配位化学第三章(2)配合物分解
第3章 配合物的立体化学【配位化学】

也发现有规则六角形的结构,这主要是由配体的 结构决定的,如K+与二苯并-18-冠-6的配合物 (见前面的图)。
3.高配位数配合物
四角锥构型(SPY-5)的例子有: [VO(acac)2](bisacetylacetonatovanadyl), [Cu2 Cl8] 4- 中通过两个Cl-连接两个四角锥体(见下图)。 [SbCl5]2-呈现SPY-5构型。
N N
Cu I N
N
CN=6的配合物最多,通常为规则的或稍有畸变 的八面体(Octahedron, OC-6),例如Co(NH3)6Cl3, Cr(CO)6, [Fe(CN)6]4-. 主族元素化合物有如Al(acac)3, [InCl6]3-, [PCl6]- 等。
例如[Zr(OX)4]4-,(OX=C2O42-), [Mo(CN)8]4-.特点是: 两个配位原子间相距较近的双齿配体,易形成十二 面体配位构型,如[Co(NO3)4]2-(NO3-双齿配体,形 成一个四员环),又如[Cr(O2)4]5- (过氧根离子O22-中 2个O原子形成三员环)。上述两种构型都可看作是 由立方体变形所致。
第三章 配合物的立体化学(Stereochemistry of Coordination Compounds)
§3-1 概述
配合物的立体化学主要讨论配合物的配位几何构 型CG(Coordination Geometry)和异构现象 (Isomerism).配合物的几何构型指配位体(配位原 子)围绕配位中心的立体排布方式(从几何图形角 度看)。几何构型也可用配位对称性 CS(Coordination Symmetry)的方法来近似描述. 如 [M(H2O)4]+,其CG为 T-4;CS近似为 Td点群。
配合物的分解与合成反应路径

配合物的分解与合成反应路径配合物是由中心金属离子与周围配体构成的化合物。
在化学反应中,配合物的分解与合成反应路径是非常重要的。
本文将介绍配合物分解与合成的反应路径,并探讨其在不同条件下的影响因素。
一、配合物的分解反应路径配合物的分解反应可以通过热解、溶剂效应、酸碱效应等多种途径进行。
下面以一种常见的配合物—[Cu(NH3)4]2+为例,讨论其分解反应路径:1. 热解反应当[Cu(NH3)4]2+受热时,可以发生热解反应,生成氨气和氧化铜:[Cu(NH3)4]2+ → CuO + 2NH3↑2. 溶剂效应在适当的溶剂中,配合物的分解也可由溶剂效应引起。
以[Co(H2O)6]2+为例,当置于无水乙醇中时,[Co(H2O)6]2+发生水合络合物Cl^-的置换,生成[Co(Cl)(H2O)5]2+:[Co(H2O)6]2+ + Cl^- → [Co(Cl)(H2O)5]2+ + H2O3. 酸碱效应在酸碱条件下,配合物的分解也较为常见。
以[Fe(CN)6]4-为例,当加入强酸HCl时,可以发生配体CN^-的置换反应,生成HCN气体:[Fe(CN)6]4- + 6HCl → 6CN^- + FeCl62- + 6H+二、配合物的合成反应路径配合物的合成反应可以通过配体的配位反应、络合反应等进行。
下面以一种例子—[Fe(CN)6]4-为例,讨论其合成反应路径:1. 配体的配位反应当配体CN^-与中心金属离子Fe3+接触时,可以发生配位反应,生成六配体的[Fe(CN)6]4-:CN^- + Fe3+ → [Fe(CN)6]4-2. 离子的络合反应在合适的条件下,离子的络合反应也能够合成配合物。
以[Cr(H2O)6]2+为例,当加入硝酸银AgNO3时,发生离子间的络合反应,生成[Ag(NH3)2]+离子,进而生成[Cr(NH3)6]2+:[Cr(H2O)6]2+ + 3Ag(NH3)2+ → [Cr(NH3)6]2+ + 3Ag+ + 6H2O三、影响配合物分解与合成反应路径的因素配合物的分解与合成反应受到多种因素的影响,下面列举几个常见的因素:1. 温度温度是影响配合物反应路径的重要因素。
配位化学第三章

实例:
[Ti(H2O)6]3+ K3[Mn(CN)6] K3[Fe(CN)6]
Ti3+: 3d1 Mn3+: 3d4 Fe3+: 3d5
µ=1.73 n =1 µ=3.18 n =2 µ=2.40 n =1
配位化学第三章
配合物的空间构型与中心离子的 杂化类型、配位数的关系
配位数 2
4
6
杂化
类型 sp
CN-的成键π2pz 轨道肩并肩重叠形成离域π键。
CN
NC
CN
Ni2+
配位化学第三章
NC
3.1.2 价键理论的应用
(1)解释了配合物的空间构型 (2)说明配合物的磁性 (3)比较同类配合物的稳定性
配位化学第三章
举例说明:
1. 已知[Ag(NH3)2]+的μm=0,用VB法说明其空
间结构。
4d
5s
5p
Ag+ [Kr]
4d
5p
[Ag(NH3)2]+
NH3 NH3 sp杂化 所以[Ag(NH3)2]+的空间构型为直线型。
配位化学第三章
2. [BeX4]2-的空间构型为四面体。为什么?
Be2+
1s
2s
2p
[BeX4]2-
1s
X- X- X- X-
sp3杂化
在[BeX4]2- 中,由于Be2+采取sp3杂化,所以 [BeX4]2-的 空间构型是正四面体。
dsp2
sp3 sp3d2或d2sp3
型空 间 构
直线形 平面正方形
四面体
八面体
举例:Ag(NH3)2 Ni(C)N24 NiCl24
配位化学-配合物的化学键理论

3d
4s
4p
xx xx xx
sp2 平面三角形
1
2017-9-12
例3: [Co(NCS)4]23d
Co2+ 3d7
4s
4p
xx xx xx xx
sp3 四面体
例4:[Ni(CN)4]2- Ni2+: 3d8
3d
4s
4p
电子归并, 杂化
xx xx xx xx dsp2
平面正方形
问题:什么情况下,内层d电子归并?
d. 价键理论不能解释配合物的颜色及吸收光谱。
e. 对非经典配合物无法解释。
3
2017-9-12
第二节 晶体场理论 1929年由Bethe提出
基本思想:
50年代以后得到发展
中心原子 静电作用
配体
①
具有电子结构
无电子结构 静电场
的离子
② 在配体静电场作用下,中心原子原来简并的5个d轨道能
级发生分裂,分裂能量的大小与空间构型及配体、中心原子 的性质有关。
2017-9-12
第三章 配合物的化学键理论
主要内容: 1. 价键理论(Valence Bond Theory) 2. 晶体场理论(Crystal Field Theory) 3. 配位场理论(Ligand Field Theory) 4. 分子轨道理论(Molecular Orbital Theory)
的排斥作用相对较小,能量降低。 dxz
eg (dx2—y2、dz2)
o
d
自由金属离子 球形场
t2g (dxy、dyz、dxz)
八面体场
d轨道在八面体场中的分裂
o:(1)由电子光谱得到;(2)由量子力学微扰理
配位化学 第3章 配合物性质与表征

3
章
配合物的性质与表征
The properties and spectroscopic characterization of coordination compounds
本章教学内容
配合物的性质
配合物的光谱表征
3.1
3.2
3.1 配合物的性质
在溶液中形成配合物时,常常出现颜色、溶解度、电 极电势以及pH 值的改变等现象。根据这些性质的变化,可 以帮助确定是否有配合物生成。 溶解度 一些难溶于水的金属氯化物,溴化物,碘化物,氰化物 可以依次溶解于过量的C1-,Br-,I-,CN-和氨中,形成可溶 性的配合物,如难溶的AgCl 可溶于过量的浓盐酸及氨水中。 金和铂之所以能溶于王水中,也是与生成配离子的反应有关。 Au + HNO3 + 4HCl = H[AuCl4]+ NO + 2H2O 3Pt + 4HNO3 + 18HCl = 3H2[PtCl6] + 4NO + 8H2O
酸碱性 一些较弱的酸如 HF 、 HCN 等在形成配合酸后,酸性往 往增强。 如: HF 与 BF3 作用生成配合酸 H[BF 4 ] ,而四氟硼酸的碱金 属盐溶液在水中呈中性,这就说明H[BF4 ]应为强酸。又如 弱酸HCN与AgCN形成的配合酸H[Ag(CN)2]也是强酸。这种 现象是由于中心离子与弱酸的酸根离子形成较强的配键, 从而迫使 H + 移到配合物的外界,因而变得容易电离,所以 酸性增强。 同一金属离子氢氧化物的碱性因形成配离子而有变化, 如[Cu(NH3)4](OH)2的碱性就大于Cu(OH)2。原因是 [Cu(NH3)4]2+的半径大于Cu2+离子的半径和OH-离子的结合 能力较弱,OH-离子易于解离。
配位化学简史和基本概念

(2)多齿配体:一个配位体和中心原子以两个
或两个以上的配位键相结合称为多齿配体。 (配体
中含有两个或两个以上配位原子)。 例如:乙二胺(en)、EDTA 、 C2O42-
乙二胺(en)
联吡啶(bpy)
1,10-二氮菲(邻菲咯啉)
-双酮
多齿配体
- OOC
COONCH2CH2N COO-
-
六齿配体 EDTA
2. Werner配位理论的成功之处 (1) 该理论有丰富的实验成果作为实践基础。
(2) Werner在科学研究工作中思想比较解放,他在 继承前人已经取得的科学成果的同时,能够摆脱经 典化合价理论的束缚,而敢于提出创新的见解,对 配位化学的发展作出了重大贡献。
3. Werner配位理论的不足之处 由于时代的局限,Werner配位理论未能说 明配位键的本质。 Werner配位理论是配位化学早期发展过程中的里程 碑。1913年Werner获得诺贝尔化学奖。
利用晶体场-配位场理论、MO理论可以对配合物 的形成、配合物的整体电子结构如何决定配合物的磁学的、 光谱学的性质等理论问题作出说明。
○热力学
已能准确测定或计算配合物形成和转化的热力学数据。
○动力学 ★配合物形成和转化的动力学知识也获得了迅速的发展。 ★利用经特别设计的配体去合成某种模型化合物(配合物),
三、 配位化学当前发展情况 20世纪50、60年代,无机化学最活跃的领域是配位化学
○结构:
利用现代物理测试手段已经能定量地确定配合物结构的细节
○成键理论:
1893年维尔纳提出主价和副价理论 1929年Bethe提出晶体场理论 1930年鲍林提出价键理论 对晶体场理论的修正是配位场理论 1935年Van Vleck用 MO理论处理了配合物的化学键问题
第3章 配位化学PPT课件
第一节 配位化学基础
1.2 配合物的组成及命名
(1) 配合物的命名规则
(c) 同类配体(无机或有机类)按配位原子元素符号的英 文字母顺序排列。
[Co(NH3)5H2O]Cl3 三氯化五氨·一水合钴(III) (d) 同类配体同一配位原子时,将含较少原子数的配体排 在前面。 [Pt(NO2)(NH3)(NH2OH)(Py)]Cl 氯化硝基·氨·羟氨·吡啶合铂(II)
3 第 章 配位化学
顺-[PtCl2(NH3)2]
目标&要求
掌握较复杂配合物的命名规则 掌握配合物的立体异构现象 掌握配合物化学键基本理论
(价键理论、晶体场理论、配体场理论、分子轨道理论)
了解新型配合物的类型及应用
一、配位化学基础 二、配位立体化学 三、配位化学理论 四、新型功能配合物及应用
第一节 配位化学基础
1.4 配合物的分类
按中心原子数目分类:
单核配合物和多核配合物
按配合物所含配体种类分类:
单一配体配合物和混合配体配合物
按配体的齿数分类:
简单配合物、螯合物、大环配合物等
按配合物价键特点分类:
经典配合物和非经典配合物
第二节 配位立体化学
2.1 配合物的几何构型 2.2 配合物的异构现象
CH2CH2NH2 NH
CH2CH2NH2
二乙三胺(dien)
第一节 配位化学基础
1.3 配体的基本类型及配位能力 四齿配体
二水杨醛缩乙二胺(Salen)
第一节 配位化学基础
1.3 配体的基本类型及配位能力 六齿配体
乙二胺四乙酸钠(EDTA)
第一节 配位化学基础
1.3 配体的基本类型及配位能力 冠醚 (大环醚)
配位化学-中科院-3-化学键理论
(4) Jahn-Teller效应:
电子在简并轨道 中的不对称占据
分子的几何构型发生畸变, 使体系的能量进一步下降.
产生强Jahn-Teller效应的组态: d4(高自旋)、 d7(低自旋)、 d9
PT 20425 25215 17687 23825 29875 14563 19150 23625 17680 20800
P与中心离子d电子数目有关,平均电子成对能可 用电子光谱中的 Racah 参数 B 和C 来表示。
气态的自由金属离子: C≈4B
P(d4) = 6B + 5C ≈ 26 B P(d5)= 7.5B + 5C ≈ 27.5 B P(d6) = 2.5B + 4C ≈ 18.5 B P(d7)= 4B + 4C ≈ 20 B
0
d
自由金属离子 球形场
t2g (dxy、dyz、dxz)
八面体场
d轨道在八面体场中的分裂
轨道分裂能, 可由 电子光谱得到.
场强参数
E(eg) - E(t2g) = o = 10 Dq
- 6E(t2g) = 4E(eg)
解方程:
E(t2g) = - 4 Dq,E(eg) = + 6 Dq
② 四面体场
如d1与d6、d3与d8。 原因:
在弱场中无论何种几何构型的场, 多出的5个d电 子, 根据重心守恒原理, 对稳定化能都没有贡献。
6. 晶体场理论的应用
(1)解释配合物的颜色 产生: d-d跃迁
例:八面体场 eg
0
t2g
波长/nm
400 500
600 700 800
被吸收的 不可见光区
可见光区
配位化学 第3章 配合物性质与表征
配合物的性质与表征
The properties and spectroscopic characterization
of coordination compounds
本章教学内容
3.1 配合物的性质 3.2 配合物的光谱表征
3.1 配合物的性质
在溶液中形成配合物时,常常出现颜色、溶解度、电 极电势以及pH 值的改变等现象。根据这些性质的变化,可 以帮助确定是否有配合物生成。
配体内的跃迁
有机配体分子中的电子跃迁包括σ→σ*,n→σ*,n→π*, π→π*四种。其中,大多数有机化合物的吸收光谱是电子 n→π*和π→π*跃迁的结果。因为紫外-可见光谱的波长范围在 200-700 nm,σ→σ*和n→σ*跃迁所需要的能量较大,所以, 能在紫外区观测到这两种跃迁的分子较少。而n→π*和π→π* 跃迁的吸收峰恰好位于200-700 nm范围内,因此,配体分子 内的跃迁主要是n→π*和π→π*跃迁。如果金属和配体之间主 要是静电作用,金属原子对配体吸收光谱的影响较小,配合 物的吸收光谱与配体的吸收光谱类似。如果金属和配体之间 形成共价键,则配合物的吸收峰向紫外方向移动,共价程度 越强,吸收峰移动得越远。
同一金属离子氢氧化物的碱性因形成配离子而有变化, 如[Cu(NH3)4](OH)2的碱性就大于Cu(OH)2。原因是 [Cu(NH3)4]2+的半径大于Cu2+离子的半径和OH-离子的结合 能力较弱,OH-离子易于解离。
3.2 配合物的光谱表征
电子光谱
(1)配合物价电子跃迁的类型
电子光谱是由于分子中的价电子吸收了光源能量后,从低 能级分子轨道跃迁到高能级分子轨道所产生的各种能量光 量子的吸收。其能量覆盖了电磁辐射的可见、紫外和真空 紫外区,所以又叫可见-紫外光谱。
2013-第三章--配合物的化学键理论解析
与羰基配合物成键过程相似,CN-配体中C上的 孤电子对向金属的杂化空轨道配位,形成σ配键,金 属的d电子向CN- π* 轨道配位,形成d-pπ配键。
(3) 烯烃配合物
1827年,Zeise合成了K[ PtCl3(C2H4) ]·H2O,这是第 一个有机金属化合物,但其结构直到120多年后才确定。 乙烯的成键π电子向铂的杂化轨道配位,按成键的对称 性应为σ配键;金属d轨道的电子向乙烯的 π* 轨道配位, 形成d-pπ配键。
z
y x
1. d轨道的分裂
dz2
dyz
dxz
dx2-y2
z
y
x
dxy
d 轨道分裂情况 八面体场中:
dz2 , dx2-y2, 轨道能量升高 (eg 或 dγ) dxy, dyz, dxz 轨道能量降低 (t2g 或 dε) 四面体场中:
dz2 , dx2-y2, 轨道能量降低 (eg) dxy, dyz, dxz 轨道能量升高 (t2g)
dx2-y2
x y
极大值指向面心
dxy
x
y
极大值指向棱的中点
1. d轨道的分裂 ( 在Oh场中的分裂 )
分裂能 o = 10 Dq 场强参数Dq: D—中心离子的
极化度 q:配体电荷
Dq具有能量单位
重心守恒原理: 分裂前后五个d轨 道的总能量相等
没有不成对电子
稳定性:内轨型配合物 > 外轨型配合物
根据实验测得的有效磁矩,判断下列各种离子分
别有多少个未成对电子?哪个是外轨?哪个是内轨?
① Fe (e n22)
5.5 B.M.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Werner 理论 基本要点
主价和副价 中心原子的氧化数和配位数 内界和外界 “[ ]”为内界,与内界保持电荷 平衡的其它简单离子为外界 空间构型
副价具有方向性,指向空间确定的位置
配位理论的重要贡献 •提出副价的概念,补充了当时不完善的化合价理论。 •提出的空间概念,创造性地把有机化学中的结构理 论扩展到无机物的领域,奠定了立体化学基础。
:NH3
: F-
:Cl-
[:C= N][:O-H]氰根离子 羟基
[:O-N=O] 亚硝基
Ii:多配位基配位体(polydentate): 配体中有多个配位原子能与中心离子形成多个配位键。 例如:
231
2-
双齿配体
O
O C C O
H2 C H2 N
CH2 NH2
O
乙二胺(en) 多齿配体
草酸根(OX)
能与除了Na+,K+,Rb+,Cs+等离子以外的大多数金属离子 如Ca2+, Mg2+等离子形成稳定的螯合物。 (1、可用于除去水中的Ca2+ , Mg2+离子来软化水 2、滴定分析)
291
螯合物特性: • 具有很高的稳定性; • 具有特征颜色; • 难溶于水而易溶于有机溶剂。
被广泛地用于沉淀分离、溶剂萃取、比色测定、 容量分析等分离、分析工作。
“链理论”
结论:链理论 • 如: CoCl · 3NH ,按照所提的结构式,有一个 Cl 3 3 不正确
可与AgNO3反应生成AgCl沉淀,但实际是中性分 子,电导为0,分子中的三个Cl-反应性都低。
51
后来,维尔纳用假设和实验证明了自己理论的正确,并获得了 1913年的诺贝尔化学奖 。
而约尔更生做了一个有诚信的科学家应该做的事: 发表了实验结果, 说明自己的理论是错的。
71
配位化学的奠基人——维尔纳
Alfred Werner (1866~1919)阿尔弗雷
德· 维尔纳
瑞士无机化学家,配位化学奠基人。 1890年与A.R.汉奇一起提出氮的立
体化学理论;
1893年提出络合物的配位理论和配
位数的概念;
1893年提出化合价的副价概念;
因 创 立 配 位 化 学 而 获 得 1913 年
3K4Fe(CN)6 + 4FeCl3 → Fe4[Fe(CN)6]3 + 12KCl
在医疗上铊可置换普鲁士蓝上的铁后形成不溶性物质,使其随粪便排出, 对治疗经口急慢性铊中毒有一定疗效。
21
• 1798年法国化学家塔索尔特又发现了配合物三氯化六氨合钴[Co(NH3)6]
C13。 • 对经典化合价理论提出了尖锐挑战:化合价已经饱和的CoCl3和NH3为
存在方式 溶液中,晶体中
结构特点 呈一定的几何构型
成键类型 配位键 → 最本质的特征
成键条件
中心原子 → 有空轨道
配体 → 有孤对电子或不定域电子
4、配体及配合物的类型 (仅了解)
(1)配体的类型 1)按配位原子种类分:
含氮配位体: :NH3, CNS
含氧配位体: H2O,R-OH(醇) ,R-O-R(醚),R-C-R’(酮) =O
2 He 10 Ne 18 Ar 36 Kr 54 Xe 86 Rn
绿色区域的原子能形成稳定的简单配合物和螯合物; 黄色区域的原子能形成稳定的螯合物; 蓝色区域的原子仅能生成少数螯合物和大环配合物; 深红色区域的原子为常见配体。
2、配合物的形成条件
配体中,提供电子对与金属离子(原子)形成配位键的原子。 配位体中的配位原子的价电子层具有孤电子对; 中心离子或原子的价电子层具有可接受孤电子对的空轨道。
O
ii:多酸型配合物:
一个含氧酸中的O2-被另一含氧酸取代而形成。
同多酸:两个含氧酸根相同。 例如:H4P2O7(磷多酸)、H2S2O7(焦硫酸) PO43-中的一个O2-被另一个取代形成P2O72-, 该配合物中心离子相同。 杂多酸:酸根中的一个O2-被其它酸取代而形成。 例如:PO43-中的一个O2-被Mo3O102-所取代 形成[PO3(Mo3O10)]3-(磷钼酸)。 该配合物中中心离子不同。
3、配合物的电荷:
中心离子的电荷与配体的电荷的代数和。 [Cu(NH3)4]2+ 配离子 (q=+2) [HgI4]2- (q=-2) 配盐 [Cu(NH3)4]SO4 中性分子(配位分子) Fe(CO)5
形式
191
3.配合物的特征
[CoCl2(NH3)4]Cl
中心 原子
配 体
配 位 数 外界
内界
(1) 定义: 金属离子 中心原子 [大多为过渡金属离子] 金属原子 由配体向中心原子 提供电子对为两个 原子共用而形成的 共价键。 以配位键的形式结合在 一起所形成具有一定的 空间结构的配离子或分 子,有时称络合物。
121
与 负离子 分子 若干配位体
[无机分子 无机离子 有机分子]
(2) 组成:
含卤素配位体: : F-, : Cl-, : Br-, : I含碳配位体: 含硫配位体:
CN-,
CO
H2S, CNS221
2)按配位体中给出的电子对的原子多少来分:
i: 单配位基配体( monodentate ): 只含一个配位原子且与中心离子只形成一个配位键。
例如: H2O:
[中心离子或原子+配位体] + 其余部分
出来 例如:
内界 组分很稳定,几乎不解离
配合物 内界 [Co(NH3) 6] 中 心 离 子 外界 Cl3
外界 组分可解离
配配 配 位位 位 原体 数 子
131
[Cu(NH3)4]2+ SO4 2配位原子—— 配位体中直接 与中心形成体 形成配位键的 原子
配位数—— 中心形成体直 接连接的配位 原子的个数
什么还能相互结合生成很稳定的“复杂化合物”? 从这开始开创了配
位化学的研究。 • 在众多的研究者中,影响较大的是瑞士化学家Werner韦尔纳,
维尔纳与约尔更生: 一场学术争论中的故事
1798 年塔索尔特制备出 CoCl3· 6NH3 之 后的 100 年间 , 化学家们一直试图解开这类化 合物成键本质之谜。约尔更生(S M Jorgensen ,1837-1914 )提出了一种链理论。
d10
[Zn(CN) 4]2 d10, [FeCl4] d5 [Ni(CN)4]2 d8, [Cu(NH)4]2+d9 [Fe(CO) 5] d8 [Ni(CN) 5]3 d8, [Co(NH3)6]2 d6, [PtCl6] d6 [Re(S2C2Ph2)3] d1 [ZrF 7]3- d0 [NbF 7]2- d0 [NbOF 6]3- d0
261
1) 简单配合物(也称为维尔纳型配合物) 是指由单基配位体与中心离子配位而成的配合物。
例如:Cu(NH3)42+
Cu(NH3)42+ Cu(NH3)32+ + NH3
Cu(NH3)32+ Cu(NH3)22+ + NH3 Cu(NH3)22+ Cu(NH3) 2+ Cu(NH3)2+ + NH3 Cu2+ + NH3 逐级离解现象
H2C H2C
NH2 Cu NH2
2+
H2N
CH2 CH2
281
H2N
螯合物的稳定性
螯合物与具有相同配位原子的简单配合物相比,常具有特殊 的稳定性——螯合效应(chelate effect)。 以五元环,六元环为最稳定 环数越多越稳定
常见的螯合剂:
氨羧酸类化合物,其中最典型的是EDTA(乙二胺四乙酸),
实质:多酸型配合物是多核配合物的特例。 多酸氧化能力增强,可将其用于氧化反应中。
351
iii: 羰基化合物: 金属原子与CO形成的配合物。 例如:Fe(CO)5
iv:烯烃配合物: 配位体为烯烃所形成的配合物。 例如:[AgC2H4]+ [Ag3(tpty)3(ClO4)3](toluene)2
361
配位体
[Cu(NH3)4]2+ SO4 2内界 外界 外界
161
171
1 H 3 Li 11 Na 19 K 37 Rb 55 Cs 87 Fr 4 Be 12 Mg 20 Ca 38 Sr 56 Ba 88 Ra 21 Sc 39 Y 71 Lu 103 Lr 22 Ti 40 Zr 72 Hf 104 ? 23 V 41 Nb 73 Ta 10 5?
H2C H2N
CH2
CH2
CH2 NH2
NH2
二乙三胺
241
O C O O C O CH2 CH2 N CH2 CH2 N CH2 C CH2 C
O
4-
O O
O
乙二胺四乙酸根离子(EDTA)
251
(2)配合物的类型 简单配合物(也称为维尔纳型配合物)
螯合物(又称内配合物) 多核配合物 多酸型配合物 特殊配合物 羰基化合物 烯烃配合物
Cl Al Cl
Cl Cl
桥联配体
N
N
N1 Zn1 N2
1,10-邻菲啰啉
螯合配体
O
-
乙二胺四乙酸根 (EDTA)
CH2 N CH2 CH2 N CH2 CH2 CH2
O C C O OO-
O
C C O
-
O
O
O M O N
N
EDTA能与碱金属、 稀土金属、过渡金属 等形成极稳定的水溶 性配合物,分析上广 泛用来做掩蔽剂