如何选取? 对于2500kVA,阻抗电压6%的变压器,主母线选择额定短时耐受电流85kA/1S,垂直母线应如何选取?垂直母线上的断路器的分断能力是否应于母线相匹配? 另,帕版经常提到的“MNS Engineering Guide-line ”式中下载不到,可否提供以下?谢谢 楼主的问题是: 对于2500kVA,阻抗电压6%的变压器,主母线选择额定短时耐受电流85kA/1S,垂直母线应如何选取?垂直母线上的断路器的分断能力是否应于母线相匹配? 我们先来计算一番: 因为:Sn=√3UpIn,所以In=2500x103/(1.732x400)=3609A 因为:Ik=In/Uk,所以Ik=3609/0.06=60.15kA 对于断路器而言,选择断路器的极限短路分断能力Icu>60.15kA即可,一般取为65kA。但是对于主母线来说,是不是我们也选择它的动稳定性等于65kA 就可以了? 动稳定性的定义是:低压开关柜抵御瞬时最大短路电流电动力冲击的能力。那么60.15kA就是最大短路电流的瞬时值吗? 我们来看下图:

这张图我们看了N遍了。其中Ip就是短路电流的稳态值,也是短路电流的周期分量。在楼主的这个问题中,我们计算得到的60.15kA 就是Ip,它也等于短路电流稳态值Ik。显然,它不是短路电流的最大瞬时值 短路电流的最大瞬时值是冲击短路电流峰值Ipk,Ipk=nIk。根据IEC 61439.1或者GB 7251.1,我们知道当短路电流大于50kA后,n=2.2,于是冲击短路电流峰值Ipk=nIk=2.2x60.15=132.33kA,这才是动稳定性对应的最大短路电流瞬时值 也就是说,对于楼主的这个范例,低压开关柜主母线的峰值耐受电流必须大于132.33kA 我们来看GB 7251.1-2005是如何描述峰值耐受电流与短时耐受电流之间的关系的,如下: 我们发现,对于主母线来说,它的峰值耐受电流与短时耐受电流之比就是峰值系数n

颚式破碎机选型具体参数

颚式破碎机选型具体参数 颚式破碎机由于结构简单、价格低廉、操作简单、坚固耐用、维护容易等优点,早已成为我国生产最多、使用最广的破碎设备。 我国生产的简摆型颚式破碎机(一个系列,约5种规格)一般都是大中型设备,因而只有少数大厂才能制造,如沈阳重型冶矿机械制造公司(以下简称沈重,原沈阳重型机器厂)、中国第一重型机械集团公司(以下简称一重,原第一重型机器厂)、沈阳冶金机械有限公司(以下简称沈冶,原沈阳有色冶金机械总厂)、中信重型机械公司(以下简称中重,原洛阳矿山机器厂)、衡阳有色冶金机械总厂(以下简称衡冶)等。这种破碎机可破碎各种硬度的矿石和岩石,主要用于大中型矿山的粗碎作业,很少用于建材、化工、水泥等其他工业部门,故应用不广泛,产量也较少。 我国生产的复摆型颚式破碎机(一个系列,已发展到约20多种规格)多为中小型设备,一般机械厂都能生产,可广泛用于冶金、矿山、建材、化工、筑路等行业的破碎作业。这种破碎机适用于抗压强度为250MPa以下的各种矿石、岩石及其他物料的粗、中碎作业。 随着科学技术的发展,复摆型颚式破碎机也向大型化发展,例如一重已能生产PEF1200 ×1500和PEF1500×2100型颚式破碎机,且PEF600×900型以上的约10种大规格破碎机,可以破碎各种硬度的矿石和岩石,目前已有不少厂家能够制造。 1980年以来,为适应各行业对细碎作业的需要,我国又成功地研制并生产了复摆型细碎颚式破碎机,现已形成较完整的系列,并有不少生产厂家生产。这种细碎设备主要用于抗压强度不超过250MPa的矿石和岩石的细碎作业。河南省群英机械制造有限责任公司(以下简称群英,原河南省焦作群英机械厂)研制出了冲击型颚式破碎机,沈阳黄金学院研制出了双动颚破碎机,中南工业大学研制

PKPM参数选择

规范PM参数 1.电算时,荷载不应任意放大.内力放大系数,配筋放大系数,如果不是计算模型确实存在系统误差,一般取1.0,不必放大.对薄弱部位,重点部位应适当加强。 2.地基设计时应采用荷载效应标准组合最大轴力NMAX情况下的荷载(由JCCAD---基础人机交互输入----荷载输入-----目标组合(标准组合)--------读取荷载(SATWE数据荷载,不考虑地震荷载)输出)。 3.基础设计时应采用荷载效应的基本组合荷载.当有永久荷载效应控制时.可取上述标准组合荷载的1.35倍。 4.总信息栏: 结构体系:按实际工程选择 结构主材:按结构形式选择 结构重要性系数:一般填1.0(砼结构设计规范GB50010-2002第3.23条选用) 地下室层数:一般选0(但当地下室层参与结构整体分析时按实际情况填写,程序会对地下层特殊处理.) 与基础相连的下部楼层数:一般填1 梁混凝土保护层厚度:25(大于C25室内正常环境) 30(小于C25室内潮湿,露天环境) 框架梁端负弯矩调整系数0.85 5.材料信息栏 混凝土容重26KN/m3 (考虑粉刷重量) 钢材容重78.5KN/m3 钢构件钢材:Q235 钢截面净毛面积比值:1.0(表示截面被开洞后的削弱情况,可填0.5~1.0). 墙主筋类别:HRB335 主要墙体材料:砌体结构如实填写 砌体容重:18,包含0.7的粉刷重量 墙体水平分布筋间距一般悬200 墙体水平分布筋类别HPB235 墙竖向分布配筋率:一~三级抗震等级不应小于0.25%,四级抗震等级不应小于0.2%;框支剪力墙结构的剪力墙底部加强部位,配筋不应小于0.3%,间距不应大于200梁.柱箍筋类别HPB235 6.地震信息栏: 地震分组:按《建筑抗震设计规范》GB5001-2001附录A选用,对本省内均取第一组》 地震烈度:杭州选6(0.05)否则按《建筑抗震设计规范》GB5001-2001附录A选用 场地类别:按工程地质勘测报告 框架抗震等级:按《建筑抗震设计规范》表6.1.2 7.风荷载信息栏 杭州0.45,60米以上0.50.地面粗糙度选B类体型分段系数一般不分,选1. 高层主要控制轴压比,剪重比刚度比,位移比,周期比,刚重比 电梯机房的荷载就两个 一个是集中力(8人组的基本就是1000Kg合10KN,加上轿箱和缆绳基本也就3000Kg合30KN)加载在固定缆绳的梁上

机械原理课程设计颚式破碎机的机构综合与执行机构设计

工程技术学院 课程设计 题目:颚式破碎机的机构综合与执行机构设计 目录 一、设计题目 二、设计数据与要求 三、设计提示 四、设计任务 五、设计感言 六、参考文献

一、设计题目 颚式破碎机是一种利用颚板往复摆动压碎石料的设备。工作时,大块石料从上面的进料口进入,而被破碎的小粒石料从下面的出料口排出。 图1为一简摆式颚式破碎机的结构示意图。当与带轮固联的曲柄1绕轴心O连续回转时,在构件2、3、4的推动下,动颚板5绕固定点F往复摆动,与固定颚板6一起,将矿石压碎。设计颚式破碎机的执行机构和传动系统。

图1 简摆式颚式破碎机 二、社计数据与要求 颚式破碎机设计数据如表1所示。 表1 颚式破碎机设计数据

三、设计提示 动颚板长度取为其工作长度的1.2倍. 四、设计任务 1.针对图1和表1所示的颚式破碎机的执行机构方案,依据设计数据和设计要求,绘制机构运动简图,并分析组成机构的基本杆组; (1)因为动颚板长度取为其工作长度的1.2倍,动颚板的有效工作长度为200mm,所以动颚板长度200×1.2mm=240mm,CF=240mm,CB=84mm,BD=60mm,DE=84mm,AB’=240,OA=18mm,AD=AB=242mm 当OAB’在同一条直线上且曲柄转过一周即在360°时,根据各杆件尺寸定出各转动副的位置,选定比例1:1,画出各运动副和表示各杆件的线段,在原动件上标出表示运动方向的箭头,即可得出机构运动简图。

(2)分析组成机构的基本杆组 对于该机构,其自由度F=3n﹣2P L﹣P H,F=3×5-2×7=1.以曲柄为原动件,对机构进行机构分析,从远离原动件开始拆杆组,基本杆组中运动副全为低副,则符合3n﹣2P L=0.将原动件1和机架6与其余杆件拆开,剩下的杆件所组成的杆组的自由度为0.从远离原动件的一端拆下构件5和构件4为一个Ⅱ级杆组,再拆下构件2和构件3为一个Ⅱ级杆组,最后剩下原动件1和机架6,由于拆出的最高级别的杆组为Ⅱ级杆组,所以该机构为Ⅱ级机构。机构运动简图和基本杆组图见图纸。 2.假设曲柄等速转动,对机构进行运动分析,并画出颚板的角位移和角速度的变化规律曲线图; (1)对机构记性运动分析 已知曲柄转速n=300r/min=5r/s,曲柄的角速度w1=2πn=2π×5r/s=31.4rad/s,所以A点的速度v=OA×w1=18×10﹣3×31.4m/s= 0.565m/s。方向垂直于曲柄。又因为曲柄等速转动,所以A点的加速度大小和方向都等于它的法向加速度,a A=OA×w12=17.75m/s2。 对于连杆2的角速度w2和角加速度α2及B点和D点的速度v B,v D和角加速度v B,v D和加速度a B,a D,杆件3,杆件4和杆件5的角速度w3,w4,w5和角加速度α3,α4,α5及C点的速度,v c和加速度a c,运用矢量方程图解法来计算。

模板荷载计算

本方案是以木模板、钢管脚手排架的模板支撑系统为研究对象,在泵送、预拌商品混凝土、机械振捣的施工工艺条件下,对施工荷载进行了计算,并应用了统计学原理,获得不同截面梁、板的施工荷载值,不仅减化了计算工作量,并能方便查找应用。 关键词:模板钢管支撑混凝土施工荷载分项系数侧压力荷载组合1施工荷载计算的计算依据 施工荷载的计算方法应符合《建筑结构荷载规范》GB50009-2001的规定。本文仅适用于木模板、钢管脚手排架、钢管顶撑、支撑托的模板支撑系统;采用泵送、预拌商品混凝土,机械振捣的施工工艺,并依据原《混凝土结构工程施工验收规范》GB50204-92,附录中有关“普通模板及其支架荷载标准值及分项系数”的取值标准。 2模板支撑系统及其新浇钢筋混凝土自重的计算参数: 模板及其支架的自重标准值应根据模板设计图确定,新浇混凝土自重标准值可根据实际重力密度确定,钢筋自重标准值可根据设计图纸确定,也可以按下表采用:钢筋混凝土和模板及其支架自重标准值和设计值统计表 材料名称单位标准值分项系数设计值备注 平板的模板KM/m2 0.3 1.2 0.36 包括小楞 梁的模板KN/m2 0.5 1.2 0.6 展开面积 普通混凝土KN/m3 24 1.2 28.8 楼板的钢筋KN 1.1 1.2 1.32 每立方米混 凝土的含量 梁的钢筋KN 1.5 1.2 1.8 模板及支架KN/m2 0.75 1.2 0.9 层高≤4m 3施工人员及设备荷载的取值标准: 施工活荷载的取值标准应根据不同的验算对象,对照下表选取,对于大型设备如上料平台、混凝土输送泵、配料机、集料斗等的施工荷载,应根据实际情况计算,并在大型设备的布置点,采取有针对性的加固措施。 施工活荷载标准值和设计值统计表 序号计算构件名 称 荷载类型单位标准值分项系数设计值备注

颚式破碎机的设计——课程设计汇总

?破碎机的设计》 课程设计说明书 课题名称: 破碎机的课程设计 组员姓名: 系(院): 指导老师: 设计时间: 2013年12月27号

2. . 设计题目 3. 原始数据和设计要求 方案设计及讨论 设计步骤与运动解析错误!未定义书签。4. 5.

破碎机械是对固体物料施加机械力,克服物料的内聚力,使之碎裂成小块物料的设备。破碎机械所施加的机械力,可以是挤压力、劈裂力、弯曲力、剪切力、冲击力等,在一般机械中大多是两种或两种以上机械力的综合。对于坚硬的物料,适宜采用产生弯曲和劈裂作用的破碎机械;对于脆性和塑性的物料,适宜 采用产生冲击和劈裂作用的机械;对于粘性和韧性的物料,适宜采用产生挤压和碾磨作用的机械。 在矿山工程和建设上,破碎机械多用来破碎爆破开采所得的天然石料,使这成为规定尺寸的矿石或碎石。在硅酸盐工业中,固体原料、燃料和半成品需要经过各种破碎加工,使其粒度达到各道工序所要求的以便进一步加工操作。 设计题目 出石口被送出的破碎机机构。如图1,设计一破碎机系 统,该系统由原动部分(电动机带动偏心轮的机构)、传动部分(带传动和组合机构)和执行部分组成。电机的驱动力矩有传动部分给动颚板,使其作往复摆动。当动颚板向左摆 向与机架固连的定颚板时,石块即被轧碎,当动颚板向右摆离定颚板时,被轧碎的石块即下落。完成一个工作循环。 本题要求设计能是石头按要求被压碎并顺利从颚腔中落

简摆式顎式磯碑机 K固定顎动颉恳拄轴氛动额 4.前(疳)推力板也馆右轴队连ft 原始数据和设计要求 1、动颚板压石时摆动角速度为0.3rad/s,行程速比系数k=1.4。

荷载计算及计算公式 小知识

荷载计算及计算公式小知识 1、脚手架参数 立杆横距(m): 0.6; 立杆纵距(m): 0.6; 横杆步距(m): 0.6; 板底支撑材料: 方木; 板底支撑间距(mm) : 600; 模板支架立杆伸出顶层横向水平杆中心线至模板支撑点长度(m):0.2; 模板支架计算高度(m): 1.7; 采用的钢管(mm): Ф48×3.5; 扣件抗滑力系数(KN): 8; 2、荷载参数 模板自重(kN/m2): 0.5; 钢筋自重(kN/m3) : 1.28; 混凝土自重(kN/m3): 25; 施工均布荷载标准值(kN/m2): 1; 振捣荷载标准值(kN/m2): 2 3、楼板参数 钢筋级别: 二级钢HRB 335(20MnSi); 楼板混凝土强度等级: C30; 楼板的计算宽度(m): 12.65; 楼板的计算跨度(m): 7.25; 楼板的计算厚度(mm): 700; 施工平均温度(℃): 25; 4、材料参数 模板类型:600mm×1500mm×55mm钢模板; 模板弹性模量E(N/mm2):210000; 模板抗弯强度设计值fm(N/mm2):205; 木材品种:柏木; 木材弹性模量E(N/mm2):9000; 木材抗弯强度设计值fm(N/mm2):13; 木材抗剪强度设计值fv(N/mm2):1.3; Φ48×3.5mm钢管、扣件、碗扣式立杆、横杆、立杆座垫、顶托。 16a槽钢。 锤子、打眼电钻、活动板手、手锯、水平尺、线坠、撬棒、吊装索具等。 脱模剂:水质脱模剂。 辅助材料:双面胶纸、海绵等。 1)荷载计算: (1)钢筋混凝土板自重(kN/m):q1=(25+1.28)×0.6×0.7=11.04kN/m; (2)模板的自重线荷载(kN/m):q2=0.5×0.6=0.3kN/m ; (3)活荷载为施工荷载标准值(kN):q3=(1+2)×0.6 =1.8kN;

颚式破碎机简介之令狐文艳创作

简介 令狐文艳 颚式破碎机在矿山、建材、基建等部门主要用作粗碎机和中碎机。按照进料口宽度大小来分为大、中、小型三种,进料口宽度大于600MM的为大型机器,进料口宽度在300-600MM的为中型机,进料口宽度小于300MM的为小型机。颚式破碎机结构简单,制造容易,工作可靠。 颚式破碎机的工作部分是两块颚板,一是固定颚板(定颚),垂直(或上端略外倾)固定在机体前壁上,另一是活动颚板(动颚),位置倾斜,与固定颚板形成上大下小的破碎腔(工作腔)。活动颚板对着固定颚板做周期性的往复运动,时而分开,时而靠近。分开时,物料进入破碎腔,成品从下部卸出;靠近时,使装在两块颚板之间的物料受到挤压,弯折和劈裂作用而破碎。 颚式破碎机按照活动颚板的摆动方式不同,可以分为简单摆动式颚式破碎机(简摆颚式破碎机)。复杂摆动式颚式破碎机(复摆颚式破碎机)和综合摆动式颚式破碎机三种。 2 发展史 近代的破碎机械是在蒸汽机和电动机等动力机械逐渐完善和推广之后相继创造出来的。1806年出现了用蒸汽机驱动的辊式破碎机;1858年,美国的布莱克发明了破碎岩石的颚式破碎机;1878年美国发展了具有连续破碎动作的旋回破碎机,其生产效

率高于作间歇破碎动作的颚式破碎机;1895年,美国的威廉发明能耗较低的冲击式破碎机。 二十20世纪80年代,每小时破碎800吨物料的大型颚式破碎机的给料粒度已达1800毫米左右。常用的颚式破碎机有双肘板的和单肘板的两种。前者在工作时动颚只作简单的圆弧摆动,故又称简单摆动颚式破碎机;后者在作圆弧摆动的同时还作上下运动。 发展现状 国内颚式破碎机制造厂家技术水平相差很悬殊,有少数厂家的产品基本接近世界先进水平,而大多数厂家的产品与世界先进水平相比差距较大。颚式破碎机机架占整机质量的比例很大(铸造机架占50%,焊接机架占30%)。国外颚式破碎机都是焊接机架,甚至动颚也采用焊接结构。颚式破碎机采用焊接机架是发展方向。国内颚式破碎机机架结构设计不合理实例有许多,其原因就是没按破碎机实际受力情况去布置加强筋 保证颚式破碎机最佳性能的根本因素是动颚有最佳的运动特性,这个特性又是借助机构优化设计所得到的。因此,颚式破碎机机构优化设计是保证破碎机有最佳性能的根本方法。借助其中机构优化设计模块对各种规格的破碎机进行优化设计,得到了最佳的动颚运动特性。 3 优点 1、有效解决了原来石灰石破碎机因产量低导致的运转率高、无检修时间的问题。

矩形母线技术规范

技术规范书 项目单位工程名称货物描述 矩形母线,铜,4000A 表1矩形母线参数表 序号项目单位 标准参数值 投标人保证值 备 注硬铜硬铝 1 导体密 度 g/cm38.9 2.7 8.9 2.7 2 抗拉极 限强度 MPa 厚度 1.25mm以 下 >300 <120 厚度 1.25mm以 下 >300 <120 厚度 1.25~ 3.28mm >270 厚度 1.25~ 3.28mm >270 厚度 3.53~ 7mm >260 厚度 3.53~ 7mm >260 厚度7mm以 上 >250 厚度7mm以 上 >250 3 20℃时 电阻率 μ Ω·m 0.0172 0.0295 0.0172 0.0295 4 熔点℃1083 658 1083 658 5 每1℃温 度电阻 系数 Ω·m 0.00382 0.0036 0.00382 0.0036 6 延伸率% 6 3 6 3 7 轧制截 面误差 % < 1 < 3 < 1 < 3 8 长度偏 差 mm < 10 < 10 9 壁厚偏 差 mm ≤ 1 ≤ 1 10 弯曲度/ 弯曲半径按GBJ149-1990 规定 弯曲半径按GBJ149-1990 规定 铝矩形母线(竖放或平放)下,长期容许的载流量(见表2)。 单片母线的载流量(A)θ c =70℃表2-1 母线尺寸宽*厚(mm)铝 交流直流

25℃30℃40℃25℃30℃40℃ 15ⅹ3 20ⅹ3 25ⅹ3 30ⅹ4 40ⅹ4 40ⅹ5 50ⅹ5 50ⅹ6 60ⅹ6 80ⅹ6 100ⅹ6 60ⅹ8 80ⅹ8 100ⅹ8 120ⅹ8 60ⅹ10 80ⅹ10 100ⅹ10 120ⅹ10 165 215 265 365 480 540 665 740 870 1025 1150 1155 1320 1425 1480 1625 1820 1900 2070 155 202 249 343 451 507 625 695 818 1080 1340 965 1240 1530 1785 1085 1390 1710 1945 134 174 215 296 389 438 539 600 705 932 1155 831 1070 1315 1540 936 1200 1475 1680 165 215 265 370 480 545 670 745 880 1170 1455 1040 1355 1690 2040 1180 1540 1910 2300 155 202 249 348 451 512 630 700 827 1100 1368 977 1274 1590 1918 1110 1450 1795 2160 134 174 215 300 389 446 543 604 713 950 1180 844 1100 1370 1655 956 1250 1550 1865 铜矩形母线竖放或平放下,长期容许的载流量 单片母线的载流量(A)θ c =70℃表2-2 母线尺寸宽*厚(mm)铜 交流直流 25℃30℃40℃25℃30℃40℃ 15ⅹ3 20ⅹ3 25ⅹ3 30ⅹ4 40ⅹ4 40ⅹ5 50ⅹ5 50ⅹ6 60ⅹ6 80ⅹ6 100ⅹ6 60ⅹ8 80ⅹ8 210 275 340 475 625 700 860 955 1125 1480 1810 1320 1690 197 258 320 446 587 659 809 898 1056 1390 1700 1240 1590 170 223 276 385 506 567 697 774 912 1200 1470 1070 1370 210 275 340 475 625 705 870 960 1145 1510 1875 1345 1755 197 258 320 446 587 664 818 902 1079 1420 1760 1265 1650 170 223 276 385 506 571 705 778 928 1225 1520 1090 1420

颚式破碎机简介讲解

颚式破碎机简介 1、简介 颚式破碎机在矿山、建材、基建等部门主要用作粗碎机和中碎机。按照进料口宽度大小来分为大、中、小型三种,进料口宽度大于600MM的为大型机器,进料口宽度在300-600MM的为中型机,进料口宽度小于300MM的为小型机。颚式破碎机结构简单,制造容易,工作可靠。 颚式破碎机的工作部分是两块颚板,一是固定颚板(定颚),垂直(或上端略外倾)固定在机体前壁上,另一是活动颚板(动颚),位置倾斜,与固定颚板形成上大下小的破碎腔(工作腔)。活动颚板对着固定颚板做周期性的往复运动,时而分开,时而靠近。分开时,物料进入破碎腔,成品从下部卸出;靠近时,使装在两块颚板之间的物料受到挤压,弯折和劈裂作用而破碎。 颚式破碎机按照活动颚板的摆动方式不同,可以分为简单摆动式颚式破碎机(简摆颚式破碎机)。复杂摆动式颚式破碎机(复摆颚式破碎机)和综合摆动式颚式破碎机三种。 2、发展史 近代的破碎机械是在蒸汽机和电动机等动力机械逐渐完善和推广之后相继创造出来的。1806年出现了用蒸汽机驱动的辊式破碎机;1858年,美国的布莱克发明了破碎岩石的颚式破碎机;1878年美国发展了具有连续破碎动作的旋回破碎机,其生产效率高于作间歇破碎动作的颚式破碎机;1895年,美国的威

廉发明能耗较低的冲击式破碎机。 二十20世纪80年代,每小时破碎800吨物料的大型颚式破碎机的给料粒度已达1800毫米左右。常用的颚式破碎机有双肘板的和单肘板的两种。前者在工作时动颚只作简单的圆弧摆动,故又称简单摆动颚式破碎机;后者在作圆弧摆动的同时还作上下运动。 发展现状 国内颚式破碎机制造厂家技术水平相差很悬殊,有少数厂家的产品基本接近世界先进水平,而大多数厂家的产品与世界先进水平相比差距较大。颚式破碎机机架占整机质量的比例很大(铸造机架占50%,焊接机架占30%)。国外颚式破碎机都是焊接机架,甚至动颚也采用焊接结构。颚式破碎机采用焊接机架是发展方向。国内颚式破碎机机架结构设计不合理实例有许多,其原因就是没按破碎机实际受力情况去布置加强筋 保证颚式破碎机最佳性能的根本因素是动颚有最佳的运动特性,这个特性又是借助机构优化设计所得到的。因此,颚式破碎机机构优化设计是保证破碎机有最佳性能的根本方法。借助其中机构优化设计模块对各种规格的破碎机进行优化设计,得到了最佳的动颚运动特性。 3 优点 1、有效解决了原来石灰石破碎机因产量低导致的运转率高、无检修时间的问题。

荷载及计算参数(已修改)

荷载及计算参数选择 主讲人王卫忠 一.荷载 1.墙体荷载 注:1. 门窗洞口面积>30%时应扣除洞口面积的墙重; 2. 计算梁上线荷应扣除梁高; 3.墙体线荷已包括面层,但若有外挂石材则应另考虑; 4. 当墙直接布置在楼板上,整体计算时,双向板可把墙均匀布于板跨,单向板可布置虚梁导荷;计算楼板 时应按《全国民用建筑工程设计技术措施》第2.7.1~2.7.3条(P18),分不同情况分别计算。 顶棚可统一按0.35 KN/m2,如考虑抹灰可按0.5 KN/m2. 2.消防车荷载(双向板)(KN/m2) 当符合《荷载规范》4.4.1条的条件时,双向板按表中荷载取值,当有覆土时,按表2-1取值,同时应按表2-2考虑动力系数。(计算梁时,宜考虑折减)。

(按满载总重为300KN车辆考虑) 3.施工荷载 地下室顶板室外部分宜考虑10KN/m2、室内(一般指住宅楼平面范围内)部分宜考虑5KN/m2的施工荷载。其与覆土、消防车活荷及人防荷载不同时考虑,且应在施工图中注明相关要求。当室内部分考虑施工荷载时,室内隔墙可不考虑。 4.屋顶荷载 一般屋面顶花园、地下室顶板为景观绿化时,其活荷载取3 KN/m2,其覆土容重宜按18KN/m3计算。当有大型构筑物、景观小品或树木时,可再另外计算,一般树木可按3 KN/m2。考虑。裙房屋顶宜考虑4KN/m2的施工荷载。屋面找坡时,找坡填料应在图中注明(一般按陶粒混凝土容重计算,如另有做法,单独核算)。

二.计算参数 PKPM程序现在有很多计算参数是由设计人员来填写。程序放开这些参数有两个原因,首先就是要让设计人员真正的掌握工程的设计过程,能够尽可能的控制设计过程。其次就是要把一些关键的责任交由设计人员来负,程序只能起到设计工具的作用,不能代替设计。所以就需要我们的结构设计人员充分的理解程序的适用范围、条件和校对结果的合理性、可靠性。《高层建筑混凝土结构技术规程》的5.1.16条要求“对结构分析软件的计算结果,应进行分析结果判断,确认其合理、有效后方可作为工程设计的依据”。PKPM 说明书也特别声明:使用者必须了解程序的假定并必须独立地核查结果。 SATWE设计参数 设计参数的合理确定至关重要。 SATWE前处理----接PM生成SATWE数据菜单共13项,重点是1、2两项。 (一)、SATWE前处理——接PMCAD生成SATWE数据 分析与设计参数定义 总信息 1、水平力与整体坐标夹角(度):一般取0o和>15o的斜交方向。如体型复杂,可改变此数,使之按最大受力方向,近似可按地震力最大作用方向取(在WZQ.OUT中,逆时针为正。)。必须注意的是:风荷载体型系数也应相应修改。 2、混凝土容重:隐含值25。构件自重计算梁板、梁柱重叠部分都未扣除,框架结构可行,剪力墙、板柱结构偏小。按公司规定一般取27。在自重荷载有利的情况下,宜取24。 3、钢材容重:隐含值78。可行。 4、裙房层数:按实际情况。(不含地下室) 高规及抗规规定:与主楼连为整体的裙楼的抗震等级不应低于主楼的抗震等级,主楼结构在裙房顶部上下各一层应适当加强抗震构造措施。包括剪力墙底部加强部位等。 5、转换层所在层号:按自然层号填输,(含地下室的层数)。该指定为程序决定底部加强部位及转换层上下刚度比的计算和内力调整提供信息,同时,当转换层号大于等于

机械原理课程设计—颚式破碎机设计说明书

目录 一设计题目 (1) 二已知条件及设计要求 (1) 2.1已知条件 (1) 2.2设计要求 (2) 三. 机构的结构分析 (2) 3.1六杆铰链式破碎机 (2) 3.2四杆铰链式破碎机 (2) 四. 机构的运动分析 (2) 4.1六杆铰链式颚式破碎机的运动分析 (2) 4.2四杆铰链式颚式破碎机的运动分析 (6) 五.机构的动态静力分析 (7) 5.1六杆铰链式颚式破碎机的静力分析 (7) 5.2四杆铰链式颚式破碎机的静力分析 (12) 六. 工艺阻力函数及飞轮的转动惯量函数 (17) 6.1工艺阻力函数程序 (17) 6.2飞轮的转动惯量函数程序 (17) 七 .对两种机构的综合评价 (21) 八 . 主要的收获和建议 (22) 九 . 参考文献 (22)

一.设计题目:铰链式颚式破碎机方案分析 二.已知条件及设计要求 2.1已知条件 图1.1 六杆铰链式破碎机图1.2 工艺阻力 图1.3四杆铰链式破碎机 图(a)所示为六杆铰链式破碎机方案简图。主轴1的转速为n1 = 170r/min,各部尺寸为:lO1A = 0.1m, lAB = 1.250m, lO3B = 1m, lBC = 1.15m, lO5C = 1.96m, l1=1m, l2=0.94m, h1=0.85m, h2=1m。各构件质量和转动惯量分别为:m2 = 500kg, Js2 = 25.5kg?m2, m3 = 200kg, Js3 = 9kg?m2, m4 = 200kg, Js4 = 9kg?m2, m5=900kg, Js5=50kg?m2, 构件1的质心位于O1上,其他构件的质心均在各杆的中心处。D为矿石破碎阻力作用点,设LO5D = 0.6m,破碎阻力Q在颚板5的右极限位置到左极限位置间变化,如图(b)所示,Q力垂直于颚板。 图(c)是四杆铰链式颚式破碎机方案简图。主轴1 的转速n1=170r/min。lO1A = 0.04m, lAB = 1.11m, l1=0.95m, h1=2m, lO3B=1.96m,破碎阻力Q的变化规律与六杆铰链式破碎机相同,Q力垂直于颚板O3B,Q力作用点为D,且lO3D = 0.6m。各杆的质量、转动惯量为m2 = 200kg, Js2=9kg?m2,m3 = 900kg, Js3=50kg ?m2。曲柄1的质心在O1 点处,2、3构件的质心在各构件的中心。

相关文档
最新文档