铅酸蓄电池充电器电路原理图
电瓶车充电器电路及原理详解

电瓶车充电器电路及原理详解根据电瓶车铅酸蓄电池的特点,当其为36V/12AH时,采用限压恒流充电方式,初始充电电流最大不宜超过3A。
也就是说,充电器输出最大达到43V/3A/129W,已经可满足。
在充电过程中,充电电流还将逐渐降低。
以目前开关电源技术和开关管生产水平而言,单端开关稳压器输出功率的极限值已提高到180W,甚至更大。
输出功率为150W以下的单端它激式开关稳压器,其可靠性已达到极高的程度。
MOS FET开关管的应用,成功地解决了开关管二次击穿的难题,使开关电源的可靠性更上一层楼下图为充电器电路图,U903按MC3842的典型应用电路作为单端输出驱动器,外围元件选择原则如下。
有关MC3842详细资料请参考本站文章:MC3842的特性,主要参数,引脚,方框图电瓶车充电器电路图充电电路详解第1脚为内部误差放大器输出端。
误差电压在IC内部经D1、D2电平移位,R1、R2分压后,送入电流控制比较器的反向输入端,控制PWM锁存器。
当1脚为低电平时,锁存器复位,关闭驱动脉冲输出,直到下一个振荡周期开始才重新置位,恢复脉冲输出。
外电路接入R913(10kΩ)、C913(0.1μF),用以校正放大器频率和相位特性。
第2脚内部误差放大器反相输入端。
充电器正常充电时,最高输出电压为43V。
外电路由R934(16kΩ)、VR902(470Ω)、R904(1kΩ)分压后,得到2.5V的取样电压,与误差放大器同相输入端的2.5V基准电压比较,检出差值,通过输出脉冲占空比的控制使输出电压限定在43V。
在调整此电压时,可使充电器空载。
调整VR902,可使正负输出端电压为43V。
第3脚为充电电流控制端。
在第2脚设定的输出电压范围内,通过R902对充电电流进行控制,第3脚的动作阈值为1V,在R902压降1V以内,通过内部比较器控制输出电压变化,实现恒流充电。
恒流值为1.8A,R902选用0.56Ω/3W。
在充电电压被限定为43V时,可通过输出电压调整充电电流为恒定的1.75A~1.8A。
电动自行车充电器原理含原理图

电动 以有电流开关大多1.采(1)山 输出1)电 制、 左右 振荡R9、的②到Q 同时 强度流急推动结果工作 起P 180动自行车充电器给电动车辆有无工频变压器流大(可到30A 关电源技术,这多在2A 左右。
采用开关电源山东GD36充电路原理图见出电压:44 V 电路原理本充电器电路输出整流滤波整流滤波 市右的直流电压,自激加他激半自激启动该荡是利用磁心饱R10给开关②-④绕组感应Q1的发射极,时,③-⑤绕组Q1饱和导通度随时间线性增急剧增加,增加动变压器B2果是Q1截止、作原理如下:他激振荡:PWM 控制电路0°的PWM 脉器的铅酸电瓶、器区分可分为A)、可靠。
货这样便提高了。
技术的电动自充电器见图12所示V(可调);最大路主要由市电波六部分组成市电220V/5,作为开关变半桥输出电路电路的特点是饱和特性产生关管Q1、Q2应出极性是②脚,加速Q1的组感应出③脚通后,150电增加。
但当磁加的速率远大的②-④、①、Q2饱和导自激振荡过程路芯片TL49脉冲,经B2镍镉电瓶补为分两大类。
货运电动三轮了效率,甩掉了自行车充电器示。
该充电器为大充电电流:电整流滤波、成。
0Hz 经二极管变换器的电源路主要由Q1、是自激启动,控生的,具体过程2提供基极偏脚正、④脚负的导通。
这是正、⑤脚负的电压给B3①-②磁感应强度增大于其基极电①-②、③-⑤绕导通。
此后,这程中,B3的次94所需的工作⑥-⑦、⑦-⑧补充能源,要通大功率的普遍轮无一例外地了笨重的工频器为半桥式充电1.8A ;浮充自激加他激半管D1~D4桥源。
Q2、B2、控制电路所需程为:接通电偏压。
设Q1负的电压,于一个十分强烈的电压,使Q ②主绕组充电大到饱和点电流的增加,V 绕组感应电压这种过程重复次级输出电压作电源。
TL4⑧绕组感应至①通过充电器进遍采用环牛工使用它,而频变压器。
电动器.主要性能充充电电流:2半桥转换、PW 桥式整流、电B3等元件组需辅助电源由电源,C5、C6由TR5偏压是①-②绕组烈的正反馈过Q2截止。
电动车充电器原理(图少)

电动车充电器原理及维修常用电动车充电器根据电路结构可大致分为两种。
第一种是以uc3842驱动场效应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。
其电原理图和元件参数见图表1工作原理:220v交流电经TO双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成稳定的300V左右的直流电。
U1为TL3842 脉宽调制集成电路。
其5脚为电源负极,7脚为电源正极,6脚为脉冲输出直接驱动场效应管Q1(K1358) 3脚为最人电流限制,调整R25(2.5欧姆)的阻值可以调整充电器的最大电流。
2脚为电压反馈,可以调节充电器的输出电压。
4脚外接振荡电阻R1,和振荡电容Clo T1为高频脉冲变压器,其作用有三个。
第一是把高压脉冲将压为低压脉冲。
第二是起到隔离高压的作用,以防触电。
第三是为uc3842 提供工作电源。
D4为高频整流管(16A60V)C10为低压滤波电容,D5 为12V 稳压二极管,U3(TL431)为精密基准电压源,配合U2(光耦合器4N35)起到自动调节充电器电压的作用。
调整w2(微调电阻)可以细调充电器的电压。
D10是电源指示灯。
D6为充电指示灯。
R27是电流取样电阻(0.1欧姆,5w)改变W1的阻值可以调整充电器转浮充的拐点电流(200-300 mA)通电开始时,C11上有300v左右电压。
此电压一路经T1加载到Q1。
第二路经R5,C8,C3,达到U1的第7脚。
强迫U1启动。
U1的6脚输出方波脉冲,Q1工作,电流经R25到地。
同时T1副线圈产生感应电压,经D3,R12给U1提供可靠电源。
T1 输出线圈的电压经D4,C10整流滤波得到稳定的电压。
此电压一路经D7 (D7起到防止电池的电流倒灌给充电器的作用)给电池充电。
第二路经R14,D5,C9,为LM358(双运算放犬器,1脚为电源地,8脚为电源正)及其外圉电路提供12V工作电源。
D9为LM358提供基准电压,经R26,R4分压达到LM358的第二脚和第5脚。
电瓶车充电器电路图及原理

电瓶车充电器电路图及原理(上)根据电动自行车铅酸蓄电池的特点,当其为36V/12AH时,采用限压恒流充电方式,初始充电电流最大不宜超过3A。
也就是说,充电器输出最大达到43V/3A/129W,已经可满足。
在充电过程中,充电电流还将逐渐降低。
以目前开关电源技术和开关管生产水平而言,单端开关稳压器输出功率的极限值已提高到180W,甚至更大。
输出功率为150W以下的单端它激式开关稳压器,其可靠性已达到极高的程度。
MOS FET开关管的应用,成功地解决了开关管二次击穿的难题,使开关电源的可靠性更上一层楼。
目前,应用最广的、也是最早的可直接驱动MOS FET开关管的单端驱动器为MC3842。
MC3842在稳定输出电压的同时,还具有负载电流控制功能,因而常称其为电流控制型开关电源驱动器,无疑用于充电器此功能具有独特的优势,只用极少的外围元件即可实现恒压输出,同时还能控制充电电流。
尤其是MC3842可直接驱动MOS FET管的特点,可以使充电器的可靠性大幅提高。
由于MC3842的应用极广,本文只介绍其特点。
MC3842为双列8脚单端输出的它激式开关电源驱动集成电路,其内部功能包括:基准电压稳压器、误差放大器、脉冲宽度比较器、锁存器、振荡器、脉宽调制器(PWM)、脉冲输出驱动级等等。
MC3842的同类产品较多,其中可互换的有UC3842、IR3842N、SG3842、CM3842(国产)、LM3842等。
MC3842内部方框图见图1。
其特点如下:单端PWM脉冲输出,输出驱动电流为200mA,峰值电流可达1A。
启动电压大于16V,启动电流仅1mA即可进入工作状态。
进入工作状态后,工作电压在10~34V之间,负载电流为15mA。
超过正常工作电压,开关电源进入欠电压或过电压保护状态,此时集成电路无驱动脉冲输出。
内设5V/50mA基准电压源,经2:1分压作为取样基准电压。
输出的驱动脉冲既可驱动双极型晶体管,也可驱动MOS场效应管。
铅酸电池充电器原理

铅酸电池充电器原理
铅酸电池充电器是一种常见的充电设备,它的原理是通过控制电压和电流,将
电能转化为化学能,从而实现对铅酸电池的充电。
铅酸电池是一种重要的蓄电池,广泛应用于汽车、UPS电源、太阳能储能系统等领域。
了解铅酸电池充电器的原
理对于正确使用和维护铅酸电池具有重要意义。
铅酸电池充电器的原理可以简单概括为恒流充电和恒压充电两种方式。
在恒流
充电阶段,充电器通过控制输出电流,使电池内的电解液中的硫酸铅被还原成铅和过氧化铅,同时电池的电压逐渐提高。
一旦电池的电压达到一定值,充电器会切换到恒压充电阶段,此时充电器会保持输出电压不变,直到电池充满为止。
在实际的充电过程中,充电器还需要考虑电池的状态和温度等因素。
比如,当
电池处于低温状态时,充电器需要提供更高的充电电压以促进电池内部的化学反应;而当电池已经充满或者温度过高时,充电器需要自动停止充电以避免过充和过热。
除了基本的充电原理外,现代铅酸电池充电器还普遍采用了微处理器控制、数
字显示、温度补偿等先进技术,以实现更加智能化和精准化的充电管理。
通过实时监测电池的电压、电流、温度等参数,充电器可以根据电池的实际状态进行调整,从而延长电池的使用寿命,并确保充电过程的安全性和可靠性。
总的来说,铅酸电池充电器的原理是基于恒流充电和恒压充电的基本原理,并
结合了电池状态和温度等因素的综合考虑,通过先进的控制技术实现对铅酸电池的高效、安全、可靠的充电管理。
对于用户来说,了解铅酸电池充电器的原理有助于正确选择和使用充电器,提高电池的使用效率和寿命,同时也有利于避免因充电不当而引发的安全问题。
电瓶车充电器原理图及维修方法

电动车充电器原理及维修技巧常见故障1:电源不启动:插电源,大电容有300V电压、拔掉电源再次测量大电容2端还是300V电压不下降。
给电容放电后,将启动电阻换掉即可。
启动电阻在电源输入局部,阻值150K,功率2W,2: 电源不启动:插电,大电容2端有300V电压,拔掉电源,大电容电压渐渐下降,将电路板全部检查是否有脱焊的现象,补焊完成后,将3842换成新的,通电试机即可,欧。
3W功率。
接在输出线的负极端,将此电阻换新即可,4:输出电压高,通电,电压高于70多V,充电不转灯,先将电路板补焊一遍,再次试机,假设还是电压高,请更换光电耦合器、再次试机、还是输出高,更换431基准稳压器,再次试机5:吱吱叫,发热,充电缺乏:通电测量大电容电压,只要低于300V,一般电容失效,更换即可,6:严重发热,请将风扇换新即可,7:输出电压不稳定,先将电路板补焊一遍,后试机,然后将输出端电容63V470UF电容换新试机即可,8:充电不转灯,用检测仪测试各项数据,然后将358或者324换新试机,9:充电不稳定,有时候能充,有时候不能冲,用测试仪检测各项数据,然后将输入输出电源线,全部换新,补焊线路板试机10:通电烧保险:先检测功率管击穿没有,没有的话将4个整流二极管全部换新,试机,11:通电无输出,通电试机,大电容2端有300V电压,且渐渐下降,首先检测输出端大二极管击穿没有,补焊,再次试机12:通电亮2个红灯:通电试机,空载电压是否正常,然后将358或324换新试机,13:通电无输出,能正常启动,指示灯正常,先将输出线换新,对于有继电器的充电器直接短路继电器试机,14:通电闪灯,请补焊变压器各引脚,然后试机,假设照旧,请检查431、光电耦合器、输出局部各二极管是否短路,变压器磁芯是否松动,电源输入局部10欧小电阻是否开路。
或代换3842再次试机15:充电不转灯,先用测试仪检测各项数据,一般充新电池电压不高于59.5,充半年左右电池不高于58.8,为正常,高于此电压可能不转灯16:输出电压低:补焊线路板。
部分电动自行车充电器电路详解

电动自行车充电器给电动车辆的铅酸电瓶、镍镉电瓶补充能源,要通过充电器进行。
充电器的种类很多.一般以有无工频变压器区分可分为分两大类。
大功率的普遍采用环牛工频变压器.虽然效率低,但是电流大(可到30A)、可靠。
货运电动三轮无一例外地使用它,而30Ah以下的电瓶则大多采用开关电源技术,这样便提高了效率,甩掉了笨重的工频变压器。
电动自行车充电器最大充电电流大多在2A左右。
1.采用开关电源技术的电动自行车充电器(1)山东GD36充电器电路原理图见图12所示。
该充电器为半桥式充电器.主要性能指标为:输入电压:170-260V;输出电压:44 V(可调);最大充电电流:1.8A;浮充充电电流:200~100mA。
1)电路原理本充电器电路主要由市电整流滤波、自激加他激半桥转换、PWM控制、电压控制、电流控制、输出整流滤波六部分组成。
整流滤波市电220V/50Hz经二极管D1~D4桥式整流、电容C5~C7滤波,得到310V左右的直流电压,作为开关变换器的电源。
自激加他激半桥输出电路主要由Q1、Q2、B2、B3等元件组成。
自激启动该电路的特点是自激启动,控制电路所需辅助电源由其本身提供,无需另设。
自激振荡是利用磁心饱和特性产生的,具体过程为:接通电源,C5、C6上的150V电压经R5、R7、R9、R10给开关管Q1、Q2提供基极偏压。
设Q1由TR5偏压而微导通,则推动变压器B2的②-④绕组感应出极性是②脚正、④脚负的电压,于是①-②绕组感应出①脚正、②脚负电压加到Q1的发射极,加速Q1的导通。
这是一个十分强烈的正反馈过程,Q1迅速饱和导通。
与此同时,③-⑤绕组感应出③脚正、⑤脚负的电压,使Q2截止。
Q1饱和导通后,150电压给B3①-②主绕组充电储能,线圈中的电流和由它产生的磁感应强度随时间线性增加。
但当磁感应强度增大到饱和点Bm时,电感量迅速减小,Q1的集电极电流急剧增加,增加的速率远大于其基极电流的增加,Vce升高,于是Q1退出饱和进入放大区,推动变压器B2的②-④、①-②、③-⑤绕组感应电压将反向。
铅酸蓄电池充电器电路原理图.doc

因为密封铅酸蓄电池的诸多优点,因此获得了广泛应用.然而密封铅酸蓄电池的充电技术似乎不被看重,因充电方式不合理而造成电池过早报废的情况普遍存在.有鉴于此,笔者设计制作了一款二阶段恒流限压式铅酸电池充电器。
充电原理分析:1.维护充电:当电池电压较低时(可设定,本电路预设在9V以下),充电器工作在小电流维护充电状态下,工作原理为U1C⑨脚(同相端)电位低于⑧脚(反相端),U1C输出低电位,T4截止。
U1D 11 脚电位约0.18V.此时充电电流约250mA(恒流电路由R14,U1D,T1B周边外围电路构成,恒流原理读者请自行分析).2. 快速充电:随着维护充电继续,电池电压逐渐升高,当电池电压超过9V时,充电器转入大电流快充模式下,U1C⑨脚(同相端)电位高于⑧脚(反相端),U1C输出高电位,T4导通,U1D 11 脚电位约为0.48V,充电器恒定输出约1A电流给电池充电。
3. 限压浮充:当电池接近充足电时,充电器自动转入限压浮充状态下(限压浮充电压设定为13.8V,如为6V蓄电池,则浮充电压应设定为6.9V),此时的充电电流会由快速充电状态下逐渐下降,至电池完全充足电后,充电电流仅为10~30mA,用以补充电池因自放电而损失的电量。
4. 保护及充电指示电路:本电路设有反极性保护电路,由D4,U1C,U1D,T1及外围元件构成,当电池反接时,充电器限制输出电流不致发生事故。
充电指示由U1A,D7及外围元件构成,充电时,D7点亮,充电器进入浮充状态后,D7熄灭,表示充电结束。
5. 本电路略为修改电路参数即可任意调整充电电流,浮充电压以满足不同规格电池的需要。
注:CF=碳膜电阻;MF=金属膜电阻;M.O.F=金属氧化膜电阻*表示可根据需要调整的元件.如图所示铅酸蓄电池充电器电路原理图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铅酸蓄电池充电器电路原理图
铅酸蓄电池充电器电路原理图如下:
因为密封铅酸蓄电池的诸多优点,因此获得了广泛应用.然而密封铅酸蓄电池的充电技术似乎不被看重,因充电方式不合理而造成电池过早报废的情况普遍存在.有鉴于此,笔者设计制作了一款二阶段恒流限压式铅酸电池充电器。
充电原理分析:
1.维护充电:
当电池电压较低时(可设定,本电路预设在9V以下),充电器工作在小电流维护充电状态下,工作原理为U1C⑨脚(同相端)电位低于⑧脚(反相端),U1C输出低电位,T4截止。
U1D 11 脚电位约0.18V.此时充电电流约250mA(恒流电路由R14,U1D,T1B周边外围电路构成,恒流原理读者请自行分析).
2. 快速充电:
随着维护充电继续,电池电压逐渐升高,当电池电压超过9V时,充电器转入大电流快充模式下,U1C⑨脚(同相端)电位高于⑧脚(反相端),U1C输出高电位,T4导通,U1D 11 脚电位约为0.48V,充电器恒定输出约1A电流给电池充电。
3. 限压浮充:
当电池接近充足电时,充电器自动转入限压浮充状态下(限压浮充电压设定为13.8V,如为6V蓄电池,则浮充电压应设定为6.9V), 此时的充电电流会由快速充电状态下逐渐下降,至电池完全充足电后,充电电流仅为10~30mA,用以补充电池因自放电而损失的电量。
4. 保护及充电指示电路:
本电路设有反极性保护电路,由D4,U1C,U1D,T1及外围元件构成,当电池反接时,充电器限制输出电流不致发生事故。
充电指示由U1A,D7及外围元件构成,充电时,D7点亮,充电器进入浮充状态后,D7熄灭,表示充电结束。
5. 本电路略为修改电路参数即可任意调整充电电流,浮充电压以满足不同规格电池的需要。
6. 物料清单如下
注:CF=碳膜电阻;MF=金属膜电阻;M.O.F=金属氧化膜电阻
*表示可根据需要调整的元件.
7.实测充电器的充电曲线如下图。