曲面立体投影及表面上求点
合集下载
工程制图_05平面立体的投影与曲面立体的投影(含截交线和螺旋面)

截平面定位尺寸 60°
应标注立体的原形尺寸
和切口截平面的定位尺
寸,不注切口截交线的
Ø
定形尺寸。
JK系列
切 口 立 体 尺 寸 注 法
截平面定位尺 寸
截平面定位尺寸 SR
平面立体的截交线
截平面:截切立体的平面称为截平面。
JK系列
平 面 立 体 的 截 交 线
截交线:截平面与立体表面的交线称为截交线。
圆球的三个投影均为等径圆,并且是圆球上平行于相应 投影面的最大轮廓圆。H面投影的轮廓圆是上、下两半球的可 见性分界线,V面投影的轮廓圆是前、后两半球的可见性分界 线,W面投影的轮廓圆是左、右两半球的可见性分界线.
JK系列
圆球面上取点
A点在右前上方 B、C点在球面
的球面上
的赤道圆上
VW
a
(a")
a
( a)"
面 的 圆
dc
d"(c")
D
C
例 1 0
R2
a"(b")
B
ab
A
JK系列
[例11] 补绘四分之一圆球被切割后的H、W投影。
例
1
1
圆球的截交线
都是圆
JK系列
圆柱螺旋线 形成:一动点沿一直线等速移动,而该直线同时绕 螺旋面
螺 线旋
与它平行的一轴线等速旋转时动点的轨迹。
投影:H面投影为圆周,V面投影为正曲线。注意后半圆柱的 螺旋线不可见,
圆
截平面与柱轴平行 截平面与柱轴斜交
矩形
椭圆
投 影 图 与 立 体 图
截平面
截平面
截平面
[例1] 带凸截口圆柱的画法.
基本立体的投影及其表面取点

因点M所在表面△SAB为一般位置平面,所以可以利用辅助线法来
作图。
(a)
图3.5 正三棱锥表面取点
(b)
方法一:过M点在△SAB上作AB的辅助平行线ⅠM,即1’m’‖a’b’,再作1m‖ab,求出m, 再根据m、m求出m″(如图3.5a)所示;
方法二:过锥顶S和点M作一辅助线SⅡ,然后求出点M的水平投影m(如图3.5b)。 可见性判断:同棱柱。
2.圆锥 (1) 圆锥的形成 如图3.8a可知,圆锥的表面由圆锥曲面和底面圆组成。圆锥面可以看成是一直线OA绕与 其相交的轴线OO1旋转而成。圆锥面上通过锥顶S的任一直线都是圆锥面的素线。
(a) (c)
(b) 图3.8 圆锥的投影
(2)投影分析 由图3.8b可知,底面平行于H面的圆锥,其正面投影和侧面投影
(3)画法 首先画出圆柱在各个投影位置上的轴线和底圆的对称中心线,其 次画出投影为圆的圆的视图——俯视图,最后根据圆柱高及投影的 外形轮廓素线画出其余两个视图。注意:绘制回转体投影时,必须 画出轴线和对称中心线。根据国家标准的规定,轴线和对称中心线 应采用细点画线画出,且要超出轮廓线2~5 mm,如图3.6c所示。 (4)圆柱表面上取点 轴线处于特殊位置的圆柱,其圆柱面在与轴线垂直的投影面上的
1.2曲面立体的投影及其表面上取点 表面均为曲面,或由曲面和平面共同围成的基本立体称为曲面立体。常见的曲面立体多为
回转体。回转体是由一母线(直线或曲线)绕以固定的轴线ห้องสมุดไป่ตู้回转运动所形成。常见的回 转体包括圆柱、圆锥、圆环和球等。
1.圆柱 (1)圆柱的形成 圆柱体表面是由圆柱面和上下两圆形底面所组成。圆柱面可以看成是由直线AA1绕与它平 行的轴线OO1旋转而成的回转面,如图3.6a所示。直线AA1为母线,它在圆柱面上任一位 置称为素线。
作图。
(a)
图3.5 正三棱锥表面取点
(b)
方法一:过M点在△SAB上作AB的辅助平行线ⅠM,即1’m’‖a’b’,再作1m‖ab,求出m, 再根据m、m求出m″(如图3.5a)所示;
方法二:过锥顶S和点M作一辅助线SⅡ,然后求出点M的水平投影m(如图3.5b)。 可见性判断:同棱柱。
2.圆锥 (1) 圆锥的形成 如图3.8a可知,圆锥的表面由圆锥曲面和底面圆组成。圆锥面可以看成是一直线OA绕与 其相交的轴线OO1旋转而成。圆锥面上通过锥顶S的任一直线都是圆锥面的素线。
(a) (c)
(b) 图3.8 圆锥的投影
(2)投影分析 由图3.8b可知,底面平行于H面的圆锥,其正面投影和侧面投影
(3)画法 首先画出圆柱在各个投影位置上的轴线和底圆的对称中心线,其 次画出投影为圆的圆的视图——俯视图,最后根据圆柱高及投影的 外形轮廓素线画出其余两个视图。注意:绘制回转体投影时,必须 画出轴线和对称中心线。根据国家标准的规定,轴线和对称中心线 应采用细点画线画出,且要超出轮廓线2~5 mm,如图3.6c所示。 (4)圆柱表面上取点 轴线处于特殊位置的圆柱,其圆柱面在与轴线垂直的投影面上的
1.2曲面立体的投影及其表面上取点 表面均为曲面,或由曲面和平面共同围成的基本立体称为曲面立体。常见的曲面立体多为
回转体。回转体是由一母线(直线或曲线)绕以固定的轴线ห้องสมุดไป่ตู้回转运动所形成。常见的回 转体包括圆柱、圆锥、圆环和球等。
1.圆柱 (1)圆柱的形成 圆柱体表面是由圆柱面和上下两圆形底面所组成。圆柱面可以看成是由直线AA1绕与它平 行的轴线OO1旋转而成的回转面,如图3.6a所示。直线AA1为母线,它在圆柱面上任一位 置称为素线。
曲面立体的三视图及其表面取点

a
sc
b
2.在圆锥表面取点
s
s
(1) 特殊位置点
已知棱锥表面上点 的投影1、2、3, 求其它两面投影。
SO
A O1
(2)
1
a
3
b(d) d
a 1
2 s
(3)
b
2
c d
1 3 b
a ( c )
c
(2) 一般位置点
已知圆锥表面上点的投影1、2,求其它两面投影。
曲面立体及表面点的三视图投影
回顾基本几何体的分类
根据几何体的表面几何性质,基本几何体可分 为 哪两类:
1、平面立体 2、曲面立体
1:平面立体的定义 表面都是由平面所构成的形体,如棱柱、
棱锥等
2:曲面立体的定义 表面是由曲面和平面 或者 全部由曲面构
成的形体。 如圆柱、圆锥、球体、圆环等
圆的直 径一般 注在投 影为非 圆的视 图上。
尺寸应 尽量注 在反映 形状特 征的视 图上,
圆的直 径一般 注在投 影为非 圆的视 图上。
() ()
1.平面立体的尺寸标注
课堂小结
2. 曲面体的尺寸标注
课堂小结
k
1
(m)
1
基本几何体的 尺寸标注
任何物体都具有长宽高三个方向的尺寸。 在视图上标注基本几何体的尺寸时,怎样 才能将三个方向的尺寸标注齐全,既不能 少,而又不重复标注呢?
尺寸应 尽量注 在反映 基本形 体形状 特征的 视图上。
尺寸应 尽量注 在反映 基本形 体形状 特征的 视图上。
尺寸应 尽量注 在反映 形状特 征的视 图上,
曲面立体的投影

线上,如图4-13(b)所示。因圆柱水平投影具有积聚性,
所以这三点的水平投影一定都在圆上,根据其位置判断
可见性即可,再根据三等关系即可求出侧面投影。
Page 22
单击此处编基辑母本版体标的题样投式影
曲面立体的投影
Page 23
作图步骤如下:点a′为可见点,根据点a′的位置分析,其侧面投影 位于前轮廓线素线上,可过点a′作水平线交前轮廓素线于一点(即a″点), 根据三等关系可求出水平投影a。同理,c′点位于右轮廓素线上,根据 水平投影的积聚性,从c′点向圆柱水平投影作垂线交于一点即为c点, 根据三等关系可求出点c″的位置,其侧面投影为不可见点,需要用小 括号括起来。b′点位于后左平面上,根据水平投影的积聚性,从b′点向 圆柱水平投影作垂线交于一点即为b点,再根据三等关系可求出点b″的 位置。
单击此处编基辑母本版体标的题样投式影
曲面立体的投影
1.素线法 圆锥面由许多素线组成,圆锥面上任一点必在经过该点的素线 上,因此只要求出过该点素线的投影,即可求出该点的投影。 2.纬圆法 由回转面的形成可知,母线上任一点的运动轨迹为圆,且该圆 垂直于旋转轴线,这样的圆称为纬圆。圆锥体上任一点一定在与其 等高的纬圆上,因此可借助该点的纬圆求出该点的投影。
曲面立体的投影
2.投影分析 (1)俯视图。俯视图为一个圆,其投影的轮廓线是球的 最大水平面①的投影。球被分为上、下两部分,上部分可见, 下部分不可见。 (2)主视图。主视图为一个圆,其投影的轮廓线是球的 最大正平面②的投影。球被分为前、后两部分,前部分可见, 后部分不可见。 (3)左视图。左视图为一个圆,其投影的轮廓线是球的 最大侧平面③的投影。球被分为左、右两部分,左部分可见, 右部分不可见。
Page 29
立体的投影—曲面立体的投影(工程制图)

圆锥体的投影分析 (回转轴垂直于H面)
圆锥由圆锥面和底圆围成 圆锥面是无数多条素线的集合
圆锥体的投影分析 (回转轴垂直于H面)
水平投影是一个圆,这个圆是圆锥底圆和 圆锥面的重合投影,反映底圆的实形,其半径 等于底圆的半径,回转轴的投影积聚在圆心上, 锥顶的投影也落在圆心上(通常用细点画线画 出十字对称中心线) 。
正面投影和侧面投影是两个相等的等腰三角形, 高度等于圆锥的高度,底边长等于圆锥底圆的 直径(回转轴的投影用细点画线来表示) 。
圆柱体的投影分析 (回转轴垂直于H面)
正面投影的左、右边线分别是圆锥最左、 最右的两条轮廓素线的投影,这两条素线把 圆柱分为前、后两半,他们在W面上的投影 与回转轴的投影重合,在H面上的投影与圆 的水平中心线重合。
侧面投影的左、右边线分别是圆锥最前、 最后的两条轮廓素线的投影,这两条素线把 圆柱分为左、右两半,他们在V面上的投影 与回转轴的投影重合,在H面上的投影与圆 的竖直中心线重合。
球体的投影分析
球体的投影分析
半圆面绕其直经为轴旋转运动的轨迹称为圆球体。 半圆线旋转运动的轨迹是球面,即圆球的表面。
球体的投影分析
《工程制图》
素线求解圆锥体表面的点
素线求解圆锥体表面的点
素线求解圆锥体表面的点
圆锥表面取点
圆锥表面取点
素线法、纬圆法
s'
s"
a'
a"
1'
s
a 1
《工程制图》
回转曲面的有关概念
O 回转轴
母线 O1
纬圆
素线:母线在曲面上的任意位置 都称为素线。
纬圆:母线上任意点的运动轨迹 都是一个垂直于回转轴且中心在 回转轴上的圆,这种圆就称为纬 圆。
最新土木第4章-基本立体投影及表面取点课件PPT

一圆周绕自身的一直径旋转一周即形成圆球,形成的回转 面称为圆球面。平面与球面的交线为一个圆,称为纬圆。
圆母线
纬圆
轴线
点击图片播放视频 圆球的形成
4.2 曲面立体投影、表面取点
1、投影分析
➢ 轮➢廓球素的线三(个圆投周影A均EC为F圆),平
行于其正直立径投与影圆面球,的把球圆面球直分径为 前半相球等可。见这,三后个半圆球是不圆可球见上; ➢行于轮三 的水廓个投平素不影投线同。影(方面圆向,周的把A轮B圆C廓球D纬)分圆平为 上半球可见,下半球不可见; ➢ 轮廓素线(圆周BEDF)平 行于侧立投影面,把圆球分为 左半球可见,右半球不可见。
公司法所设置的义务应承担 的法律后果, 包括民事责任、行政责任、刑事责任。
1、民事责任——私法责任 主要基于保护公司、股东以及相关主 体的利益不受侵害的目的,是对违法行为 损害的利益关系进行的恢复,反映的是责 任人和相对人的关系,具有救济性和事后 补偿的功能。
法律责任概述
2、行政责任和刑事责任——公法责任 公司法设置行政责任和刑事责任,主要基
n m
4.2 曲面立体投影、表面取点
曲面立体:形体的表面都由曲面或曲面与平面组成 的立体,包括圆柱、圆锥、圆球和圆环。
4.2 曲面立体投影、表面取点
① 圆柱的投影及表面取点
➢ 圆柱由一平行于轴线的母线绕轴线旋转一周形成。 ➢ 圆柱有两个底面和一个回转面。 ➢ 圆柱面的素线都与轴线平行,所有纬圆的直径相同。
形。
4.2 曲面立体投影、表面取点
绘图步骤:
s
●
●s
(1) 绘制轴线和圆的对称中心线
的投影 ;
(2) 绘制圆锥的水平投影(圆) ;
(3) 绘制圆锥的正面和侧面投影
圆母线
纬圆
轴线
点击图片播放视频 圆球的形成
4.2 曲面立体投影、表面取点
1、投影分析
➢ 轮➢廓球素的线三(个圆投周影A均EC为F圆),平
行于其正直立径投与影圆面球,的把球圆面球直分径为 前半相球等可。见这,三后个半圆球是不圆可球见上; ➢行于轮三 的水廓个投平素不影投线同。影(方面圆向,周的把A轮B圆C廓球D纬)分圆平为 上半球可见,下半球不可见; ➢ 轮廓素线(圆周BEDF)平 行于侧立投影面,把圆球分为 左半球可见,右半球不可见。
公司法所设置的义务应承担 的法律后果, 包括民事责任、行政责任、刑事责任。
1、民事责任——私法责任 主要基于保护公司、股东以及相关主 体的利益不受侵害的目的,是对违法行为 损害的利益关系进行的恢复,反映的是责 任人和相对人的关系,具有救济性和事后 补偿的功能。
法律责任概述
2、行政责任和刑事责任——公法责任 公司法设置行政责任和刑事责任,主要基
n m
4.2 曲面立体投影、表面取点
曲面立体:形体的表面都由曲面或曲面与平面组成 的立体,包括圆柱、圆锥、圆球和圆环。
4.2 曲面立体投影、表面取点
① 圆柱的投影及表面取点
➢ 圆柱由一平行于轴线的母线绕轴线旋转一周形成。 ➢ 圆柱有两个底面和一个回转面。 ➢ 圆柱面的素线都与轴线平行,所有纬圆的直径相同。
形。
4.2 曲面立体投影、表面取点
绘图步骤:
s
●
●s
(1) 绘制轴线和圆的对称中心线
的投影 ;
(2) 绘制圆锥的水平投影(圆) ;
(3) 绘制圆锥的正面和侧面投影
曲面体投影及其表面上点投影作图

求曲面体表面上点的投影:先分析这个空间点在曲面体的前、后、左、右、上、下哪半个部 分上,是可见的还是不可见的, 然后再展开找点的投影,方法有辅助素线法,辅助纬圆法,先作 出辅助素线或辅助纬圆的三个投影,再在辅助素线或纬圆上找点的投影。
工程上常见的零件形体多数具有立体被平面切割所形成 的截交线,或两立体相交而形成的相贯线、为了更好地正确、 快捷绘制好汽车零件、部件图; 有必要学习基本几何体的投 影画法,立体表面上点的投影作图、截交线和相贯线的画法。
学习目标
1 项目描述
1
(1)学习基本几何体的投影及立体表面上点、线的投影;
知识
2
13 知 识 准 备
三 圆球
圆球面可看作为由一条圆母线绕其直径回转而成,如常见的蓝球、足球、排球等。 1. 投影分析
圆球的三面投影都是圆,直径与球直径相等,如图 3-16所示。
13 知 识 准 备
三 圆球
主视图的投影是圆,它是圆球面前半部分与后半部分的分界线,而且在俯视图和左视图投 影都为中心线,前半部分可见,后半部分不可见。
如在图A34-1图1 幅所上示按:补1画∶三1视的图比,例并绘作制出支立架体零表 面件上平点面M轮、廓N图形的,另如两图个投1影 ̄。7 所示。
图 3-11 补画三视图
2 任务目标
1 能画出曲面体的三面投影视图。 2 能作出曲面体表面上点的投影。
建议学时:2学时。
13 知 识 准 备
一 圆柱
常见的曲面立体是回转体,就是表面有回转曲面的立体。 曲面体常见的有圆柱、圆锥、圆 环和圆球。 曲面立体的投影,实质上是构成该体的所有表面的投影总和。
《汽车机械制图》
1 平面体投影及其表面上点投影作图 基曲面体投影及其表面上点投影作图 2 3 体立体表面交线绘制
工程上常见的零件形体多数具有立体被平面切割所形成 的截交线,或两立体相交而形成的相贯线、为了更好地正确、 快捷绘制好汽车零件、部件图; 有必要学习基本几何体的投 影画法,立体表面上点的投影作图、截交线和相贯线的画法。
学习目标
1 项目描述
1
(1)学习基本几何体的投影及立体表面上点、线的投影;
知识
2
13 知 识 准 备
三 圆球
圆球面可看作为由一条圆母线绕其直径回转而成,如常见的蓝球、足球、排球等。 1. 投影分析
圆球的三面投影都是圆,直径与球直径相等,如图 3-16所示。
13 知 识 准 备
三 圆球
主视图的投影是圆,它是圆球面前半部分与后半部分的分界线,而且在俯视图和左视图投 影都为中心线,前半部分可见,后半部分不可见。
如在图A34-1图1 幅所上示按:补1画∶三1视的图比,例并绘作制出支立架体零表 面件上平点面M轮、廓N图形的,另如两图个投1影 ̄。7 所示。
图 3-11 补画三视图
2 任务目标
1 能画出曲面体的三面投影视图。 2 能作出曲面体表面上点的投影。
建议学时:2学时。
13 知 识 准 备
一 圆柱
常见的曲面立体是回转体,就是表面有回转曲面的立体。 曲面体常见的有圆柱、圆锥、圆 环和圆球。 曲面立体的投影,实质上是构成该体的所有表面的投影总和。
《汽车机械制图》
1 平面体投影及其表面上点投影作图 基曲面体投影及其表面上点投影作图 2 3 体立体表面交线绘制
立体表面上点的投影PPT课件

平移
当立体表面沿某个方向移动时,其上的点也会相应地移动,导致投 影点的位置发生变化。
缩放
当立体表面按比例放大或缩小时,其上的点也会相应地放大或缩小 ,导致投影点的位置发生变化。
THANKS
感谢观看
投影的平移
总结词
平移是移动投影中心到新的位置,但不改变投影平面的方向。
详细描述
在投影变换中,平移是指将投影中心移动到新的位置,但不改变投影平面的方向。通过平移,可以改 变投影中心的位置,使得立体表面上的点在投影平面上呈现不同的位置。平移操作不会改变点在立体 表面上的位置和方向,只是改变了投影中心的位置。
05
CATALOGUE
立体表面上的点与投影的关系
点与投影的对应关系
投影线与投影面
每个点在立体表面上有且仅有一 条投影线,该线与投影面相交于 一点,该点即为该点在投影面上 的投影。
唯一性
一个点在投影面上的投影位置唯 一确定,反之亦然,即每个投影 点都对应立体表面上的一个点。
点与投影的度量关系
距离关系
04
详细描述
投影与原点连线与曲面相切,并且投 影与原点之间的连线与曲面内的任意 一条线段都垂直。
06
详细描述
投影与原点连线长度保持不变,即投影与原点 之间的距离等于原点到曲面的垂直距离。
点在多个面上的投影
总结词
确定点在多个面上的投影位 置
详细描述
当一个点位于多个平面的交 线上时,其投影将位于这些 平面的交线上,并且与原点
具有相同的距离。
总结词
投影与原点连线垂直于所有平面
详细描述
投影与原点连线垂直于所有相关平面,并 且投影与原点之间的连线与所有平面内的 任意一条线段都垂直。
当立体表面沿某个方向移动时,其上的点也会相应地移动,导致投 影点的位置发生变化。
缩放
当立体表面按比例放大或缩小时,其上的点也会相应地放大或缩小 ,导致投影点的位置发生变化。
THANKS
感谢观看
投影的平移
总结词
平移是移动投影中心到新的位置,但不改变投影平面的方向。
详细描述
在投影变换中,平移是指将投影中心移动到新的位置,但不改变投影平面的方向。通过平移,可以改 变投影中心的位置,使得立体表面上的点在投影平面上呈现不同的位置。平移操作不会改变点在立体 表面上的位置和方向,只是改变了投影中心的位置。
05
CATALOGUE
立体表面上的点与投影的关系
点与投影的对应关系
投影线与投影面
每个点在立体表面上有且仅有一 条投影线,该线与投影面相交于 一点,该点即为该点在投影面上 的投影。
唯一性
一个点在投影面上的投影位置唯 一确定,反之亦然,即每个投影 点都对应立体表面上的一个点。
点与投影的度量关系
距离关系
04
详细描述
投影与原点连线与曲面相切,并且投 影与原点之间的连线与曲面内的任意 一条线段都垂直。
06
详细描述
投影与原点连线长度保持不变,即投影与原点 之间的距离等于原点到曲面的垂直距离。
点在多个面上的投影
总结词
确定点在多个面上的投影位 置
详细描述
当一个点位于多个平面的交 线上时,其投影将位于这些 平面的交线上,并且与原点
具有相同的距离。
总结词
投影与原点连线垂直于所有平面
详细描述
投影与原点连线垂直于所有相关平面,并 且投影与原点之间的连线与所有平面内的 任意一条线段都垂直。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.曲面立体投影及表面上求点
由圆锥的投影图可知,其图形特征是:一个投影为圆,其他两个投影为两个相等 的等腰三角形。
(4)取属于圆锥表面的点的投影 根据圆锥表面的结构特点,求属于圆锥表面的点的投影时,要根据给定的条
件,分析清楚点是位于底平面,还是圆锥面。若点位于底平面,则要利用底平面是 特殊位置平面,其投影图形有积聚的特点去求得点的投影;若点位于圆锥面,由于圆 锥表面的投影图没有积聚性,则要用辅助素线法或者辅助圆法去求得点的投影。
7.曲面立体投影及表面上求点
图3-12 求属于圆锥表面的点的投影的两种方法
②用辅助圆法 如图3-12(a)所示过M点作一个平行于底平面的圆,在投影图中求出该圆的正 面投影和水平投影,如图3-12(c)所示,M点的水平面上投影m由m′按长对正的 投影对应关系落在直径为23圆周上,M点的侧面投影m″,则由m、m′按宽相等、 高平齐的投影对应关系求出。因M点在圆锥的左前面上,所以三个投影都可见。
7.曲面立体投影及表面上求点
2.圆锥 (1)圆锥的形成
圆锥是由一条与轴线斜交的直母线绕轴线回转一周而围成的立体,锥面上任意 位置的直母线,称为圆锥表面的素线,如图3-11(a)所示。
(2)作图步骤 ①分析 如图3-11(b)所示,圆锥底面是水平面,俯视图为圆,圆锥面俯视图投影重影
在圆锥底面画上,其主视图和左视图为等腰三角形,其两腰分别为圆锥表面上的最 左、最右、最前、最后一素线,是圆锥表面在主视图和左视图上可见性的分界线。
②作图 • 先画出圆锥的轴线、圆的中心线的三个投影,以确定圆锥各图形的位置,如图
3.11(c)所示。 • 其次画出底平面的三个投影图及锥顶的投影图,如图3.11(d)所示。 • 最后画出圆锥面各转向轮廓线的V面投影和W面投影,如图3-11(e)所示。
7.曲面立体投影Байду номын сангаас表面上求点
图3-11 圆锥的结构特征及投影作图过程
7.曲面立体投影及表面上求点
图3-9 圆柱的结构特征及投影作图过程
7.曲面立体投影及表面上求点
②作图 • 首先画出圆的中心线和圆柱的轴线,以确定各投影图形的位置,如图3-9(c) 所示。 • 其次画出上下两个底面的三个投影,如图3-9(c)所示。 • 最后画出最左素线AA1 ,最右素线BB1 的V面投影a′a1 ′及b′b1 ′和最前、 最后素线的W面投影,如图3-9(d)所示。
曲面立体投影及表面上求点
路漫漫其悠远
少壮不努力,老大徒悲伤
7.曲面立体投影及表面上求点
• 目的:掌握圆柱、圆锥、球体的投影作图 方法及表面求点方法
• 重点:圆柱、圆锥的投影画法及表面求点 方法
• 难点:投影分析及表面求点方法
7.曲面立体投影及表面上求点
3.1.2 曲面立体
1.圆柱 (1)圆柱的形成 圆柱是由一条直母线绕平行于它的轴线回转一周围成的立体,其圆柱面上任意一 条平行于轴线的直线,称为圆柱表面的素线。如图3-9(a)所示。 (2)作图步骤 ①分析 如图3-9(b)所示,圆柱上、下底面为水平面,在俯视图投影反映实形是圆,圆 柱表面所有素线均为铅垂线在H面的投影积聚在圆上,其主视图和左视图上的轮廓线为 圆柱表面上最左、最右、最后轮廓线的投影,是圆柱表面在主视图和左视图上可见性 的分界线。
图3-10 求属于圆柱表面的点的投影
作图: 由给定的m′的位置和可见性,可以判定M点位于左前四分之一圆柱面上,所以 求M点的投影作图过程是:首先利用圆柱面在H面的投影的积聚性,按长对正的投影 对应关系求出积聚于圆周的m,然后分别由m及m′,按高平齐、宽相等的投影对应 关系求出m″。求N点的投影作图过程读者可参考上例自行分析。其投影的可见性如 图3-10所示。
例3.4 已知点M属于圆锥表面,并知M点的正面投影m′,分别用辅助素线法和 辅助圆法求M点的其他两投影面的投影m,m″,如图3-12所示。
作图: ①用辅助素线法 根据m′的位置和可见性,可判定M点位于圆锥面,由于圆锥面的投影图没有 积聚性,利用辅助素线法,如图3-12(a)所示过锥顶S和点M作一条辅助素线SⅠ, 在图3.12(b)中连接s′m′,并延长到与底平面的正面投影相交于1′,求得s1 和s″1″;再根据点属于直线的判断依据,按长对正由m′求出m,按高平齐或宽相 等由m′或m求出m″。
(3)图形特征 由圆柱的投影可知,其图形特征是:一个投影为圆,其他两个投影为相等的矩 形。 (4)属于圆柱表面的点的投影 圆柱共有三个表面,至少有一个投影有积聚性,所以,求属于圆柱表面的点的 投影,无论其在哪个表面上,都可以利用积聚性去求得。
7.曲面立体投影及表面上求点
例3.3 已知点M和点N属于圆柱表面,并知点M在V面投影m′及点N在W面的投 影n″,求M点和N点的另两面投影,如图3-10所示。
7.曲面立体投影及表面上求点
3.圆球 (1)圆球的形成
圆球是由一圆母线绕其直径回转一周而围成的立体,如图3-13(a)所示。 (2)作图步骤
①分析 如图3-13(b)所示圆球表面只有一个面,其三视图均为大小相等的圆,H面投 影的圆将圆球分为上下两部分,V面投影的圆将圆球分为前后两部分,W面投影的圆 将圆球分为左右两部分。三个圆分别是圆球表面在主视图、俯视图和左视图投影可 见性的分界线。 ②作图 • 首先画出三个圆的中心线,用以确定投影图形的位置,如图3-13(c)所示。 • 再画出球的各分界圆的图形,如图3-13(d)所示。 • 明确各分界圆在其他两投影面的投影,均与圆图形相应的中心线重合,不必画 出。 (3)图形特征 圆球投影图的特征是:三个投影面的投影都是直径相等的圆。 (4)取属于圆球表面的点的投影 由圆球投影图形特征可知,圆球表面的三个投影图形都没有积聚性,可利用辅助 圆法求取属于其表面的点的投影。
7.曲面立体投影及表面上求点
图3-13 圆球的结构特征及投影作图过程