北京工业大学自动控制原理实验八 基于MATLAB的PID控制研究

北京工业大学自动控制原理实验八  基于MATLAB的PID控制研究
北京工业大学自动控制原理实验八  基于MATLAB的PID控制研究

实验八 基于MATLAB 的PID 控制研究

一、 实验目的:

1 理解PID 的基本原理

2 研究PID 控制器的参数对于系统性能的影响

二、 实验设备

1 pc 机一台(含有软件“matlab ”) 三、 实验内容

1 利用matlab 软件,针对控制对象设计单闭环PID 控制系统

2 通过调节PID 控制器的参数,研究PID 控制参数对系统性能的影响

四、 实验原理 1 PID 的原理

单闭环PID 的控制系统的作用框图如下:

比例(P)控制

比例控制是一种最简单的控制方式,其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差(Steady-state error)。

比例控制作用及时,能迅速反应误差,从而减小稳态误差。但是,比例控制不能消除稳态误差。其调节器用在控制系统中,会使系统出现余差。为了减少余差,可适当增大P K ,

P K 愈大,余差就愈小;但P K 增大会引起系统的不稳定,使系统的稳定性变差,容易产生

振荡。

积分(I)控制

在积分控制中,控制器的输出与输入误差信号的积分成正比关系。

输入

积分控制的作用是消除稳态误差。只要系统有误差存在,积分控制器就不断地积累,输出控制量,以消除误差。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因而,只要有足够的时间,积分控制将能完全消除误差,使系统误差为零,从而消除稳态误差。积分作用太强会使系统超调加大,甚至使系统出现振荡。

微分(D)控制

在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。

自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。

微分控制能够预测误差变化的趋势,可以减小超调量,克服振荡,使系统的稳定性提高。同时,加快系统的动态响应速度,减小调整时间,从而改善系统的动态性能。

PID控制规律是一种较理想的控制规律,它在比例的基础上引入积分,可以消除余差,再加入微分作用,又能提高系统的稳定性。它适用于控制通道时间常数或容量滞后较大、控制要求较高的场合,如温度控制、成分控制等。

下图为单位阶跃作用下,各个调节系统的阶跃响应曲线

图1 阶跃响应整定法设计的P、PI、PID控制阶跃响应

五、实验步骤

1 启动matlab里面的simulink命令,新建一个model文件

2设定受控对象

1

()

(51)(21)(101)

G s

s s s

=

+++

构建单位负反馈PID闭环控制系统

3设定Kp= 1 Ki=0Kd观察记录其单位阶跃响应曲线

图2 设计Kp= 1 Ki=0Kd时的PID控制器的模拟系统

图3 Kp= 1 Ki=0Kd时的单位阶跃响应曲线

4

图4 设计Kp= 2 Ki=0Kd时的PID控制器的模拟系统

图5 Kp= 2 Ki=0Kd时的单位阶跃响应曲线

据图可知其超调量Mp= 上升时间tr= 稳态误差ess=

图6 Kp= 4 Ki=0Kd时的单位阶跃响应曲线据图可知其超调量Mp= 上升时间tr= 稳态误差ess=

据图可知其稳态误差ess=

图8 Kp=15 Ki=0Kd时的单位阶跃响应曲线

据图可知其稳态误差ess=

5加入积分控制环节固定Kp=4 Kd,完成下表并记录其单位阶跃响应

图9Kp=4 Ki=0.1 Kd时的单位阶跃响应曲线

据图可知其超调量Mp= 调节时间ts= 稳态误差ess=

据图可知其超调量Mp=调节时间ts=稳态误差ess=

图11 Kp=4 Ki=0.3 Kd时的单位阶跃响应曲线

据图可知其超调量Mp= 调节时间ts= 稳态误差ess=

图12Kp=4 Ki=0.4 Kd时的单位阶跃响应曲线

据图可知其超调量Mp=调节时间ts=稳态误差ess=

6、加入积分控制环节固定Kp=4 Kd,完成下表并记录其单位阶跃响应

据图可知其超调量Mp=调节时间ts=稳态误差ess=

图14Kp=4 Ki=0.2Kd5时的单位阶跃响应曲线

据图可知其超调量Mp=调节时间ts=稳态误差ess=

图15Kp=4 Ki=0.2Kd10时的单位阶跃响应曲线据图可知其超调量Mp=调节时间ts=稳态误差ess=

图16Kp=4 Ki=0.2Kd50 时的单位阶跃响应曲线据图可知其超调量Mp=调节时间ts=稳态误差ess=

7 调整适合的PID,得到一条各方面均优于上述步骤的单位响应曲线

图17 经过分析各个环节在控制中的作用,反复调节寻找到一个比较优的PID 控制环节

Kp=5 Ki=0.12Kd8 时的单位阶跃响应曲线

图18 Kp=5 Ki=0.1Kd8 时的单位阶跃响应曲线

据图可知其超调量Mp=调节时间ts=稳态误差ess=

六实验报告思考题

如何减小或消除稳态误差?纯比例控制环节能否消除稳态误差?

七实验感想

自动控制原理-PID控制特性的实验研究——实验报告

自动控制原理-PID控制特性的实验研究——实验报告

2010-2011 学年第1 学期 院别: 控制工程学院 课程名称: 自动控制原理 实验名称: PID控制特性的实验研究实验教室: 6111 指导教师: 小组成员(姓名,学号): 实验日期:2010 年月日评分:

一、实验目的 1、学习并掌握利用MATLAB 编程平台进行控制系统复数域和时域仿真的方法; 2、通过仿真实验,学习并掌握应用根轨迹分析系统性能及根据系统性能选择系统参数的方法; 3、通过仿真实验研究,总结PID 控制规律及参数变化对系统性能影响的规律。 二、实验任务及要求 (一)实验任务 针对如图所示系统,设计实验及仿真程序,研究在控制器分别采用比例(P )、比例积分(PI )、比例微分(PD )及比例积分微分(PID )控制规律和控制器参数(Kp 、K I 、K D )不同取值时,控制系统根轨迹和阶跃响应的变化,总结PID 控制规律及参数变化对系统性能、系统根轨迹、系统阶跃响应影响的规律。具体实验内容如下: ) s (Y ) s (R ) 6)(2(1 ++s s ) (s G c 1、比例(P )控制,设计参数Kp 使得系统处于过阻尼、临界阻尼、欠阻尼三种状态,并在根轨迹图上选择三种阻尼情况的Kp 值,同时绘制对应的阶跃响应曲线,确定三种情况下系统性能指标随参数Kp 的变化情况。总结比例(P )控制的规律。 2、比例积分(PI )控制,设计参数Kp 、K I 使得由控制器引入的开环零点分别处于: 1)被控对象两个极点的左侧; 2)被控对象两个极点之间; 3)被控对象两个极点的右侧(不进入右半平面)。 分别绘制三种情况下的根轨迹图,在根轨迹图上确定主导极点及控制器的相应参数;通过绘制对应的系统阶跃响应曲线,确定三种情况下系统性能指标随参数Kp 和K I 的变化情况。总结比例积分(PI )控制的规律。 3、比例微分(PD )控制,设计参数Kp 、K D 使得由控制器引入的开环零点分别处于: 1)被控对象两个极点的左侧; 2)被控对象两个极点之间; 3)被控对象两个极点的右侧(不进入右半平面)。 分别绘制三种情况下的根轨迹图,在根轨迹图上确定主导极点及控制器的相应参数;通过绘制

北工大考研复试班-北京工业大学控制科学与工程考研复试经验分享

北工大考研复试班-北京工业大学控制科学与工程考研复试经验分享北京工业大学(Beijing University of Technology),简称"北工大",是中国北京市人民政府直属的一所以工为主,理、工、经、管、文、法、艺术等学科门类相结合的全国重点大学,是国家"211工程"重点建设院校,入选"卓越工程师教育培养计划"、"111计划",设有研究生院和国家大学科技园。 北京工业大学创建于1960年,初设机械、电机、无线电、化工、数理5个系,历经多次整合兼并,逐渐形成了理工、经管、文法相结合的多科性体制;学校于1981年成为第一批硕士学位授予单位,1985年成为博士学位授予单位。 启道考研复式班根据历年辅导经验,编辑整理以下考研复试相关内容,希望对广大考研复试学子有所帮助,提前预祝大家复试金榜题名! 专业介绍 控制科学与工程是研究控制的理论、方法、技术及其工程应用的学科。控制科学以控制论、系统论、信息论为基础,研究各应用领域内的共性问题,即为了实现控制目标,应如何建立系统的模型,分析其内部与环境信息,采取何种控制与决策行为;而与各应用领域的密切结合,又形成了控制工程丰富多样的内容。本学科点在理论研究与工程实践相结合、学科交叉和军民结合等方面具有明显的特色与优势,对我国国民经济发展和国家安全发挥了重大作用。 招生人数与考试科目

复试时间地点 3月22日 各学院(部、所)复试安排(含相关学科/专业调剂系统开通时间、信息公示栏等)各学院(部、所)复试时间如有微调,以学院(部、所)通知为准。 复试内容 复试内容包含外语、专业课与综合面试三个方面: 外语:所有复试考生均需参加外语听、说能力的测试。测试均由各学院(部、所)、学科/专业结合专业知识在复试时进行。 专业课:专业笔试科目考生可登录我校研招网查阅。专业课全面考核考生对本学科(专业)理论知识和应用技能掌握程度,利用所学理论发现、分析和解决实际问题的能力(有条件的可测试考生实验和操作技能)。 综合面试:包括专业素质与综合素质,具体包括大学阶段学习情况及成绩、对本学科发展动态的了解、在本专业领域发展的潜力,以及分析问题能力、实际经验、人文素质、举止及礼仪、心理状况等。 每名考生面试时间不少于20分钟。 加试:对以同等学力身份报考的考生、成人教育应届本科毕业生及复试时尚未取得本科毕业证书的自考和网络教育考生(报考工商管理、公共管理专业学位的考生除外)须加试(笔试)至少2门不同于初试科目的本科主干课程。每门科目考试时间为3小时,满分为100分。 政审:所有复试考生在复试期间或复试后(4月11日前)提交《北京工业大学2018年攻读硕士学位研究生政治审查表》(见附件3)至各学院(部、所)研究生招生秘书老师处。 心理测试:所有参加复试的考生均需按学校或各学院(部、所)的安排进行心理测试。测试办法将另行通知。 复试比例 一志愿考生复试名单在北京工业大学研究生招生网及北京工业大学研究生招生微信公众号同时公布。参加复试考生以网上公布名单(不含2018已录取为我校的推免生)为准。复试采取差额复试,差额比例一般不低于120%。学校和学院(部、所)会根据各学科/专业生源情况,适当调整分专业拟招生计划。 复试成绩

自动控制原理实验报告

《自动控制原理》 实验报告 姓名: 学号: 专业: 班级: 时段: 成绩: 工学院自动化系

实验一 典型环节的MATLAB 仿真 一、实验目的 1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。 2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。 3.定性了解各参数变化对典型环节动态特性的影响。 二、实验原理 1.比例环节的传递函数为 K R K R R R Z Z s G 200,1002)(211 212==-=-=- = 其对应的模拟电路及SIMULINK 图形如图1-3所示。 三、实验内容 按下列各典型环节的传递函数,建立相应的SIMULINK 仿真模型,观察并记录其单位阶跃响应波形。 ① 比例环节1)(1=s G 和2)(1=s G ; ② 惯性环节11)(1+= s s G 和1 5.01 )(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节s s G =)(1 ⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G ⑥ 比例+积分环节(PI )s s G 11)(1+=和s s G 211)(2+= 四、实验结果及分析 图1-3 比例环节的模拟电路及SIMULINK 图形

① 仿真模型及波形图1)(1=s G 和2)(1=s G ② 仿真模型及波形图11)(1+= s s G 和1 5.01)(2+=s s G 11)(1+= s s G 1 5.01 )(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节

PID自控原理实验报告

自动控制原理实验 ——第七次实验

一、实验目的 (1)了解数字PID控制的特点,控制方式。 (2)理解和掌握连续控制系统的PID控制算法表达式。 (3)了解和掌握用试验箱进行数字PID控制过程。 (4)观察和分析在标PID控制系统中,PID参数对系统性能的影响。 二、实验容 1、数字PID控制 一个控制系统中采用比例积分和微分控制方式控制,称之为PID控制。数字PID控制器原理简单,使用方便适应性强,可用于多种工业控制,鲁棒性强。可以用硬件实现,也可以用软件实现,也可以用如见硬件结合的形式实现。PID控制常见的是一种负反馈控制,在反馈控制系统中,自动调节器和被控对象构成一个闭合回路。模拟PID控制框图如下: 输出传递函数形式: ()1 () ()p i d U s D s K K K s E s s ==++ 其中Kp为调节器的比例系数,Ti为调节器的积分常数,Td是调节器的微

分常数。 2、被控对象数学模型的建立 1)建立模型结构 在工程中遇到的实际对象大多可以表示为带时延的一阶或二价惯性环节,故PID 整定的方法多从这样的系统入手,考虑有时延的单容被控过程,其传递函数为: 0001 ()1 s G s K e T S τ-=? + 这样的有时延的单容被控过程可以用两个惯性环节串联组成的自平衡双容被控过程来近似,本实验采用该方式作为实验被控对象,如图3-127所示。 001211 ()11 G s K T S T S =? ?++ 2)被控对象参数的确认 对于这种用两个惯性环节串联组成的自平衡双容被控过程的被控对象,在工程中普遍采用单位阶跃输入实验辨识的方法确认0T 和τ,以达到转换成有时延的单容被控过程的目的。单位阶跃输入实验辨识的原理方框如图3-127所示。 对于不同的 、 和K 值,得到其单位阶跃输入响应曲线后,由 010()0.3()Y t Y =∞和020()0.7()Y t Y =∞得到1t 和2t ,再利用拉氏反变换公式得到

中国大学控制科学与工程专业大学排名和大学名单.doc

2019年中国大学控制科学与工程专业大学 排名和大学名单 中国大学控制科学与工程专业大学排名和大学名单 在最新公布的中国校友会网中国大学控制科学与工程专业大学排名和大学名单中,清华大学的控制科学与工程专业荣膺中国六星级学科专业,入选中国顶尖学科专业,位居全国高校第一;上海交通大学、浙江大学、哈尔滨工业大学、北京航空航天大学、东北大学的控制科学与工程专业荣膺中国五星级学科专业美誉,跻身中国一流学科专业。华中科技大学、山东大学、中南大学、西安交通大学、同济大学、东南大学、西北工业大学、北京理工大学、南京理工大学、国防科学技术大学等高校的控制科学与工程专业入选中国四星级学科专业,跻身中国高水平学科专业。 2014中国大学控制科学与工程专业排行榜 名次一级学科学科专业星级学科专业层次学校名称2014综合排名办学类型办学层次1控制科学与工程6星级中国顶尖学科专业清华大学2中国研究型中国顶尖大学2控制科学与工程5星级中国一流学科专业上海交通大学3中国研究型中国一流大学2控制科学与工程5星级中国一流学科专业浙江大学6中国研究型中国一流大学2控制科学与工程5星级中国一流学科专业哈尔滨工业大学20中国研究型中国一流大学2控制科学与工程5星级

中国一流学科专业北京航空航天大学21中国研究型中国一流大学2控制科学与工程5星级中国一流学科专业东北大学34中国研究型中国高水平大学7控制科学与工程4星级中国高水平学科专业华中科技大学12中国研究型中国一流大学7控制科学与工程4星级中国高水平学科专业山东大学16中国研究型中国一流大学7控制科学与工程4星级中国高水平学科专业中南大学17中国研究型中国一流大学7控制科学与工程4星级中国高水平学科专业西安交通大学18中国研究型中国一流大学7控制科学与工程4星级中国高水平学科专业同济大学22中国研究型中国一流大学7控制科学与工程4星级中国高水平学科专业东南大学25中国研究型中国一流大学7控制科学与工程4星级中国高水平学科专业西北工业大学29中国研究型中国高水平大学7控制科学与工程4星级中国高水平学科专业北京理工大学32中国研究型中国高水平大学7控制科学与工程4星级中国高水平学科专业南京理工大学49行业特色研究型中国高水平大学7控制科学与工程4星级中国高水平学科专业国防科学技术大学中国研究型中国一流大学17控制科学与工程3星级中国知名学科专业吉林大学9中国研究型中国一流大学17控制科学与工程3星级中国知名学科专业中国科学技术大学14中国研究型中国一流大学17控制科学与工程3星级中国知名学科专业南开大学15中国研究型中国一流大学17控制科学与工程3星级中国知名学科专业天津大学23中国研究型中国一流大学17控制科学与工程3星级中国知名学科专业华南理工大学27中国研究型中国高水平大学17控制科学与工程3星级中国知名学科专业湖南大学28中国研究型中国高水平大学17控制科学与工程3星级中国知名学科专业大连理工大学30中国研究型中国高水平大学17控制科学与工

PID控制实验报告,DOC

实验二数字PID 控制 计算机控制是一种采样控制,它只能根据采样时刻的偏差值计算控制量。因此连续PID 控制算法不能直接使用,需要采用离散化方法。在计算机PID 控制中,使用的是数字PID 控制器。 一、位置式PID 控制算法 按模拟PID 控制算法,以一系列的采样时刻点kT 代表连续时间t ,以矩形法数值积分近似代替积分,以一阶后向差分近似代替微分,可得离散PID 位置式表达式: 式中,D p d I p i T k k T k k == ,,e 为误差信号(即PID 控制器的输入) ,u 为控制信号(即控制器的输出)。 在仿真过程中,可根据实际情况,对控制器的输出进行限幅。 二、连续系统的数字PID 控制仿真 连续系统的数字PID 控制可实现D/A 及A/D 的功能,符合数字实时控制的真实情况,计算机及DSP 的实时PID 控制都属于这种情况。 1.Ex3设被控对象为一个电机模型传递函数Bs Js s G += 21 )(,式中 J=0.0067,B=0.1。输入信号为)2sin(5.0t π,采用PD 控制,其中5.0,20==d p k k 。采用ODE45方法求解连续被控对象方程。 因为Bs Js s U s Y s G +==21 )()()(,所以u dt dy B dt y d J =+22,另y y y y ==2,1,则?? ???+-==/J)*u ((B/J)y y y y 12221 ,因此连续对象微分方程函数ex3f.m 如下 functiondy=ex3f(t,y,flag,para) u=para; J=0.0067;B=0.1; dy=zeros(2,1); dy(1)=y(2);

控制科学与工程的二级学科以及排名

控制科学与工程 是一门研究控制的理论、方法、技术及其工程应用的学科。它是20世纪最重要的科学理论和成就之一,它的各阶段的理论发展及技术进步都与生产和社会实践需求密切相关。11世纪我国北宋时代发明的水运仪象台就体现了闭环控制的思想。到18世纪,近代工业采用了蒸汽机调速器。但直到20世纪20年代逐步建立了以频域法为主的经典控制理论并在工业中获得成功应用,才开始形成一门新兴的学科——控制科学与工程。此后,经典控制理论继续发展并在工业中获得了广泛的应用。在空间技术发展的推动下,50年代又出现了以状态空间法为主的现代控制理论,并相继发展了若干相对独立的学科分支,使本学科的理论和研究方法更加丰富。60年代以来,随着计算机技术的发展,许多新方法和技术进入工程化、产品化阶段,显著加快了工业技术更新的步伐。在控制科学发展的过程中,模式识别和人工智能与控制相结合的研究变得更加活跃;由于对大系统的研究和控制学科向社会、经济系统的渗透,形成了系统工程学科。特别是近20年来,非线性及具有不确定性的复杂系统向“控制科学与工程”提出了新的挑战,进一步促进了本学科的迅速发展。目前,本学科的应用已经遍及工业、农业。交通、环境、军事、生物、医学、经济、金融、人口和社会各个领域,从日常生活到社会经济无不体现本学科的作用。 控制科学以控制论、信息论、系统论为基础,研究各领域内独立于具体对象的共性问题,即为了实现某些目标,应该如何描述与分析对象与环境信息,采取何种控制与决策行为。它对于各具体应用领域具有一般方法论的意义,而与各领域具体问题的结合,又形成了控制工程丰富多样的内容。本学科的这一特点,使它对相关学科的发展起到了有力的推动作用,并在学科交叉与渗透中表现出突出的活力。例如:它与信息科学和计算机科学的结合开拓了知识工程和智能机器人领域。与社会学、经济学的结合使研究的对象进入到社会系统和经济系统的范畴中。与生物学、医学的结合更有力地推动了生物控制论的发展。同时,相邻学科如计算机、通信、微电子学和认知科学的发展也促进了控制科学与工程的新发展,使本学科所涉及的研究领域不断扩大。 相关学科关系 本学科在本科阶段叫自动化,研究生阶段叫控制科学与工程,本学科下设的六个二级学科:“控制理论与控制工程”、“检测技术与自动装置”、“系统工程”、“模式识别与智能系统”、“导航、制导与控制”和“企业信息化系统与工程”。各二级学科的主要研究范畴及相互联系如下。

PID实验报告

实验题目:PID控制实验 学生姓名:学号: 区队:日期: 学科名称现代控制系统实验 实验目的 1.理解一阶倒立摆的工作机理及其数学模型的建立及简化的方法;掌握使用Matlab/Simulink软件对控制系统的建模方法; 2.通过对一阶倒立摆控制系统的设计,理解和掌握闭环PID控制系统的设 计方法; 3.掌握闭环PID控制器参数整定的方法;理解和掌握控制系统设计中稳定 性、快速性的权衡以及不断通过仿真实验优化控制系统的方法。 实验设备倒立摆实验箱、MATLAB6.5 实验原理PID控制原理分析: 由前面的讨论已知实际系统的物理模型: Kp=30,Ki=0,Kd=0.5 60 122 .6 ) ( 2- = s s G 对于倒立摆系统输出量为摆杆的角度,它的平衡位置为垂直向上的情况。系统控制结构框图如图3-37,图中KD(s)是控制器传递函数,G(s)是被控对象传递函数。 图1 PID控制结构框图 其中s K s K K s KD D I P + + =)( 此次实验只考虑控制摆杆的角度,小车的位置是不受控的,即摆杆角度的单闭环控制,立起摆杆后,会发现小车向一个方向运动直到碰到限位信号。那么要使倒立摆稳定在固定位置,还需要增加对电机位置的闭环控制,这就形成了摆杆角度和电机位置的双闭环控制。立摆后表现为电机在固定位置左右移动控制摆杆不倒。

实验步骤: 1、使用MATLAB/Simulink 仿真软件建立以下控制模型: 图2 PID 控制模块组成 2、按照PID 参数整定方法调整PID 参数,设计PID 控制器。 3、在倒立摆教学实验软件中进行PID 控制器的仿真验证。 实验结果: 1、PID 参数整定: 设置PID 控制器参数,令Kp=1,Ki=0,Kd=0,仿真得到以下图形: 012345678910 00.5 1 1.5 2 2.53 3.5 4 4.5 x 1030时间t/s 摆杆角度Kp=1,Ki=0,Kd=0 从图中看出,曲线发散,控制系统不稳定。令Kp=20,Ki=0,Kd=0,仿真得到以下图形: 0246810 00.5 1 1.5 22.533.5 4 时间t/s 摆杆角度 Kp=20,Ki=0,Kd=0

控制科学与工程

控制科学与工程[自动化]招生单位专业课类比本表所统计专业课的仅是“0811 控制科学与工程”一级学科下属的几个专业(二级学科)。双控=控制理论与控制工程;检测=检测技术与自动化装置;系统=系统工程;模式=模式识别与智能系统;导航=导航、制导与控制;复试——指的是复试笔试科目。 此仅为部分重点院校或重点专业;部分学校的同一名称的专业分布在不同的学院,也一并列出。 北京工业大学 421自动控制原理 复试:1、电子技术2、计算机原理 北京航空航天大学 [双控] 432控制理论综合或433控制工程综合 [检测] 433控制工程综合或436检测技术综合 [系统] 431自动控制原理或451材料力学或841概率与数理统计 [模式] (自动化学院)433控制工程综合或436检测技术综合、(宇航学院)423信息类专业综合或431自动控制原理或461计算机专业综合 [导航] (自动化学院)432控制理论综合或433控制工程综合、(宇航学院)431自动控制原理 复试:无笔试。1) 外语口语与听力考核;2) 专业基础理论与知识考核;3) 大学阶段学习成绩、科研活动以及工作业绩考核;4) 综合素质与能力考核 北京化工大学 440电路原理 复试:综合1(含自动控制原理和过程控制系统及工程)、综合2(含自动检测技术装置和传感器原理及应用)、综合3(含信号与系统和数字信号处理) 注:数学可选择301数学一或666数学(单) 北京交通大学 [双控/检测]404控制理论 [模式]405通信系统原理或409数字信号处理 复试: [电子信息工程学院双控]常微分方程 [机械与电子控制工程学院检测]综合复试(单片机、自动控制原理) [计算机与信息技术学院模式] 信号与系统或操作系统 北京科技大学 415电路及数字电子技术(电路70%,数字电子技术30%) 复试: 1.数字信号处理 2.自动控制原理 3.自动检测技术三选一 北京理工大学 410自动控制理论或411电子技术(含模拟数字部分)

控制科学考研学校初试复试科目介绍

控制科学考研学校初试复试科目介绍

控制科学与工程[自动化]招生单位专业课类比 本表所统计专业课的仅是“0811 控制科学与工程”一级学科下属的几个专业(二级学科)。双控=控制理论与控制工程;检测=检测技术与自动化装置;系统=系统工程;模式=模式识别与智能系统;导航=导航、制导与控制;复试——指的是复试笔试科目。 此仅为部分重点院校或重点专业;部分学校的同一名称的专业分布在不同的学院,也一并列出。还有若干学校复试信息不完全,请予以补充;如果信息有误,请指明。 北京工业大学 421自动控制原理 复试:1、电子技术 2、计算机原理 北京航空航天大学 [双控] 432控制理论综合或433控制工程综合[检测] 433控制工程综合或436检测技术综合[系统] 431自动控制原理或451材料力学或841

415电路及数字电子技术(电路70%,数字电子技术30%) 复试: 1.数字信号处理 2.自动控制原理 3.自动检测技术三选一 北京理工大学 410自动控制理论或411电子技术(含模拟数字部分) 复试:微机原理+电子技术(初试考自动控制理论者)、微机原理+自动控制理论(初试考电子技术者)、运筹学+概率论与数理统计。 大连理工大学 404高等代数、453信号与系统(含随机信号20%)、454自动控制原理(含现代20%) 三选一 复试:①《计算机原理》+ ②《检测技术及仪表》+③《电路理论》综合,①40%②30%③30%

418数字电路或436自动控制原理 复试:《微机原理》 东北大学 [双控/导航]838自动控制原理 复试:综合知识一(1.电路原理部分30%,2. 微机原理部分30%,3.计算机控制系统部分40%),综合知识二(1. 线性代数40%,2. 微分方程40%,3. 概率论20%),考生二选一 [检测]837检测技术或838自动控制原理 复试:综合知识(1、单片机原理及接口技术50%,2、单片机C语言程序设计50%): [系统]838自动控制原理或843C语言程序设计与数据结构 复试:综合知识一:包括:1、电路原理部分30% 2、微机原理部分30%,3、计算机控制系统部分40%; 综合知识二:包括:1、数据库40%2、软件工程30%,3、计算机网络30% 考生二选一 [模式]838自动控制原理

北京工业大学控制工程基础试题2015A

北京工业大学2015——2016学年第一学期 《控制工程基础III》期末考试试卷卷A 考试说明:闭卷考试95分钟,适用于机械工程和测控仪器专业本科 承诺: 本人已学习了《北京工业大学考场规则》和《北京工业大学学生违纪处分条例》,承诺在考试过程中自觉遵守有关规定,服从监考教师管理,诚信考试,做到不违纪、不作弊、不替考。若有违反,愿接受相应的处分。 承诺人:学号:班号:。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 注:本试卷共八大题,共 8 页,满分100分,考试时必须使用卷后附加的统一答题纸或草稿纸。 卷面成绩汇总表(阅卷教师填写) 一、填空题(共20分,每题2分) 1)按有无反馈,控制系统可以分为和两类。 2)经典控制理论研究系统,现代控制理论研究多输入多输出系统。 3)反馈控制建立在偏差基础上,其控制方式简言之就是。 4)对控制系统的基本要求包括:,,。 5)传递函数,其定义为在条件下,系统输出量拉氏变换和输入量拉氏变化之比。 6)系统时域响应通常由分量和分量共同组成,前者反映系统稳态特性,后者反映系统动态特性。

7)频率响应是指系统对正弦输入信号的 响应。频率特性是指在正弦信号作用下,线性定常系统的输出稳态分量与输入的 比。 8)系统传递函数所有 和 都在复平面左半平面时,该系统为最小相位系统。 9)输入信号引起的系统稳态误差(偏差)的大小取决于系统的输入信号、开环传递函数 环节个数和开环 。 10)频域稳定性判据(奈奎斯特稳定性判据)是根据 幅相频率特性图或对数频率特性曲线判断系统闭环后的稳定性。 二、选择题(共20分,每题5分) (1)某单位反馈系统的开环传递函数为 1 1 )(+= s s G ,求在输入信号r (t)=sin 2t 作用时,系统的稳态输出为 (a) c(t)=0.354sin(2t+450) (b) c(t)=0.354sin(2t-450) (c) c(t)=0.354sin(t-450) (d) c(t)=1.354sin(2t-450) (2)已知系统开环传递函数为) 1)(1()(212 ++=s T s T s K s G (K ,T 1,T 2>0),其极坐标图为 (3)已知四个开环为最小相位系统的开环奈氏图如下图所示,其中系统闭环后处于临界稳定的系统为 (a) (b) (c) 得 分 I m R e ( b) I m R e ( c) I m R e ( d) I m R e ( ωω

自动控制原理及其应用

AI&Robots Ins. (Institute of Artificial Intelligence and Robots),即人工智能与机器人研究所,是隶属 于北京工业大学控制科学与工程学科的研究机构, 自然地,其所致力于研究的,是人工智能(Artificial Intelligence)和机器人(Robot)。 Robot是大家熟悉的一个英文名词,常常被译作 “机器人”。然而,无论就其形态或结构,还是就其运 动方式或行为方式,多数Robot 不象人。准确地说, Robot是一种自动机器,一种仿生的自动机器,具有 类似生命的特征,具有类似生物的行为,甚至具有 类似生物的智慧。 《控制论》之父Wiener有一句名言: “就其控制行为而言,所有的技术系统都是模仿生物系统的,然而,决没有哪一种生物系统 是模仿技术系统的。” Wiener 所说的“技术系统”(Technical System)就是人造系统,就是机器,准确地说,就是自动 机器。 AI&Robots 旨在研究具有智能的自动机器,并努力使机器具有生命特征和生物行为,具有感 知能力和认知能力,包括记忆和学习的行为能力。 实际上,AI&Robots 的研究领域是综合而宽广的,是一个多学科融合的科学研究领域,其中: ?控制论(Cybernetics) ?人工智能(Artificial Intelligence) ?机器人学(Robotics)

扮演着重要角色。在AI&Robots 的标识中,黄色代表着“控制论”,红色代表着“人工智能”,蓝色 代表着“机器人学”。 AI&Robots渗透着《控制论》的思想。 1948年,美国科学家Norbert Wiener 将机器与动物类比,将计算机与人脑类比,创立了《控 制论》。 Wiener 是一个天才,8 岁上中学,11 岁上大学,14 岁大学毕业,18岁获得博士学位,其后,师从英国数学 家和哲学家Rosu。虽然主修数学和哲学,Wiener 却始 终思索着动物和机器的辨证关系。Wiener 的《控制论》 是关于动物和机器共性的科学,是关于动物和机器同一 性和统一性的科学。Wiener 兴趣广泛,在理论物理学、 生物学、神经生理学和心理学、哲学、文学等领域都有 涉猎和建树。正是Wiener 广博的知识,使《控制论》成 为科学融合的艺术。 正如Wiener 在《控制论》中所指出: “我们正研究这样一种自动机器,它不仅通过能量流 动和新陈代谢,而且通过信息流动和传递信号,引起动作流动,并和外界有效地联系起来。自动 机器接收信息的装置相当于人和动物的感觉器官;相当于动作器官的可以是电动机或其它不同性 质的工具。自动机器接收到的信息不一定立即使用,可以储存起来以备未来之需,这与记忆相似 。自动机器运转时,其操作规则会依历史数据产生变化,这就象是学习的过程。” 在《控制论》中,Wiener虚拟设计了一个机器蠕虫,模拟蠕虫的负趋光行为,以阐明动物和 机器的共性。 Wiener的机器蠕虫具有类似动物神经的反射弧结构: 感觉器官:一对左右对称的光电管

PID控制电机实验报告范本

Record the situation and lessons learned, find out the existing problems and form future countermeasures. 姓名:___________________ 单位:___________________ 时间:___________________ PID控制电机实验报告

编号:FS-DY-20618 PID控制电机实验报告 摘要 以电机控制平台为对象,利用51单片机和变频器,控制电机精确的定位和正反转运动,克服了常见的因高速而丢步和堵转的现象。电机实现闭环控制的基本方法是将电机工作于启动停止区,通过改变参考脉冲的频率来调节电机的运行速度和电机的闭环控制系统由速度环和位置环构成。通过PID调节实现稳态精度和动态性能较好的闭环系统。 关键词:变频器PID调节闭环控制 一、实验目的和任务 通过这次课程设计,目的在于掌握如何用DSP控制变频器,再通 过变频器控制异步电动机实现速度的闭环控制。为实现闭环控制,我们需完成相应的任务: 1、通过变频器控制电机的五段调速。

2、通过示波器输出电机速度变化的梯形运行图与s形运行图。 3、通过单片机实现电机转速的开环控制。 4、通过单片机实现电机的闭环控制。 二、实验设备介绍 装有ccs4.2软件的个人计算机,含有ADC模块的51单片机开发板一套,变频器一个,导线若干条。 三、硬件电路 1.变频器的简介 变频器(Variable-frequency Drive,VFD)是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、等组成。变频器靠内部IGBT的开断来调整输出电源的电压和频率,变频器还有很多的保护功能。随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。 2.变频器的使用 变频器事物图变频器原理图

教育部第三轮学科评估控制科学与工程专业排名

教育部第三轮学科评估控制科学与工程专业排名 学校代码及名称学科整体水平得分 10003 清华大学 10145 东北大学 10213 哈尔滨工业大学 10006 北京航空航天大学 10248 上海交通大学 10335 浙江大学 10487 华中科技大学 10698 西安交通大学 10007 北京理工大学 90002 国防科学技术大学 10286 东南大学 10288 南京理工大学 10533 中南大学 10247 同济大学 10422 山东大学 10699 西北工业大学 10008 北京科技大学 10056 天津大学 10141 大连理工大学 10217 哈尔滨工程大学 10251 华东理工大学 10287 南京航空航天大学 10358 中国科学技术大学 10561 华南理工大学 10701 西安电子科技大学 90059 第二炮兵工程学院 10216 燕山大学 10255 东华大学 10295 江南大学 10532 湖南大学 10337 浙江工业大学 10488 武汉科技大学 10005 北京工业大学 10010 北京化工大学 10055 南开大学 10079 华北电力大学 10183 吉林大学 10280 上海大学 10299 江苏大学 10611 重庆大学 90034 装甲兵工程学院

10459 郑州大学 10613 西南交通大学 10617 重庆邮电大学 10731 兰州理工大学 11414 中国石油大学 90045 空军工程大学 10009 北方工业大学 10112 太原理工大学 10151 大连海事大学 10214 哈尔滨理工大学10252 上海理工大学 10356 中国计量学院 10011 北京工商大学 10058 天津工业大学 10082 河北科技大学 10146 辽宁科技大学 10148 辽宁石油化工大学10149 沈阳化工大学 10186 长春理工大学 10289 江苏科技大学 10293 南京邮电大学 10386 福州大学 10475 河南大学 10490 武汉工程大学 10622 四川理工学院 10704 西安科技大学 10708 陕西科技大学 10709 西安工程大学 11232 北京信息科技大学11258 大连大学 10066 天津职业技术师范大学10143 沈阳航空航天大学10144 沈阳理工大学 10147 辽宁工程技术大学10150 大连交通大学 10152 大连工业大学 10153 沈阳建筑大学 10154 辽宁工业大学 10167 渤海大学 11035 沈阳大学 10126 内蒙古大学 10127 内蒙古科技大学

北京工业大学自动控制原理实验八 基于MATLAB的PID控制研究

实验八 基于MATLAB 的PID 控制研究 一、 实验目的: 1 理解PID 的基本原理 2 研究PID 控制器的参数对于系统性能的影响 二、 实验设备 1 pc 机一台(含有软件“matlab ”) 三、 实验内容 1 利用matlab 软件,针对控制对象设计单闭环PID 控制系统 2 通过调节PID 控制器的参数,研究PID 控制参数对系统性能的影响 四、 实验原理 1 PID 的原理 单闭环PID 的控制系统的作用框图如下: 比例(P)控制 比例控制是一种最简单的控制方式,其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差(Steady-state error)。 比例控制作用及时,能迅速反应误差,从而减小稳态误差。但是,比例控制不能消除稳态误差。其调节器用在控制系统中,会使系统出现余差。为了减少余差,可适当增大P K , P K 愈大,余差就愈小;但P K 增大会引起系统的不稳定,使系统的稳定性变差,容易产生 振荡。 积分(I)控制 在积分控制中,控制器的输出与输入误差信号的积分成正比关系。 输入 —

积分控制的作用是消除稳态误差。只要系统有误差存在,积分控制器就不断地积累,输出控制量,以消除误差。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因而,只要有足够的时间,积分控制将能完全消除误差,使系统误差为零,从而消除稳态误差。积分作用太强会使系统超调加大,甚至使系统出现振荡。 微分(D)控制 在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。 自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。 微分控制能够预测误差变化的趋势,可以减小超调量,克服振荡,使系统的稳定性提高。同时,加快系统的动态响应速度,减小调整时间,从而改善系统的动态性能。 PID控制规律是一种较理想的控制规律,它在比例的基础上引入积分,可以消除余差,再加入微分作用,又能提高系统的稳定性。它适用于控制通道时间常数或容量滞后较大、控制要求较高的场合,如温度控制、成分控制等。 下图为单位阶跃作用下,各个调节系统的阶跃响应曲线

西安交大自动控制原理实验报告

自动控制原理实验报告 学院: 班级: 姓名: 学号:

西安交通大学实验报告 课程自动控制原理实验日期2014 年12月22 日专业班号交报告日期 2014 年 12月27日姓名学号 实验五直流电机转速控制系统设计 一、实验设备 1.硬件平台——NI ELVIS 2.软件工具——LabVIEW 二、实验任务 1.使用NI ELVIS可变电源提供的电源能力,驱动直流马达旋转,并通过改变电压改变 其运行速度; 2.通过光电开关测量马达转速; 3.通过编程将可变电源所控制的马达和转速计整合在一起,基于计算机实现一个转速自 动控制系统。 三、实验步骤 任务一:通过可变电源控制马达旋转 任务二:通过光电开关测量马达转速 任务三:通过程序自动调整电源电压,从而逼近设定转速

编程思路:PID控制器输入SP为期望转速输出,PV为实际测量得到的电机转速,MV为PID输出控制电压。其中SP由前面板输入;PV通过光电开关测量马达转速得到;将PID 的输出控制电压接到“可变电源控制马达旋转”模块的电压输入控制端,控制可变电源产生所需的直流电机控制电压。通过不断地检测马达转速与期望值对比产生偏差,通过PID控制器产生控制信号,达到直流电机转速的负反馈控制。 PID参数:比例增益:0.0023 积分时间:0.010 微分时间:0.006 采样率和待读取采样:采样率:500kS/s 待读取采样:500 启动死区:电机刚上电时,速度为0,脉冲周期测量为0,脉冲频率测量为无限大。通过设定转速的“虚拟下限”解决。本实验电机转速最大为600r/min。故可将其上限值设为600r/min,超过上限时,转速的虚拟下限设为200r/min。 改进:利用LabVIEW中的移位寄存器对转速测量值取滑动平均。

(0811) 控制科学与工程

(0811) 控制科学与工程(共 36个一级学科招生单位) 清华大学、北京航空航天大学、北京理工大学、北京化工大学、北京交通大学、、北京科技大学、北京信息科技大学、东北大学、哈尔滨工业大学、哈尔滨工程大学、大连理工大学、同济大学、上海交通大学、华东理工大学、东南大学、南京航空航天大学、南京理工大学、浙江大学、中国科学技术大学、华中科技大学、中南大学、华南理工大学、西安交通大学、西北工业大学、沈阳工业大学、西南交通大学、东华大学、山东大学、电子科技大学、湖南大学、西安电子科技大学、燕山大学、广东工业大学、桂林电子科技大学、重庆大学、天津大学 {控制科学与工程20强:北京航空航天大学、浙江大学、清华大学、东北大学、华中科技大学、上海交通大学、西北工业大学、东南大学、中南大学、南京理工大学、哈尔滨工业大学、西安交通大学、哈尔滨工程大学、北京理工大学、华南理工大学、中国科学技术大学、天津大学、南京航天航空大学、华东理工大学、北京科技大学} (081100) *控制科学与工程清华大学北京科技大学哈尔滨工业大学(深圳) (081101) 控制理论与控制工程(共 166个二级学科招生单位) 北京大学、北京交通大学、北京工业大学、北京科技大学、北京化工大学、北京工商大学、北京邮电大学、北京林业大学、北京师范大学、北京机械工业学院、中国科学院研究生院、北京机械工业自动化研究所、冶金自动化研究设计院、中国航天科工集团第二研究院、中国科学院北京自动化研究所、中国科学院沈阳自动化研究所、中国科学院西安光学精密机械研究所、中国空间技术研究院、北京师范大学、北京信息科技大学、渤海大学、冶金自动化研究设计院、北京机械工业自动化研究所、南开大学、天津大学、天津工业大学、天津理工大学、天津科技大学、华北电力大学、河南大学、河南工业大学、河南科技大学、河南理工大学、河北工业大学、河北理工大学、燕山大学、太原科技大学、中北大学、太原理工大学、内蒙古工业大学、内蒙古科技大学、大连理工大学、大连理工大学、大连大学、黑龙江科技学院、沈阳工业大学、沈阳理工大学、鞍山科技大学、北方工业大学、辽宁工程技术大学、辽宁石油化工大学、沈阳化工学院、大连交通大学、大连海事大学、沈阳建筑大学、辽宁工学院、沈阳大学、沈阳工业大学、沈阳化工学院、沈阳建筑大学、沈阳理工大学、吉林大学、东北电力学院、长春工业大学、黑龙江大学、大庆石油学院、东北林业大学、哈尔滨理工大学、哈尔滨工程大学、海军工程大学、齐齐哈尔大学、上海海事大学、东华大学、上海大学、上海船舶设备研究所、南京大学、苏州大学、江苏科技大学、中国矿业大学、南京航空航天大学、南京理工大学、南京林业大学、南京师范大学、南京邮电大学、南通大学、南京工业大学、河海大学、江南大学、江苏大学、扬州大学、杭州电子科技大学、浙江工业大学、合肥工业大学、安徽工业大学、安徽理工大学、安徽工程科技学院、厦门大学、福州大学、南昌航空工业学院、江西理工大学、南昌大学、山东大学、中国海洋大学、山东科技大学、石油大学(华东)、济南大学、青岛科技大学、山东轻工业学院、曲阜师范大学、青岛大学、济南大学、郑州大学、河南理工大学、河南科技大学、中原工学院、河南大学、武汉大学、武汉科技大学、武汉理工大学、三峡大学、湘潭大学、湖南大学、湖南科技大学、广东工业大学、广西大学、桂林电子工业学院、重庆大学、重庆邮电学院、四川大学、西南交通大学、电子科技大学、西南科技大学、贵州工业大学、昆明理工大学、西安理工大学、西安电子科技大学、西安工业学院、西安建筑科技大学、西安科技大学、陕西科技大学、西安工程科技学院、长安大学、兰州理工大学、兰州交通大学、新疆大学 {控制理论与控制工程27强:清华大学、山东大学、北京科技大学、上海交通大学、东北大学、浙江大学、同济大学、西北工业大学、南开大学、华南理工大学、中国科学技术大

PID控制实验报告

实验二 数字PID 控制 计算机控制是一种采样控制,它只能根据采样时刻的偏差值计算控制量。因此连续PID 控制算法不能直接使用,需要采用离散化方法。在计算机PID 控制中,使用的是数字PID 控制器。 一、位置式PID 控制算法 按模拟PID 控制算法,以一系列的采样时刻点kT 代表连续时间t ,以矩形法数值积分近似代替积分,以一阶后向差分近似代替微分,可得离散PID 位置式表达式: 式中,D p d I p i T k k T k k ==,,e 为误差信号(即PID 控制器的输入) ,u 为控制信号(即控制器的输出)。 在仿真过程中,可根据实际情况,对控制器的输出进行限幅。 二、连续系统的数字PID 控制仿真 连续系统的数字PID 控制可实现D/A 及A/D 的功能,符合数字实时控制的真实情况,计算机及DSP 的实时PID 控制都属于这种情况。 1.Ex3 设被控对象为一个电机模型传递函数Bs Js s G +=21)(,式中J=,B=。输入信号为)2sin(5.0t π,采用PD 控制,其中5.0,20==d p k k 。采用ODE45方法求解连续被控对象方程。 因为Bs Js s U s Y s G +==21)()()(,所以u dt dy B dt y d J =+22,另y y y y ==2,1,则

?? ???+-==/J)*u ((B/J)y y y y 12221 ,因此连续对象微分方程函数如下 function dy = ex3f(t,y,flag,para) u=para; J=;B=; dy=zeros(2,1); dy(1) = y(2); dy(2) = -(B/J)*y(2) + (1/J)*u; 控制主程序 clear all; close all; ts=; %采样周期 xk=zeros(2,1);%被控对象经A/D 转换器的输出信号y 的初值 e_1=0;%误差e(k-1)初值 u_1=0;%控制信号u(k-1)初值 for k=1:1:2000 %k 为采样步数

相关文档
最新文档