配位化学研究进展3次
第11章 配位化学研究进展

分子型分子筛
3.5 分子型分子筛 分子型分子筛
O im Si 145°
N
Si
Co 144°
N Co N
Co
2-
Co2+ + N H
4
分子筛结构图
3.5 拆分手性物质
(1) 当一个手性化合物进入生命体时,它的两个 对映异构体通常会表现出不同的生物活性。 (2) 惨痛的教训: 德国一家制药公司在上世纪五十年代开发的一种 治疗孕妇早期不适的药物——反应停,药效很好, 但很快发现服用了反应停的孕妇生出的婴儿很多 是四肢残缺(海豹畸形婴儿)。虽然各国当即停 止了反应停的销售,但已经造成了数以千计的儿 童畸形。后来发现反应停中一种构型有致畸作用, 而另一构型没有致畸作用。
其导电机理主要有两种,一 种是聚合物骨架上连接大环 螯合物,在聚合物骨架作用 下形成面对面型电子转移体 系,在电场作用下,相邻的 螯合物之间发生电荷转移。
导电高分子配合物多具有催 化、光导和显色性质,是重 要的功能高分子材料。
3.2 磁性功能配合物
(1)高密度信息储存器件的发展推动了新
型磁性材料的研究。 (2)小粒子可以用来制造高密度的信息储 存材料,但这个过程进行到一定极限大小, 就不再具有原来的磁效应。 (3)1986年前苏联科学家Ovchinnikov、美 国科学家Torrance及Miller等人几乎同时报 道了具有铁磁性的分子化合物,单分子磁体 可以摆脱其困境.
(7)80年代, 配位化学和分子材料学科相结 合,形成了功能配位化学学科。 (8)1987年,Lehn详细论述了超分子的化 学概念,配位化学发展成为超分子化学。 分子间的弱相互作用(静电作用,范德华 力,氢键,短程作用力)而形成的超分子 归为广义的配位化学(generalized coordination chemistry)。
配位化学的合成及应用研究

配位化学的合成及应用研究配位化学是指通过配体与中心离子或原子团之间的相互作用来形成持久的、适当化学性质的化合物的研究领域。
配位化学研究的核心是寻找合适的配体,通过其与中心离子之间的配位反应得到理想的化合物。
本文将介绍配位化学的合成及应用研究在现代科学技术领域中的重要意义。
一、配位化学的合成方法配位化学的合成方法常见的有两种,一种是配体的交换,一种是直接合成。
1. 配体的交换配体的交换是指通过反应原有配体与新配体产生的化学反应,来形成新的配合物,以达到改变其化学性质的目的。
例如,已知一种1,4,7-三氧杂环反丁烷-5,6-二羧酸配体的制备方法,现在想调整其化学性质,可以选择一种新的配体,如三乙基氨基甲酸钠,经过反应后,便得到新的化合物3,3'-(1,4,7-三氧杂环反丁烷-5,6-二酰胺)双[三乙基氨基甲酸钠]。
2. 直接合成配合物的直接合成是指直接将中心离子(或原子团)与一种或多种配体反应得到目标化合物,这种方法通常被用于制备新型化学反应催化剂。
例如,将银离子与三苯基膦反应,可得到AgPPh3,它被用作一种重要的催化剂,在有机反应中发挥着不可替代的作用。
二、配位化学在物理化学领域中的应用配位化学作为物理化学领域的一些重要研究领域之一,一直发挥着越来越重要的作用,这里我们讲述一些其应用的主要领域及部分研究进展。
1. 光电材料在光电材料领域中,配位化学仍然是一个活跃的研究领域。
例如,大家广泛关注的有机发光材料领域就属于其中之一。
化学家们利用有机发光材料的自身特性,在化学结构中加入不同配体,使其在不同芳香环之间形成各种不同的化学键,从而形成不同种类的化学结构,获取不同发光颜色和发光效率,如其中的钌配合物用作新型发光材料,大大拓展了有机发光材料的应用领域。
2. 生物学领域配位化学在生物学领域的应用,主要涉及到金属离子对生物大分子结构的影响。
因为金属离子一般具有较强的配位能力,在与生物大分子结合的过程中会形成交联,使其在反应方面的选择性和效率大大提高。
配位化学——精选推荐

第六章配位化学配位化学是一门在无机化学基础上发展起来的交叉学科,现代配位化学不仅和化学学科中的物理化学、有机化学、分析化学和高分子化学密切融合,而且通过材料科学及生命科学,进而与物理学和生物学等一级学科相互渗透和交叉。
经过几代人的共同努力,我国配位化学研究水平大为提高,一些方向逐渐步入国际先进行列。
本章将对我国化学工作者近年在配位化学领域研究前沿上具有一定国际影响力的代表性成果进行论述。
6.1配位化学中的新反应及方法学研究配位化学中的新反应和合成方法研究是进行配位化学研究的重要前提和基础研究课题之一。
配合物最传统的合成方法是溶液法将反应物在溶剂中搅拌,或者缓慢扩散(包括分层扩散,蒸汽扩散,U型管缓慢扩散)通过直接、交换、氧化还原反应等方法,一般适用于反应物(金属盐和配体)溶解性比较好的,在温度不太高就可以反应的配位化合物的合成。
而对于金属盐以及有机配体都难于溶解的体系,传统的溶液法往往无能为力。
无机化学家除了继续发展传统的配位化合物合成方法外,对发现新合成反应或建立新合成方法的研究都从来没有间断过,特别是在利用这些新反应、新方法来制备、合成具有新颖结构或特殊功能的配位化合物方面,近年来取得了长足的进展,其中利用水热和溶剂热合成的方法已经取得了很多值得关注的成果,包括一些新颖的原位金属/配体反应,被誉为“连接配位化学和有机合成化学的桥梁”[1];而模板合成技术也被成功得用于配合物以及其聚集体的可控组装中;一些特殊的合成技术和方法如离子热、微波辅助、固相反应等也将在本节介绍。
6.1.1溶剂(水)热条件下原位金属/配体反应作为配位化学和有机化学的重要研究内容之一,原位金属/配体反应已被广泛地用于新型有机反应的发现,反应机理的阐述以及新型配位化合物的合成,尤其是用于合成那些利用有机配体直接反应难以得到的配合物。
传统的合成反应一般是在敞开体系而且比较温和的条件下发生的,而在溶剂热或水热反应条件下,利用原位金属/配体反应法制备配位化合物是十几年兴起的一种新合成方法,这一源于无机材料,特别是多孔分子筛材料的合成方法,已被广泛地应用于配位化合物,尤其是难溶的配位聚合物的合成[1, 2]。
稀散元素镓配合物的研究进展

稀散元素镓配合物的研究进展
刘兴芝;司伟;丁超
【期刊名称】《材料研究与应用》
【年(卷),期】2004(014)002
【摘要】近年来,镓的配位化学的研究发展迅速.对最近几年镓与主族元素、过渡元素及其他一些典型配体形成的有机镓配合物的研究进展作一概述.
【总页数】6页(P118-123)
【作者】刘兴芝;司伟;丁超
【作者单位】辽宁大学化学科学与工程学院稀散元素化学研究所,辽宁,沈
阳,110036;辽宁大学化学科学与工程学院稀散元素化学研究所,辽宁,沈阳,110036;沈阳市环境监测中心站,辽宁,沈阳,110016
【正文语种】中文
【中图分类】O627.32
【相关文献】
1.稀散元素碲配合物的研究进展 [J], 黄巍;刘兴芝;柏丽丽;宋玉林
2.稀散元素镓铟铊配合物的研究进展 [J], 宋玉林;刘兴芝;武荣成;臧树良
3.潜在放射性药物-镓环多胺多羧酸类配合物研究进展 [J], 江雪清;王明召
4.稀散元素镓铟铊配合物的研究进展 [J], 宋玉林;刘兴芝;等
5.Schiff碱镓配合物的生物活性研究进展 [J], 江雪清;王明召
因版权原因,仅展示原文概要,查看原文内容请购买。
配位化学的发展进程

配位化学的发展进程work Information Technology Company.2020YEAR配位化学论文工业中的配位化学摘要:配位化学从1704年发展至今,不断创造出许多富有生命力的新领域,为化学工业的发展带来新的契机。
配位化学在化学化工方面显示出了不可替代的实用优越性。
配位化学又称络合物化学,它是近三十年来发展最迅速的化学学科之一,其研究已渗透到无机化学、分析化学、有机化学、生物化学、电化学等学科中,并在金属的提取和富集、工业分析、催化、制药、染料、水质处理等方面得到广泛的应用。
本文综述了配位化学在工业方面的应用,浅议配位化学的新发展及其近几年在化学化工工业中的发展前景。
关键词: 配位化学;配合物;发展;化学化工;应用1前言配位化学又称络合物化学,配位化合物简称配合物或络合物。
配合物是由一个或几个中心原子或中心离子与围绕着它们并与它们键合的一定数量的离子或分子(这些称为配位体)所组成的。
本世纪五十年代后,配位化学的发展突飞猛进,大量新配合物的制得及其结构研究,配合物中价键理论的研究,配合物的反应动力学的研究等方面在世界化学文献中占有重要的地位。
配位化学之所以有今日的进展,固然和近代科学技术及侧试设备的进步有关,而更重要的是配位化学在科学技术及工农业生产上有极广泛和重要的应用。
在工业生产中,多数应用到金属 (或金属离子)的部门、工艺技以及原料、产品的分析皆或多或少地涉及到配合物。
由于配位化学在工业中的应用面广、量大不能一一详述,下面拟几个方面做扼要介绍。
2 配位化学的前期发展历程配合物在自然界中普遍存在,历史上最早有记载的是1704年斯巴赫(Die sib ach)偶然制成的普鲁士蓝 KCN·Fe(CN)2·Fe(CN)3,其后 1798 年塔斯赫特(T assert)合成[Co(NH3)6]Cl3。
十九世纪末二十世纪初,A. W e r n e r创立了配位学说,成为化学历史中重要的里程碑。
配位化学第1章

超分子化学——超越分子概念的化学——两个以上的分
子以分子间作用力所形成的有序聚集体的化学
发现冠醚配合物
首先研究了主客体 化合物
发现穴醚配合物, 并提出超分子概念
Noble prize in 1987
受
识别
体
络合或分子间键
超分子 催化
底
多分
物
传递
子有
序集
化学调控
合体
超分子光
化学分子
光化学调控
分子器件
2.化学文献最早关于配合物的研究 1798年法国分析化学家Tassaert发现[Co(NH3)6]Cl3, 发表于最早的化学杂志创刊于1789年的法国Annakes
de Chimie,28,106,1799。
塔索尔特是个分析化学家。他研究在盐酸介质中如何用 NaOH使Co2+沉淀为Co(OH)2,再由Co(OH)2灼烧成CoO 以测定钴的含量。在用氨水代替NaOH时发现了桔黄色的 晶体[Co(NH3)6]Cl3。当时搞不清楚它是什么类型化合物, 故称之为“Complex”
使用配合物作为染料,在我国从周朝就开始了,比普 鲁土蓝的发现早二千多年。《诗经》中有“缟衣茹藘 (绛红色佩巾的代称)”,“茹藘在阪”这样的记载。 “茹藘”就是茜草
实际就是存在于茜草根中的二(羟基)蒽醌和粘土(或白矾) 中的铝和钙离子生成的红色配合物,这是最早的媒染染料。 在长沙马王堆一号墓出土的深红色绢和长寿绣袍的底色,经
Phys. Rev.,1934, 45, 87
CuSO4·5H2O
OO
SOH
O
H
OH
H
HO
Cu
O H
HO
OH
H
H
化学中的有机金属配位化学研究

化学中的有机金属配位化学研究有机金属配位化学是一门重要的化学分支,旨在了解金属与有机化合物之间的配位化学反应。
这门学科涉及到配位化学、有机化学、无机化学等多个领域,是目前化学领域研究的热点之一。
本文将介绍有机金属配合物的概念、合成方法以及应用领域,帮助读者更好地了解有机金属配位化学的研究现状和趋势。
一、有机金属配合物的概念有机金属配合物是指含有有机分子基团的金属配合物。
这些化合物通常由一个或多个有机配体通过金属离子与一些无机配体形成。
有机金属配合物具有很强的配位活性和生物活性,广泛应用于医学、农业、化学工业等领域,成为化学研究的重要组成部分。
二、有机金属配合物的合成方法有机金属配合物的合成方法主要有以下几种:1. 直接合成法直接合成法是将金属与有机配体在一定条件下混合,并在加热、冷却、搅拌等条件下反应得到有机金属配合物的方法。
这种方法的优点是简单、易操作,适用于许多有机配体和金属离子。
但是,该方法存在反应难以控制、反应产物难以纯化等缺点。
2. 水解法水解法是将由金属离子和有机配体形成的金属有机类配合物与水反应,使其水解成为无机物的方法。
水解法适用于许多含有金属-有机配体的化合物,可以得到较高纯度的有机金属配合物。
3. 氧化还原法氧化还原法是利用金属离子的氧化还原性将有机配体还原或氧化成为配位基团的方法。
这种方法适用于需要从金属离子与无机配体中置换出配位基团的化合物。
4. 共沉淀等复合物法共沉淀等复合物法是通过沉淀或其他有效手段将含有金属离子和有机配体的混合物分离、纯化并得到有机金属配合物的方法。
这种方法的优点是操作简单、纯化效果好,可以得到质量较高的有机金属配合物。
三、有机金属配合物的应用有机金属配合物在医学、农业、化学工业中具有广泛的应用。
以下为其主要应用领域:1. 药物研究有机金属配合物的生物活性较高,可以用于癌症、关节炎、肝炎等疾病的治疗。
例如,铂类配合物是一种重要的抗癌药物,具有良好的治疗效果。
配位化学中的新发展和应用

配位化学中的新发展和应用近年来,配位化学在新发展和应用方面取得了令人瞩目的进展。
配位化学是研究过渡金属离子与配体之间相互作用的科学领域。
它涉及了金属配合物的合成、结构表征以及在催化、生物学和材料科学等领域的广泛应用。
本文将介绍配位化学在新发展和应用方面的几个重要领域。
首先,金属有机框架(MOFs)在配位化学中的应用获得了广泛关注。
MOFs是由金属离子和有机配体通过配位键相连接形成的二维或三维结构。
MOFs具有高度可调性和多样性,可以通过选择不同的金属离子和配体来调控其化学性质和结构。
由于其大孔道结构和高比表面积,MOFs在气体储存、催化、分离等领域具有重要应用价值。
例如,我们可以利用MOFs来储存和释放氢气,从而解决氢能源存储和转换的挑战。
此外,MOFs还可用于吸附和分离气体、液体和离子,具有潜在的应用于环境治理和能源领域。
除了MOFs,金属有机骨架材料(MOMs)是近年来配位化学中的另一个重要发展方向。
MOMs与MOFs相似,也是由金属离子和有机配体组装而成。
不同之处在于,MOMs具有更大的孔道结构和更高的热稳定性,使其在气体存储、催化和分离等领域具有广泛应用。
例如,在碳捕捉和储存方面,MOMs材料可以通过与CO2的高度选择性吸附来帮助减缓全球变暖。
此外,配位化学在生物学领域的应用也备受关注。
金属配合物可以作为药物的活性成分或生物传感器的组成部分。
例如,铂配合物被广泛应用于抗癌药物的开发。
铂配合物能与DNA结合,从而阻止癌细胞的复制和生长。
另外,镍、铜、锌等金属离子也被用作生物传感器,用于检测生物体内的重金属离子和有害物质。
这些应用展示了配位化学在生物医药和生物传感领域的潜力。
最后,配位化学在可持续发展和环境保护方面也具有重要意义。
金属配合物可以作为催化剂用于催化转化废弃物或可再生资源。
例如,钼、钨等金属配合物可以催化生物质转化为燃料和化学品,从而减少对化石燃料的依赖和减少温室气体的排放。
此外,配位化学的发展也可以帮助开发更高效、环境友好的化学过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)配位化学理论在指导材料的分子设计中 起重要的指导作用。
第30页/共85页
• 3.1 导电配合物 • 3.2 磁性配合物 • 3.3 非线性光学配合物 • 3.4 发光配合物 • 3.5 分子筛型配合物 • 3.6 手性拆分配合物 • 3.7 多孔储气配合物 • 3.8 光电转换配合物
铁在细胞内的解离
进入细胞内的铁必须向其他配体活蛋白质 进行释放,首先被生物还原剂还原成Fe(II), 因为二价铁结合较不牢固K=108. 然后微生 物水解铁载体配体,达到释放的目的。
第14页/共85页
铁的输运-运铁蛋白
第15页/共85页
铁的储存-铁蛋白
第16页/共85页
输氧-血红蛋白
第17页/共85页
大自然中的铁量相当丰富,但溶液中 的自由铁离子却相当低, 在中性条件 下 约为 10-18 mol/L。
Fe3+ + 3OH- = Fe(OH)3 K sp=10-39
第12页/共85页
铁从环境中的吸收
作用:捕获大自然中的铁(III)元 素,稳定常数K=1050,能够将铁运 入细胞膜内。
第13页/共85页
内容纲要
• 配位化学的创立和发展历史 • 配位化学在生命科学中的作用 • 配位化学在材料科学的作用 • 配位化学的发展前景-分子机器
第1页/共85页
1配位化学的创立和发展历史
(1)最早的配合物是1878年法国 Tassert 报导的 CoCl3.6NH3 (2)配位化学的开创标志:1893年Werner 发表第一篇配位化学的博士论文 《无机化 学新概念》。首次从立体的角度系统地考 察了配合物的结构,提出了配位学说。
第2页/共85页
学说内容: (a) 形成稳定的配合物既要满足主价的需要, 又要
满足副价的需要。 (b) 配合物不是简单的平面结构,而是具有确定的空
间立体构型。
维尔纳获1913年Nobel 化学奖。 缺点:没有明确说明配合物中配位键的本质。 仅依靠化学计量反应,异构体数目,溶液电导率 的测定提出配位学说。
第4页/共85页
二茂铁的合成
第5页/共85页
(7)80年代, 配位化学和分子材料学科相结 合,形成了功能配位化学学科。
(8)1987年,Lehn详细论述了超分子的化 学概念,配位化学发展成为超分子化学。 分子间的弱相互作用(静电作用,范德华 力,氢键,短程作用力)而形成的超分子 归为广义的配位化学(generalized coordination chemistry)。
பைடு நூலகம்
其他配合物药物
MRI对照试剂
第26页/共85页
抗感染试剂
治疗糖尿病药物
第27页/共85页
抗癌药物
第28页/共85页
抗关节炎药物
第29页/共85页
3 配位化学在材料科学的作用
(1)配合物因为有无机的金属离子和有机 配体,因此配合物不仅有兼有无机和有机 化合物的特性,而且还有可能出现无机化 合物和有机化合物均没有的新性质。
第31页/共85页
3.1导电配合物
第32页/共85页
3.2 磁性功能配合物
(1)高密度信息储存器件的发展推动了新 型磁性 材料的研究。 (2)小粒子可以用来制造高密度的信息储 存材料, 但这个过程进行到一定极限大小。 就不再具有原来的磁效应。 (3)1986年前苏联科学家Ovchinnikov、美 国科学家Torrance及Miller等人几乎同时报 道了具有铁磁性的分子化合物,单分子磁体 可以摆脱其困境.
第6页/共85页
二 配位化学在生命科学的作用
2.1 履行生命的功能 2.2 认识生命物质的工具 2.3 诊断疾病的手段 2.4 研发新药的思路
第7页/共85页
2.1 履行生命的功能 碳酸酐酶(CA)
人类发现的首例含锌蛋白,在人体和动物 体内,能够可逆的催化二氧化碳的水合作用
第8页/共85页
该配位水的 Pka = 7
第3页/共85页
1916年美国路易斯提出配位键理论。把 CoCl3.6NH3 写成 [Co(NH3)6]Cl3 (3)20世纪50年代,P.L. Pauson和 S.A. Miller 分别独立合成了二茂铁,突破了传统配位化学 的概念,带动了金属有机化学的迅猛发展。 (4)Ziegler(1953)和Natta(1955)的发现。推动 了配合物在催化研究方面的研究发展。 (5)60年代,M.Eigen 提出了溶液中配合物生 成反应机理。 (6)70年代,配位化学和生物科学交叉,形成 生物无机化学。
第23页/共85页
例2 心血管药物的设计 NO: 不带电荷,具有1个未成对电子,是 顺磁物质,三位美国科学家揭示它是生命 体内传递生命信息的第二信使和神经递质。 1998年获Nobel生理医学奖。
硝普化钠
第24页/共85页
过量的NO容易引起败血症, 15-16是个治疗败血症的药物
第25页/共85页
2.2 认识生命结构的工具
第18页/共85页
第19页/共85页
核磁位移探针
利用该配合物可以测定生物大分 子中的金属离子成键位置和成键 数目
第20页/共85页
3.3 诊断疾病的手段
检测癌细胞作用,与癌细胞作用会发出明 亮的荧光,而对正常细胞作用没有荧光.
第21页/共85页
3.4 研发新药的思路
1 传统的药物一直由有机物主宰。 2 1969年,美国科学家Rosenberg首次报道 顺式-二氯·二胺合铂(II) )具有抗癌活性, 大 大促进了配合物作为药物的发展. 3 由于金属离子在生命活动中扮演重要的 角色,无机药物必将显示出勃勃生机.
第22页/共85页
举例: 低氧选择性药物的设计
低氧细胞,广泛地存在于人和动物的实体瘤中, 低氧细胞还原能力增强,所合成化合物的半波 还原电位正好落在细胞内还原酶(P450还原酶, 黄嘌呤酶等)的还原电位之内,即能被细胞还 原酶还原,放出活性的还原物质,杀死肿瘤细 胞;而在氧供应充足的细胞中,即被终止,而 体内正常组织免受伤害,起到特异性杀死低氧 肿瘤细胞的作用’
第9页/共85页
CA催化第C1O0页2水/共85合页 机理
例2: 生命中的铁元素
1 一个普通成年人体内约含5-6克铁.绝大部分 储存,只有35毫克处于激活状态。
2 参与许多生命活动。 例如: DNA合成,能量的产生(呼吸作用) 能量的转换(光合作用),氮的还原,氧 气的输送,等等 。
第11页/共85页