第三章配位化学
配位化学第三章(2)配合物分解

Werner 理论 基本要点
主价和副价 中心原子的氧化数和配位数 内界和外界 “[ ]”为内界,与内界保持电荷 平衡的其它简单离子为外界 空间构型
副价具有方向性,指向空间确定的位置
配位理论的重要贡献 •提出副价的概念,补充了当时不完善的化合价理论。 •提出的空间概念,创造性地把有机化学中的结构理 论扩展到无机物的领域,奠定了立体化学基础。
:NH3
: F-
:Cl-
[:C= N][:O-H]氰根离子 羟基
[:O-N=O] 亚硝基
Ii:多配位基配位体(polydentate): 配体中有多个配位原子能与中心离子形成多个配位键。 例如:
231
2-
双齿配体
O
O C C O
H2 C H2 N
CH2 NH2
O
乙二胺(en) 多齿配体
草酸根(OX)
能与除了Na+,K+,Rb+,Cs+等离子以外的大多数金属离子 如Ca2+, Mg2+等离子形成稳定的螯合物。 (1、可用于除去水中的Ca2+ , Mg2+离子来软化水 2、滴定分析)
291
螯合物特性: • 具有很高的稳定性; • 具有特征颜色; • 难溶于水而易溶于有机溶剂。
被广泛地用于沉淀分离、溶剂萃取、比色测定、 容量分析等分离、分析工作。
“链理论”
结论:链理论 • 如: CoCl · 3NH ,按照所提的结构式,有一个 Cl 3 3 不正确
可与AgNO3反应生成AgCl沉淀,但实际是中性分 子,电导为0,分子中的三个Cl-反应性都低。
51
后来,维尔纳用假设和实验证明了自己理论的正确,并获得了 1913年的诺贝尔化学奖 。
第3章配位化学-习题

第三章 配位化学【习题】3.1 试判断下列配离子的几何构型和电子结构:[Co(CN)6]3-(抗磁性);[NiF6]4-(两个成单电子);[CrF6]4-(4个成单电子);[AuCl4]-(抗磁性);[FeCl4]-(5个成单电子);[NiF6]2-(抗磁性)3.2 画出下列各配合物(配离子)所有可能的异构体:[CoCl2(NH3)4]+,[Be(gly)2],[RhBr2(en)2]+,[PtBr2Cl2(en)],[Ir(C2O4)2Cl2]3-,[Cr(gly)3],[Pt(gly)2](gly=glycine,甘氨酸)3.3 已知配合物[M(A-B)2]和[M(A-B)2X2]型的配合物都是旋光活性的,请分别画出它们的几何结构。
3.4 紫红色的[Ti(H2O)6]3+在可见区的吸收光谱如教材中例题3-1的图所示,其最大吸收峰位置对应于20.3×103 cm-1,并在该最大吸收峰位置的右边(低频方向)出现一个肩峰,试用晶体场理论解释上述肩峰的由来。
3.5 下列配离子中哪些属于高自旋构型?(a)Mn(H2O)62+;(b)Fe(H2O)63+;(c)Co(NH3)63+;(d)Co(H2O)62+;(e)CoCl42-;(f)Fe(CN)64-3.6 下列配合物或配离子中属于低自旋构型的是(a)Fe(H2O)63+;(b)Co(H2O)62+;(c)Co(H2O)63+;(d)CoF63-3.7 对于CoF63-配离子,下面的哪项论述是正确的?(a)CoF63-的晶体场分裂能大;(b)F-为强场配体;(c)CoF63-是顺磁性的;(d)所有论述都不正确。
3.8 下列配离子中,哪一种可能产生Jahn-Teller效应?(a)Fe(CN)64-;(b)Fe(H2O)62+;(c)Cr(H2O)63+;(d)Co(NH3)63+;3.9 试画出配合物[Co(NO2)3(NH3)3]可能存在的几何异构体。
配位化学第三章

实例:
[Ti(H2O)6]3+ K3[Mn(CN)6] K3[Fe(CN)6]
Ti3+: 3d1 Mn3+: 3d4 Fe3+: 3d5
µ=1.73 n =1 µ=3.18 n =2 µ=2.40 n =1
配位化学第三章
配合物的空间构型与中心离子的 杂化类型、配位数的关系
配位数 2
4
6
杂化
类型 sp
CN-的成键π2pz 轨道肩并肩重叠形成离域π键。
CN
NC
CN
Ni2+
配位化学第三章
NC
3.1.2 价键理论的应用
(1)解释了配合物的空间构型 (2)说明配合物的磁性 (3)比较同类配合物的稳定性
配位化学第三章
举例说明:
1. 已知[Ag(NH3)2]+的μm=0,用VB法说明其空
间结构。
4d
5s
5p
Ag+ [Kr]
4d
5p
[Ag(NH3)2]+
NH3 NH3 sp杂化 所以[Ag(NH3)2]+的空间构型为直线型。
配位化学第三章
2. [BeX4]2-的空间构型为四面体。为什么?
Be2+
1s
2s
2p
[BeX4]2-
1s
X- X- X- X-
sp3杂化
在[BeX4]2- 中,由于Be2+采取sp3杂化,所以 [BeX4]2-的 空间构型是正四面体。
dsp2
sp3 sp3d2或d2sp3
型空 间 构
直线形 平面正方形
四面体
八面体
举例:Ag(NH3)2 Ni(C)N24 NiCl24
第三章 大环化合物配位化学和超分子化学(1)

2、金属离子的电荷 稳定常数:电荷的影响 碱土金属 (直径相近) > 碱金属(直径相近) 与冠醚形成配离子的金属离子: 并不限于第Ⅰ、Ⅱ主族的金属离子(见下表)。 能与冠醚15C5~24C8形成配离子的金属离子。 金属离子与冠醚分子形成配离子,静电作用+ 不同程度 的共价性。 金属离子电荷的大小还是影响这样的配离子的稳定系数 的重要因素之一。
金属离子和冠醚腔孔直径
金属离子 直径/pm 金属离子 直径/pm 冠醚 腔孔直径 /pm
Li
Na K
120
190 268
Mg
Ca Sr
130
198 220
12C4类
15C5类 18C6类
120-150
170-220 260-320
Rb
Cs NH4+
298
334 384
Ba
Pb Ti
270
210 238
增溶现象:冠醚和能与之形成配合物的盐(或其它离子化 合物,如NaOH)一起溶解在可以溶解该配合物的某种溶剂 中时,冠醚和盐二者的溶解度都比它们单独溶解在该溶剂 中时的溶解度为大。 如:固态KMnO4不溶于芳烃,但可溶于溶有DC18C6的苯 溶液中,所得紫色苯溶液的浓度超过0.02mol/l,此溶液 可氧化苯中的某些有机化合物。在溶剂中发生上述的增溶 现象时,盐的阴离子被认为不发生或只在非常小的程度上 发生溶剂化作用,阴离子以裸露状态或接近于裸露的状态 存在,从而可表现出特别活跃的反应性能。
配位化学 第3章 配合物性质与表征

3
章
配合物的性质与表征
The properties and spectroscopic characterization of coordination compounds
本章教学内容
配合物的性质
配合物的光谱表征
3.1
3.2
3.1 配合物的性质
在溶液中形成配合物时,常常出现颜色、溶解度、电 极电势以及pH 值的改变等现象。根据这些性质的变化,可 以帮助确定是否有配合物生成。 溶解度 一些难溶于水的金属氯化物,溴化物,碘化物,氰化物 可以依次溶解于过量的C1-,Br-,I-,CN-和氨中,形成可溶 性的配合物,如难溶的AgCl 可溶于过量的浓盐酸及氨水中。 金和铂之所以能溶于王水中,也是与生成配离子的反应有关。 Au + HNO3 + 4HCl = H[AuCl4]+ NO + 2H2O 3Pt + 4HNO3 + 18HCl = 3H2[PtCl6] + 4NO + 8H2O
酸碱性 一些较弱的酸如 HF 、 HCN 等在形成配合酸后,酸性往 往增强。 如: HF 与 BF3 作用生成配合酸 H[BF 4 ] ,而四氟硼酸的碱金 属盐溶液在水中呈中性,这就说明H[BF4 ]应为强酸。又如 弱酸HCN与AgCN形成的配合酸H[Ag(CN)2]也是强酸。这种 现象是由于中心离子与弱酸的酸根离子形成较强的配键, 从而迫使 H + 移到配合物的外界,因而变得容易电离,所以 酸性增强。 同一金属离子氢氧化物的碱性因形成配离子而有变化, 如[Cu(NH3)4](OH)2的碱性就大于Cu(OH)2。原因是 [Cu(NH3)4]2+的半径大于Cu2+离子的半径和OH-离子的结合 能力较弱,OH-离子易于解离。
《配位化学》课件

配位化合物的稳定性
总结词
配位化合物的稳定性
详细描述
配位化合物的稳定性取决于多个因素,包括中心原子或离子的性质、配位体的数目和类型、配位键的 数目和类型等。一般来说,配位数越大,配位化合物的稳定性越高。此外,具有强给电子能力的配位 体也能提高配位化合物的稳定性。
03
配位键理论
配位键的定义
总结词
配位键是一种特殊的共价键,由一个 中心原子和两个或更多的配位体通过 共享电子形成。
《配位化学》PPT课件
目录
• 配位化学简介 • 配位化合物 • 配位键理论 • 配位反应动力学 • 配位化学的应用
01
配位化学简介
配位化学的定义
配位化学是研究金属离子与有机配体 之间相互作用形成络合物的科学。
它主要关注配位键的形成、性质和反 应机制,以及络合物在催化、分离、 分析等领域的应用。
方向性是指配位键的形成要求中心原子和配 位体的电子云在特定的方向上重叠。这决定 了配合物的特定空间构型。饱和性则是指一 个中心原子最多只能与数目有限的配位体形 成配位键,这取决于中心原子的空轨道数量 和配位体的可用孤对电子数。
04
配位反应动力学
配位反应的动力学基础
反应速率
01
配位反应的速率是研究配位反应动力学的关键参数,它决定了
05
配位化学的应用
在工业生产中的应用
催化剂
配位化合物可以作为工业生产中的催化剂,如烯烃的氢化反应、 烷基化反应等。
分离和提纯
利用配位化合物的特性,可以实现工业生产中的分离和提纯过程 ,如金属离子的分离和提纯。
化学反应控制
通过配位化合物可以控制化学反应的速率、方向和选择性,从而 实现工业化生产中的优化。
第3章 配位化学PPT课件

第一节 配位化学基础
1.2 配合物的组成及命名
(1) 配合物的命名规则
(c) 同类配体(无机或有机类)按配位原子元素符号的英 文字母顺序排列。
[Co(NH3)5H2O]Cl3 三氯化五氨·一水合钴(III) (d) 同类配体同一配位原子时,将含较少原子数的配体排 在前面。 [Pt(NO2)(NH3)(NH2OH)(Py)]Cl 氯化硝基·氨·羟氨·吡啶合铂(II)
3 第 章 配位化学
顺-[PtCl2(NH3)2]
目标&要求
掌握较复杂配合物的命名规则 掌握配合物的立体异构现象 掌握配合物化学键基本理论
(价键理论、晶体场理论、配体场理论、分子轨道理论)
了解新型配合物的类型及应用
一、配位化学基础 二、配位立体化学 三、配位化学理论 四、新型功能配合物及应用
第一节 配位化学基础
1.4 配合物的分类
按中心原子数目分类:
单核配合物和多核配合物
按配合物所含配体种类分类:
单一配体配合物和混合配体配合物
按配体的齿数分类:
简单配合物、螯合物、大环配合物等
按配合物价键特点分类:
经典配合物和非经典配合物
第二节 配位立体化学
2.1 配合物的几何构型 2.2 配合物的异构现象
CH2CH2NH2 NH
CH2CH2NH2
二乙三胺(dien)
第一节 配位化学基础
1.3 配体的基本类型及配位能力 四齿配体
二水杨醛缩乙二胺(Salen)
第一节 配位化学基础
1.3 配体的基本类型及配位能力 六齿配体
乙二胺四乙酸钠(EDTA)
第一节 配位化学基础
1.3 配体的基本类型及配位能力 冠醚 (大环醚)
化学_朱文祥_第3章配位化学-习题答案

CoCl42-为正四面体构型。由于正四面体场的分裂能较小,所以(e)CoCl42-为高自旋。
3.6 配离子中的配体均为弱场配体,一般为高自旋构型。但是Co3+为d6组态,其与水分子配 位时产生的分裂能略大于电子成对能,因此(c)Co(H2O)63+为低自旋构型。
3.7 (c)的论述正确。F-为弱场配体,晶体场分裂能Δ小,CoF63-因采取高自旋构型而呈顺 磁性。
3.8 (b)Fe(H2O)62+产生Jahn-Teller效应。
3.9
H3N H3N
NO2 NH3
Co
NO2
NO2
mer-
H3N O2N
NO2
Co
NH3
NH3 NO2
fac-
3.10 具有平面四边形结构的配合物为(c)PtCl42—。
3.11 (a)4CoCl2· 6H2O + 4NH4Cl + 20NH3 + O2 → 4[Co(NH3)6]Cl3 + 26H2O (b)K2Cr2O7 + 7 H2C2O4 → 2K[Cr(C2O4)2(H2O)2]+ 6CO2 + 3H2O
3.17 粉红色固体用AgNO3溶液滴定时迅速生成 3 mol AgCl沉淀,说明 3 个Cl-在外界,粉红 色固体的化学式为 [Co(NH3)5(H2O)]Cl3,即三氯化五氨•一水合钴(Ⅲ)。受热外界的 1 个Cl-进入内界占据所失水分子的配位位点,因此紫色固体的化学式为 [CoC(l NH3)5]Cl2, 即二氯化一氯·五氨合钴(III)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1.1. 配位化学的发展
☆ 配位化学的萌芽时期 The early history of coordination chemistry
1、 最早记载的配合物-普鲁士蓝
1704年,德国颜料制造家迪士巴赫制备出兰色颜料 KCN.Fe(CN)2.Fe(CN)3 KFe[Fe(CN)6] 2、在我国,自西周至春秋,随着丝织品的出现,染色 技术逐渐发展起来。当时所采用的染色工艺中,有一些 就与配合物的生成有关。
Cl
14
☆ 现代配位化学
The modern coordination chemistry
1. 1893年,瑞士化学家Werner提出配位学说
15
Werner 配位学说
●大多数化学元素表现出两种类型的化 合价,即主价primary valance和副价 secondary valance ●元素形成配合物时倾向于主价和副价 都能得到满足 ●元素的副价指向空间确定的方向
Swiss chemist Alfred Werner won the 1913 Nobel Prize in chemistry. His research combined geometry and chemistry to identify the structure of molecular compounds.
NH3 —Cl
12
☆ 配位化学的奠基时期
2、1884年Jorgensen修正链理论 CoCl3 4NH3
Cl Co —NH3 —NH3 —NH3 —NH3 — Cl
Cl
13
☆ 配位化学的奠基时期
2、1884年Jorgensen修正链理论 CoCl3 3NH3
Cl Co —NH3 —NH3 —NH3— Cl
“染绛用茜”
6
☆ 配位化学的萌芽时期 The early history of coordination chemistry
3、最早研究的配合物
1798年,法国化学家塔索尔特(Tassaert)制备CoCl3 . 6NH3 CoCl2 + 6NH3 → CoCl2 .6NH3 → CoCl3 . 6NH3
16
Co原子形成3个主价和6个副价
CoCl3 6NH3 [Co(NH3)6]Cl3 CoCl3 5NH3 [Co(NH3)5Cl]Cl2 CoCl3 4NH3 [Co(NH3)4Cl2]Cl CoCl3 3NH3 [Co(NH3)3Cl3]
17
2. Werner与Jorgensen的学术争论
▪ 陈慧兰主编,高等无机化学,高等教育出版社,2005年 ▪ 关鲁雄主编,高等无机化学,化学工业出版社,2004年 ▪ 辛剑,王慧龙主编,高等无机化学,高等教育出版社,
2010年 ▪ 《Advanced Inorganic Chemistry》 F. Albert Cotton,
John. Wiley. New York, 1999. 6th. Ed. ▪ 朱文祥编,中级无机化学,高等教育出版社 ,2004年 ▪ 唐宗薰主编,中级无机化学,高等教育出版社 ,2002年
主要内容
第一章:元素周期性与相对论效应 第二章:酸碱理论与非水溶液化学 第三章:配位化学* 第四章:原子簇化合物* 第五章:金属有机化合物* 第六章:无机化合物的制备与表征* 第七章:无机材料化学* 第八章:生物无机化学与超分子化学
教材与参考书
▪ 金安定,刘淑薇,吴勇编著. 高等无机化学简明教程. 南 京师范大学出版社,1999年
第三章: 配位化学
Coordination Chemistry
3
本章主要内容
1. 配位化学的基本知识 2. 配合物的成键理论 3. 配合物的电子光谱与磁性 4. 功能配合物 5. 超分子化学
4
3.1 配位化学基本知识
1. 配位化学的发展 2. 配合物基本概念 3. 配合物的几何构型 4. 配合物的制备与表征
21
3.1.2. 配合物基本概念
一、一些定义 definitions
1. 配位化学 Coordination chemisrty is the study of compounds formed between metal ions and other neutral or negatively charged molecules.
1、1869年Blomstrand提出链理论 CoCl3 6NH3
NH3 —NH3 — Cl Co —NH3 —NH3 — Cl
NH3 —NH3 — Cl
9ห้องสมุดไป่ตู้
氨合钴氯化物的导电率
分子式
CoCl3 6NH3 CoCl3 5NH3 CoCl3 4NH3
导电率
高 中 低
被沉淀Cl- 的数 目
3 2 1
10
☆ 配位化学的奠基时期
2、1884年丹麦化学家约而更 生Jorgensen修正链理论 CoCl3 6NH3
NH3 — Cl Co —NH3 —NH3 —NH3 —NH3 — Cl
NH3 — Cl
11
☆ 配位化学的奠基时期
2、1884年Jorgensen修正链理论 CoCl3 5NH3
Cl Co —NH3 —NH3 —NH3 —NH3 — Cl
18
氨合钴氯化物的导电率
分子式
CoCl3 6NH3 CoCl3 5NH3 CoCl3 4NH3 IrCl3 3NH3
CoCl3 3NH3
导电率
被沉淀Cl- 的数 目
高
3
中
2
低
1
零
0
[Co(NH3)3Cl3] Cl
Co —NH3 —NH3 —NH3— Cl
Cl
19
☆ 现代配位化学
The modern coordination chemistry 3.配位化学的奠基人——维尔纳
★ 加热150℃, 没有NH3放出; ★ 加入强碱没有NH3放出; ★ 加碳酸盐和磷酸盐,检查不到Co离子; ★ 加AgNO3, 生成AgCl沉淀。
7
☆ 配位化学的萌芽时期 The early history of coordination chemistry
4、相继研究的配合物:
8
☆ 配位化学的奠基时期
Alfred Werner (1866-1919)
20
☆ 现代配位化学 ——配位化学的蓬勃发展
4、配位化学理论的发展
● 1893年维尔纳提出主价和副价理论 ● 1930年鲍林提出价键理论 ● 1929 年Bethe提出晶体场理论 ● 对晶体场理论的修正是配位场理论 ● 1935年Van Vleck用 MO理论处理了配合物的化学键问题