异方差性习题与答案
异方差练习题参考解答

异方差练习题参考解答练习题1.设消费函数为i i i i u X X Y +++=33221βββ式中,i Y 为消费支出;i X 2为个人可支配收入;i X 3为个人的流动资产;i u 为随机误差项,并且222)(,0)(ii i X u Var u E σ==(其中2σ为常数)。
试回答以下问题: (1)选用适当的变换修正异方差,要求写出变换过程;(2)写出修正异方差后的参数估计量的表达式。
2.由表中给出消费Y 与收入X 的数据,试根据所给数据资料完成以下问题:(1)估计回归模型u X Y ++=21ββ中的未知参数1β和2β,并写出样本回归模型的书写格式; (2)试用Goldfeld-Quandt 法和White 法检验模型的异方差性; (3)选用合适的方法修正异方差。
Y X Y X Y X 5580 152 220 95 140 65 100 144 210 108 145 70 85 175 245 113 150 80 110 180 260 110 160 79 120 135 190 125 165 84 115 140 205 115 180 98 130 178 265 130 185 95 140 191 270 135 190 90 125 137 230 120 200 75 90 189 250 140 205 74 105 55 80 140 210 110 160 70 85 152 220 113 150 75 90 140 225 125 165 65 100 137 230 108 145 74 105 145 240 115 180 80 110 175 245 140 225 84 115 189 250 120 200 79 120 180 260 145 240 90 125 178 265 130185981301912703.表中的数据是美国1988研究与开发(R &D )支出费用(Y )与不同部门产品销售量(X ).试根据资料建立一个回归模型,运用Glejser 方法和White 方法检验异方差,由此决定异方差的表现形式并选用适当方法加以修正。
伍德里奇《计量经济学导论》笔记和课后习题详解(异方差性)【圣才出品】

(4)在丌包括截距癿情况下将 1 对 r1u, r2u, , rqu 做回归。异斱差-稳健癿 LM 统计
χ 量就是 n-SSR1,其中 SSR1 是最后这个回归通常癿残差平斱和。在 H0 下 LM 渐近服从
2 q
分布。
4 / 36
圣才电子书 十万种考研考证电子书、题库视频学习平台
变量乊类癿情况出现则具有这种影响。
2.异斱差性对拟合优度癿影响
对拟合优度指标 R2 和 R2 癿解释丌受异斱差性癿影响。通常癿 R2 和调整 R2 都是估计总
体
R2
癿丌同斱法,而总体
R2 无非就是1 σu2
/
σ
2 y
,其中
σu2
是总体误差斱差,
σ
2 y
则是
y
癿总体斱差。关键是,由亍总体 R2 中这两个斱差都是无条件斱差,所以总体 R2 丌受
十万种考研考证电子书、题库视频学习平台
令 uˆi 表示原来 y 对 x 做回归所得到癿 OLS 残差。那么,对亍仸何形式癿异斱差(包括
同斱差),Var βˆ j 癿一个确当估计量都是
n
xi x 2 uˆi2
i 1
SSTx2
可以证明,将斱程乘以样本容量
n
后,会依概率收敛亍
在没有同斱差假定癿情况下,估计量癿斱差是有偏癿。由亍 OLS 标准误直接以这些斱
差为基础,所以它们都丌能用来构造置信区间和 t 统计量。
4.对统计检验癿影响
1 / 36
圣才电子书 十万种考研考证电子书、题库视频学习平台
在出现异斱差性癿情况下,在高斯-马尔可夫假定下用来检验假设癿统计量都丌再成立。 (1)在出现异斱差性时,通常普通最小二乘法癿 t 统计量就丌具有 t 分布,使用大样 本容量也丌能解决这个问题。 (2)F 统计量也丌再是 F 分布。 (3)LM 统计量也丌服从渐近 χ2 分布。
伍德里奇8-异方差性(习题解答)

伍德里奇8-异方差性(习题解答)C8.1(i) 01var(|)u X male σσ=+,亦可以其他形式出现。
(ii) 首先估计sleep 方程,得到残差平方序列,再以该残差平方为被解释变量对变量male 回归看其回归系数。
use sleep75reg sleep totwrk educ age agesq yngkid malepredict r1, rg r1sq=r1*r1reg r1sq male其系数为负,说明男性的方差比女性要低。
(iii)从回归结果中看,系数不显著,说明误差方差在男性和女性之间的差别不显著。
C8.2clearuse hprice1reg price lotsize sqrft bdrmsestimates store reg1reg price lotsize sqrft bdrms, robustestimates store robustesttab reg1 robust, b(%8.6f) se mtitlereg lprice llotsize lsqrft bdrmsestimates store reg2reg lprice llotsize lsqrft bdrms, robustestimates store robust2esttab reg2 robust2, b(%8.6f) se mtitleC8.6clearuse crime1g arr86=(narr86>0)g lavgsen=log(avgsen)reg arr86 pcnv lavgsen tottimepredict arr86hatsum arr86hat/*加权最小二乘*/g h=arr86hat*(1-arr86hat)reg arr86 pcnv avgsen tottime ptime86 qemp86 [aw=1/h]C8.9(i)-(ii)clearuse smokereg cigs lincome lcigpric educ age agesq restaurnpredict r1, rg lr1sq=log(r1^2)reg lr1sq lincome lcigpric educ age agesq restaurnpredict ghatg hhat=exp(ghat)reg cigs lincome lcigpric educ age agesq restaurn [aw=1/hhat](iii)predict uhat, rpredict yhatg uhatsq=uhat^2drop uhatsqg utild=uhat/(hhat^0.5)g ytild=yhat/(hhat^0.5)g utildsq=utild^2g ytildsq=ytild^2reg utildsq ytild ytildsqwhitetst, fitted/*表明仍然存在异方差*/(iv)第(iii)部分的结论表明,使用可行的加权最小二乘方法没有消除异方差性,对方差形式存在误设。
应用回归分析,第4章课后习题参考答案

第4章违背基本假设的情况思考与练习参考答案4.1 试举例说明产生异方差的原因。
答:例4.1:截面资料下研究居民家庭的储蓄行为Y i=β0+β1X i+εi其中:Y i表示第i个家庭的储蓄额,X i表示第i个家庭的可支配收入。
由于高收入家庭储蓄额的差异较大,低收入家庭的储蓄额则更有规律性,差异较小,所以εi的方差呈现单调递增型变化。
例4.2:以某一行业的企业为样本建立企业生产函数模型Y i=A iβ1K iβ2L iβ3eεi被解释变量:产出量Y,解释变量:资本K、劳动L、技术A,那么每个企业所处的外部环境对产出量的影响被包含在随机误差项中。
由于每个企业所处的外部环境对产出量的影响程度不同,造成了随机误差项的异方差性。
这时,随机误差项ε的方差并不随某一个解释变量观测值的变化而呈规律性变化,呈现复杂型。
4.2 异方差带来的后果有哪些?答:回归模型一旦出现异方差性,如果仍采用OLS估计模型参数,会产生下列不良后果:1、参数估计量非有效2、变量的显著性检验失去意义3、回归方程的应用效果极不理想总的来说,当模型出现异方差性时,参数OLS估计值的变异程度增大,从而造成对Y的预测误差变大,降低预测精度,预测功能失效。
4.3 简述用加权最小二乘法消除一元线性回归中异方差性的思想与方法。
答:普通最小二乘估计就是寻找参数的估计值使离差平方和达极小。
其中每个平方项的权数相同,是普通最小二乘回归参数估计方法。
在误差项等方差不相关的条件下,普通最小二乘估计是回归参数的最小方差线性无偏估计。
然而在异方差的条件下,平方和中的每一项的地位是不相同的,误差项的方差大的项,在残差平方和中的取值就偏大,作用就大,因而普通最小二乘估计的回归线就被拉向方差大的项,方差大的项的拟合程度就好,而方差小的项的拟合程度就差。
由OLS 求出的仍然是的无偏估计,但不再是最小方差线性无偏估计。
所以就是:对较大的残差平方赋予较小的权数,对较小的残差平方赋予较大的权数。
异方差练习题参考解答

异方差练习题参考解答练习题1.设消费函数为i i i i u X X Y +++=33221βββ式中,i Y 为消费支出;i X 2为个人可支配收入;i X 3为个人的流动资产;i u 为随机误差项,并且222)(,0)(i i i X u Var u E σ==(其中2σ为常数)。
试回答以下问题:(1)选用适当的变换修正异方差,要求写出变换过程;(2)写出修正异方差后的参数估计量的表达式。
2.由表中给出消费Y 与收入X 的数据,试根据所给数据资料完成以下问题: (1)估计回归模型u X Y ++=21ββ中的未知参数1β和2β,并写出样本回归模型的书写格式;(2)试用Goldfeld-Quandt 法和White 法检验模型的异方差性; (3)选用合适的方法修正异方差。
Y X Y X Y X 55 80 152 220 95 140 65 100 144 210 108 145 70 85 175 245 113 150 80 110 180 260 110 160 79 120 135 190 125 165 84 115 140 205 115 180 98 130 178 265 130 185 95 140 191 270 135 190 90 125 137 230 120 200 75 90 189 250 140 205 74 105 55 80 140 210 110 160 70 85 152 220 113 150 75 90 140 225 125 165 65 100 137 230 108 145 74 105 145 240 115 180 80 110 175 245 140 225 84 115 189 250 120 200 79 120 180 260 14524090125178265130185981301912703.表中的数据是美国1988研究与开发(R&D)支出费用(Y)与不同部门产品销售量(X)。
异方差性习题及答案

异⽅差性习题及答案异⽅差性⼀、单项选择1.Goldfeld-Quandt ⽅法⽤于检验()A.异⽅差性B.⾃相关性C.随机解释变量D.多重共线性2.在异⽅差性情况下,常⽤的估计⽅法是()A.⼀阶差分法B.⼴义差分法C.⼯具变量法D.加权最⼩⼆乘法3.White 检验⽅法主要⽤于检验()A.异⽅差性B.⾃相关性C.随机解释变量D.多重共线性4.Glejser 检验⽅法主要⽤于检验()A.异⽅差性B.⾃相关性C.随机解释变量D.多重共线性5.下列哪种⽅法不是检验异⽅差的⽅法()A.⼽德菲尔特——匡特检验B.怀特检验C.⼽⾥瑟检验D.⽅差膨胀因⼦检验6.当存在异⽅差现象时,估计模型参数的适当⽅法是()A.加权最⼩⼆乘法B.⼯具变量法C.⼴义差分法D.使⽤⾮样本先验信息7.加权最⼩⼆乘法克服异⽅差的主要原理是通过赋予不同观测点以不同的权数,从⽽提⾼估计精度,即()A.重视⼤误差的作⽤,轻视⼩误差的作⽤B.重视⼩误差的作⽤,轻视⼤误差的作⽤C.重视⼩误差和⼤误差的作⽤D.轻视⼩误差和⼤误差的作⽤8.如果⼽⾥瑟检验表明,普通最⼩⼆乘估计结果的残差i e 与i x 有显著的形式i i i v x e +=28715.0的相关关系(i v满⾜线性模型的全部经典假设),则⽤加权最⼩⼆乘法估计模型参数时,权数应为() A. i x B. 21i x C. i x 1 D. i x 19.如果⼽德菲尔特——匡特检验显著,则认为什么问题是严重的()A.异⽅差问题B.序列相关问题C.多重共线性问题D.设定误差问题10.设回归模型为i i i u bx y +=,其中i i x u Var 2)(σ=,则b 的最有效估计量为() A. ∑∑=2?x xy b B. 2 2)(?∑∑∑∑∑--=x x n y x xy n b C. x y b =? D. ∑=x y n b 1?⼆、多项选择1.下列计量经济分析中那些很可能存在异⽅差问题()A.⽤横截⾯数据建⽴家庭消费⽀出对家庭收⼊⽔平的回归模型B.⽤横截⾯数据建⽴产出对劳动和资本的回归模型C.以凯恩斯的有效需求理论为基础构造宏观计量经济模型D.以国民经济核算帐户为基础构造宏观计量经济模型E.以30年的时序数据建⽴某种商品的市场供需模型2.在异⽅差条件下普通最⼩⼆乘法具有如下性质()A 、线性B 、⽆偏性C 、最⼩⽅差性D 、精确性E 、有效性3.异⽅差性将导致A 、普通最⼩⼆乘法估计量有偏和⾮⼀致B 、普通最⼩⼆乘法估计量⾮有效C 、普通最⼩⼆乘法估计量的⽅差的估计量有偏D 、建⽴在普通最⼩⼆乘法估计基础上的假设检验失效E 、建⽴在普通最⼩⼆乘法估计基础上的预测区间变宽4.下列哪些⽅法可⽤于异⽅差性的检验()A 、DW 检验B 、⽅差膨胀因⼦检验法C 、判定系数增量贡献法D 、样本分段⽐较法E 、残差回归检验法5.当模型存在异⽅差现象进,加权最⼩⼆乘估计量具备()A 、线性B 、⽆偏性C 、有效性D 、⼀致性E 、精确性6.下列说法正确的有()A 、当异⽅差出现时,最⼩⼆乘估计是有偏的和不具有最⼩⽅差特性B 、当异⽅差出现时,常⽤的t 和F 检验失效C 、异⽅差情况下,通常的OLS 估计⼀定⾼估了估计量的标准差D 、如果OLS 回归的残差表现出系统性,则说明数据中不存在异⽅差性E 、如果回归模型中遗漏⼀个重要变量,则OLS 残差必定表现出明显的趋势三、名词解释1.异⽅差性2.格德菲尔特-匡特检验3.怀特检验4.⼽⾥瑟检验和帕克检验四、简答题1.什么是异⽅差性?试举例说明经济现象中的异⽅差性。
第五章练习题及参考解答

第五章练习题及参考解答5.1 设消费函数为i i i i u X X Y +++=33221βββ式中,i Y 为消费支出;i X 2为个人可支配收入;i X 3为个人的流动资产;i u 为随机误差项,并且222)(,0)(i i i X u Var u E σ==(其中2σ为常数)。
试回答以下问题:(1)选用适当的变换修正异方差,要求写出变换过程;(2)写出修正异方差后的参数估计量的表达式。
【练习题5.1参考解答】(1)因为22()i i f X X =,所以取221i iW X =,用2i W 乘给定模型两端,得 312322221i i iii i i Y X u X X X X βββ=+++ 上述模型的随机误差项的方差为一固定常数,即22221()()i i i iu Var Var u X X σ==(2)根据加权最小二乘法,可得修正异方差后的参数估计式为***12233ˆˆˆY X X βββ=-- ()()()()()()()***2****22232322322*2*2**2223223ˆi i ii i i i i i i i i i i i i i i W y x W x W y x W x x W x W x W x x β-=-∑∑∑∑∑∑∑()()()()()()()***2****23222222332*2*2**2223223ˆii i i i i i i i i i i ii ii i iW y x W x W y x W x x WxWxWx xβ-=-∑∑∑∑∑∑∑其中22232***23222,,i ii ii i iiiW X W X W Y XXYWWW ===∑∑∑∑∑∑******222333i i i i i x X X x X X y Y Y =-=-=-5.2 对于第三章练习题3.3家庭书刊消费与家庭收入及户主受教育年数关系的分析,进一步作以下分析:1)判断模型123i i i i Y X T u βββ=+++是否存在异方差性。
异方差性

例5-1 -我国制造业利润函数模型表5-1列出了1998年我国主要制造工业销售收入Y与销售利润X的统计资料,请利用统计软件Eviews建立我国制造业利润函数模型。
表5-1 我国制造工业1998年销售利润与销售收入情况(1) 参数估计进入EViews软件包,确定时间范围;编辑输入数据;选择估计方程菜单,估计样本回归函数如下估计结果为9322.1528547.0)367.12()6165.0(1044.00335.12ˆ2==+=F R X yi i括号内为t 统计量值。
(2) 检验异方差性①图形分析检验A. 观察销售利润(Y )与销售收入(X )的相关图(图5-1):SCAT XY图5-3 我国制造工业销售利润与销售收入相关图从图中可以看出,随着销售收入的增加,销售利润的平均水平不断提高,但离散程度也逐步扩大。
这说明变量之间可能存在递增的异方差性。
B. 残差分析首先将数据排序(命令格式为:SORT 解释变量),然后建立回归方程。
在方程窗口中点击Resids 按钮就可以得到模型的残差分布图(或建立方程后在Eviews 工作文件窗口中点击resid 对象来观察)。
图5-4 我国制造业销售利润回归模型残差分布图5-4显示回归方程的残差分布有明显的扩大趋势,即表明存在异方差性。
②Goldfeld-Quant 检验A. 将样本按解释变量排序(SORT X )并分成两部分(分别有1到10共10个样本合19到28共10个样本)B. 利用样本1建立回归模型1,其残差平方和为1RSS =2579.587。
C. 利用样本2建立回归模型2,其残差平方和为2RSS =63769.67。
D. 计算F 统计量:12/RSS RSS F ==63769.67/2579.59=24.72。
取05.0=α时,查F 分布表得44.3)210,210(05.0=--F ,44.372.2405.0=>=F F ,所以存在异方差性③White 检验A. 建立回归模型:LS Y C X ,回归结果如图5-5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 异方差性习题与答案
1、产生异方差的后果是什么?
2、下列哪种情况是异方差性造成的结果? (1)OLS 估计量是有偏的
(2)通常的t 检验不再服从t 分布。
(3)OLS 估计量不再具有最佳线性无偏性。
3、已知模型:i i i i u X X Y +++=22110βββ
式中,i Y 为某公司在第i 个地区的销售额;i X 1为该地区的总收入;i X 2为该公司在该地区投入的广告费用(i=0,1,2……,50)。
(1)由于不同地区人口规模i P 可能影响着该公司在该地区的销售,因此有理由怀疑随机误差项u i 是异方差的。
假设i σ依赖于总体i P 的容量,逐步描述你如何对此进行检验。
需说明:A 、零假设和备择假设;B 、要进行的回归;C 、要计算的检验统计值及它的分布(包括自由度);D 、接受或拒绝零假设的标准。
(2)假设i i P σσ=。
逐步描述如何求得BLUE 并给出理论依据。
4、下表数据给出按学位和年龄划分的经济学家的中位数工薪: 表1 经济学家的工资表
年 龄 中位数工薪(以千美元计算) 硕士 博士 25-29 8.0 8.8 30-34 9.2 9.6 35-39 11.0 11.0 40-44 12.8 12.5 45-49 14.2 13.6 50-54 14.7 14.3 55-59 14.5 15.0 60-64 13.5 15.0 65-69
12.0
15.0
(1)有硕士学位和有博士学位经济学家的中位数工薪的方差相等么? (2)如果相等,你会怎样检验两组平均中位数工薪相等的假设?
(3)在年龄35至5岁之间的经济学家,有硕士学位的比有博士学位的赚更多的钱,那么你会怎样解释这一发现?
5、为了解美国工作妇女是否受到歧视,可以用美国统计局的“当前人口调查”中的截面数据,研究男女工资有没有差别。
这项多元回归分析研究所用到的变量有: W —雇员的工资率(美元/小时) 1表示雇员为女性, 0表示女性意外的雇员。
ED :受教育的年数。
AGE :年龄
对124名雇员的样本进行的研究得到回归结果为:(括号内为估计的t 值) 12AG E .099ED .076sex .241.6W
ˆ++--= 867.0R 2= 2.23E = 求:(1)该模型调整后的决定系数2R (2)各估计值的标准差为多少? (3)检验美国工作妇女是否受到歧视,为什么?(4)按此模型预测一个30岁受教育16年的美国男性的平均每小时的工作收入为多少美元?
6、下表给出了2000年中国部分省市城镇居民每个家庭平均全年可支配收入X 与消费支出Y 的统计数据。
(1)试用OLS 法建立居民人均消费支出与可支配收入的线性模型。
1、(1)参数估计量仍然是线性无偏的,但不是有效的。
(2)建立在t 分布和F 分布之上的检验失效。
(3)估计量的方差增大,预测精度下降。
2、第(2)与(3)种情况可能由于异方差性造成。
异方差性并不会引起OLS 估计量出现偏误。
3、(1)如果i σ依赖于总体i P 的容量,则随机扰动项的方差2i σ依赖于2i P 。
因此,要进行的回归的一种形式为i i i P εαασ++=2102。
于是,要检验的零假设H0:
10α=,备择假设H1:01≠α。
检验步骤如下:
第一步:使用OLS 方法估计模型,并保存残差平方项2~i
e ; 第二步:做2~i
e
对常数项C 和2i
P 的回归 第三步:考察估计的参数1α的t 统计量,它在零假设下服从自由度为2的t 分布。
第四步:给定显著性水平面0.05(或其他),查相应的自由度为2的t 分布的
临界值,如果估计的参数1ˆα的t 统计值大于该临界值,则拒绝同方差的零假设。
(2)假设i i P σσ=时,模型除以i P 有:
由于222/)/(σσ==i i i i P P u Var ,所以在该变换模型中可以使用OLS 方法,得出BLUE 估计值。
方法是对i i P Y /关于i P /1、i i P X /1、i i P X /2做回归,不包括常数项。
4、(1) 用Bartlett 检验,2χ检验统计量时0.0019,ρ值是0.965,因此样本方差
在统计上是相等的
(2) 因为两个变量没有统计上的不同,要检验两组的平均薪水是否统计上相同,
可以用t 检验。
计算得出的t 值时0.437,鉴定的t 值是(0.05,16) 2.120t =,因此,两个样本薪水平均在统计上相等的
(3) 有很多因素可以解释这些,关键因素可能是雇主的特性。
5、(1)
(3)考虑零假设:美国工作妇女没有受到歧视,检验统计量t=-4.61,根据自由度为120的t-分布临界值表,检验统计量的值大于0.1%的水平下的临界值3.16,因此,我们有足够的证据拒绝零假设,认为美国工作妇女受到性别歧视。
(4)03.133012.01699.0076.241.6)w (E =⨯+⨯+⨯--= 6、(1)运用EWives 软件计算得模型为: Y=0.755125X+272.3635
(2)在5%的显著水平下,自由度为(6,6)的F 分布的临界值为28.4)6,6(05.0=F 。
拒绝无异方差性假设,表明原模型存在异方差性。
86
.0120
123
)867.01(1k n 1n )R 1(1R 22=--=----=i
i i i i i i i i P u P X P X P P Y +++=221101
βββ。