基因突变

合集下载

生物基因突变

生物基因突变

生物基因突变生物基因突变是指在生物体的基因组中发生的突变现象。

基因突变可以是遗传物质DNA序列的改变,也可以是基因组的结构变异,甚至是染色体级别的变化。

这些突变可以是自发发生的,也可以是由外界因素引起的。

1. 自然发生的基因突变自然发生的基因突变是指在生物体繁殖过程中自然而然地发生的突变。

这些突变可能是由DNA复制过程中的错误导致的,或者是由DNA修复过程中的不完全修复引起的。

此外,环境辐射和化学物质等外界因素也可能导致基因突变的发生。

2. 人工诱导的基因突变人工诱导的基因突变是指通过外界手段有意诱发的基因突变。

科学家们可以利用物理、化学或生物学方法来人为地引起基因突变,从而改变生物体的性状。

例如,利用化学物质诱导植物突变,可以获得新的花色、叶形或者抗病性等特性。

3. 基因突变的影响基因突变可能对生物体的性状和功能产生明显的影响。

一些突变可能导致基因功能的完全丧失或改变,从而引起严重的遗传病变。

然而,有些基因突变可能只对生物体的某个性状产生轻微的改变,甚至毫无影响。

4. 基因突变在进化中的作用基因突变在生物进化中起着重要的作用。

基因突变的累积可以导致新的遗传变异,并为自然选择提供了遗传变异的物质基础。

一些有利的突变可能通过自然选择逐渐在种群中得以传播,并对物种的适应性产生重要影响。

5. 基因突变的应用基因突变在科学研究和应用中具有广泛的用途。

通过人工诱导基因突变,科学家们可以研究基因的功能和调控机制,揭示基因与性状之间的关系。

此外,基因突变还可以被应用于农业育种和基因治疗等领域,为人类社会带来巨大的经济和医疗效益。

总结:生物基因突变是生物体基因组中发生的突变现象。

它既可以是自然发生的,也可以是人工诱导的。

基因突变可以对生物体的性状和功能产生影响,而在进化中起着重要的作用。

此外,基因突变还在科学研究和应用中具有广泛的用途。

对于我们来说,了解基因突变的原因、影响和应用,有助于我们更好地理解生物的进化和生命的奥秘。

基因突变什么意思

基因突变什么意思

基因突变什么意思基因突变的意思是指基因组DNA分子发生突然的可遗传的变异。

从分子水平来看基因突变是指基因在结构上发生碱基对组成,或排列顺序的改变。

基因虽然十分稳定能在细胞分裂时精准的复制自己,但这种稳定性是相对的。

基因突变的特点是什么1、基因突变的有害性和有利性大多数基因的突变,对生物的生长与发育往往是有害的。

可能会导致基因原有功能丧失;基因间及相关代谢过程的协调关系被破坏;性状变异、个体发育异常,生存竞争与生殖能力下降,甚至有更严重的后果。

突变的有害和有利性是相对的,在某些情况下,基因突变的有害与与有利性可以转化。

如抗逆性突变是有利的,又如作物矮杆突变型在多风与高肥环境下是有利的。

2、基因突变的普遍性和稀有性基因突变在生物界具有普遍性,无论是低等生物还是高等生物,都有可能发生基因突变。

包括自然突变和人工诱变突变。

但是在自然状态下,突变也是极为稀有的,野生型基因以极低的突变率发生突变。

3、基因突变的随机性和不定向性(1)基因突变的随机性①部位上的随机。

基因突变既可以发生在体细胞中,也可以发生在生殖细胞中,且前者一般不会传递给后代,而后者可通过生殖细胞传递给子代。

此外基因突变既可以发生在同一DNA分子的不同部分,也可以发生在细胞内不同的DNA分子上。

②时间上的随机,基因突变可以发生在生物个体发育的任何阶段,甚至在趋于衰老的个体中也容易发生,如老年人易得皮肤癌等。

(2)基因突变的不定向性基因突变的不定向性指基因突变可以多方向发生,即基因内部多个突变部位分别改变后会产生多种等位基因形式。

4、基因突变的重复性和可逆性(1)基因突变的重复性是指已经发生突变的基因,在某种条件下,还可能再次独立地发生突变而形成其另外一种新的等位基因形式。

也就是说,任何一个基因位点的突变可能会以一定的频率反复发生。

(2)基因突变的可逆性,基因突变的发生方向是可逆的。

5、基因突变的平行性指亲缘关系相近的物种因为遗传基础比较接近,往往会发生相似的基因突变。

什么是基因突变

什么是基因突变

什么是基因突变引言基因突变是指基因序列发生了改变,导致遗传信息的改变。

基因突变可以在个体内部产生,也可以在种群间传播。

它是进化过程中的重要驱动力之一,同时也与许多疾病的发生和发展密切相关。

本文将介绍基因突变的定义、类型、原因以及对人类健康的影响。

基因突变的定义基因突变是指DNA序列发生了改变,包括单个碱基的替代、插入或缺失,以及染色体结构的改变等。

这些改变会导致基因的功能发生变化,进而影响到蛋白质的合成和功能。

基因突变的类型基因突变可以分为点突变和染色体结构变异两大类。

点突变点突变是指基因序列中的一个或多个碱基发生了改变。

根据改变的类型,点突变可以细分为以下几种:1.错义突变:一个氨基酸被另一个氨基酸替代,导致蛋白质结构和功能发生改变。

2.无义突变:一个编码氨基酸的密码子变成了终止密码子,导致蛋白质合成过程中提前终止。

3.读框移位:DNA序列中插入或删除一个碱基,导致整个编码框架发生改变,进而影响蛋白质的合成。

染色体结构变异染色体结构变异是指染色体上的一段DNA序列发生了改变。

常见的染色体结构变异包括:1.缺失:染色体上的一段DNA序列缺失,导致基因组中丢失了某些基因。

2.插入:染色体上的一段外来DNA序列插入到了某个位置,可能影响附近基因的表达。

3.倒位:染色体上的一段DNA序列发生了翻转,导致基因在染色体上的排列顺序发生改变。

4.重复:染色体上的一段DNA序列被复制了多次,可能导致基因过度表达或功能异常。

基因突变的原因基因突变可以由多种原因引起,包括自然突变、诱变剂和遗传因素等。

自然突变自然突变是指在DNA复制和维修过程中产生的突变。

由于DNA复制时存在一定的错误率,每次细胞分裂都会产生一些新的突变。

此外,环境因素(如辐射)也可能引起自然突变的发生。

诱变剂诱变剂是指能够增加基因突变发生率的物质。

常见的诱变剂包括化学物质、辐射和病毒等。

它们通过与DNA结合或破坏DNA复制和修复机制,导致基因突变的频率增加。

基因突变

基因突变

基因突变科技名词定义中文名称:基因突变英文名称:gene mutation定义:由于核酸序列发生变化,包括缺失突变、定点突变、移框突变等,使之不再是原有基因的现象。

应用学科:生物化学与分子生物学(一级学科);基因表达与调控(二级学科)以上内容由全国科学技术名词审定委员会审定公布求助编辑百科名片基因突变是指基因组DNA分子发生的突然的、可遗传的变异现象。

从分子水平上看,基因突变是指基因在结构上发生碱基对组成或排列顺序的改变。

基因虽然十分稳定,能在细胞分裂时精确地复制自己,但这种稳定性是相对的。

在一定的条件下基因也可以从原来的存在形式突然改变成另一种新的存在形式,就是在一个位点上,突然出现了一个新基因,代替了原有基因,这个基因叫做突变基因。

于是后代的表现中也就突然地出现祖先从未有的新性状。

目录简介发展特性普遍性随机性稀有性可逆性少利多害性不定向性有益性独立性重演性种类碱基置换突变移码突变缺失突变插入突变影响同义突变错义突变无义突变终止密码影响因素外因内因应用诱变育种害虫防治诱变物质的检测检测方法诱发机制碱基置换突变移码突变定向诱变自发突变影响因素内在因素基因突变基因突变的实例让癌细胞自杀同名安卓游戏展开简介发展特性普遍性随机性稀有性可逆性少利多害性不定向性有益性独立性重演性种类碱基置换突变移码突变缺失突变插入突变影响同义突变错义突变无义突变终止密码影响因素外因内因应用诱变育种害虫防治诱变物质的检测检测方法诱发机制碱基置换突变移码突变定向诱变自发突变影响因素内在因素基因突变基因突变的实例让癌细胞自杀同名安卓游戏展开编辑本段简介基因突变基因突变(gene mutation)是由于DNA分子中发生碱基对的增添、缺失或替换,而引起的基因结构的改变,就叫做基因突变。

1个基因内部可以遗传的结构的改变。

又称为点突变,通常可引起一定的表型变化。

广义的突变包括染色体畸变。

狭义的突变专指点突变。

实际上畸变和点突变的界限并不明确,特别是微细的畸变更是如此。

基因突变及其效应

基因突变及其效应

基因突变的类型
点突变
指DNA分子中一个或少数几个 碱基对的替换或缺失,导致基
因结构的改变。
插入突变
指DNA分子中插入一段额外的 碱基序列,导致基因结构的改 变。
缺失突变
指DNA分子中一段碱基序列的 缺失,导致基因结构的改变。
重复突变
指DNA分子中一段重复序列的 异常扩增或重复,导致基因结
构的改变。
04 基因突变的实例
镰状细胞贫血症
总结词
镰状细胞贫血症是一种由基因突变引起的遗传性疾病,会导致红细胞变形并堆 积在血管中,引起疼痛、感染和器官损伤。
详细描述
镰状细胞贫血症是由β-珠蛋白基因突变引起的血红蛋白异常,导致红细胞呈镰 刀状。这种异常的红细胞容易在血管中聚集形成血栓,影响血液循环,引发疼 痛、器官损伤甚至死亡。
遗传性疾病的发病机制
基因突变是许多遗传性疾病的发病机制之一。这些疾病可能由单个基因的突变引起,也可 能涉及多个基因的相互作用。
遗传性疾病的类型
基因突变导致的遗传性疾病包括但不限于代谢性疾病、神经性疾病、免疫性疾病和先天性 畸形等。这些疾病可能具有家族聚集性或散发性特征。
遗传性疾病的预防和治疗
了解基因突变与遗传性疾病的关系有助于疾病的早期筛查、诊断和干预。通过遗传咨询、 产前诊断和基因治疗等方法,可以降低遗传性疾病的发生风险或改善患者的生活质量。
适应性进化
基因突变可以产生新的等位基因,为生物体提供适应环境 变化的遗传变异。这些变异在自然选择的作用下得以保留 和传播,促进生物的适应性进化。
生物多样性
基因突变是生物多样性的重要来源之一。不同物种和种群 间的基因突变差异导致其适应性、生态位和进化路径的分 化,从而形成丰富多彩的生物世界。

名词解释基因突变

名词解释基因突变

名词解释基因突变
基因突变是指在生物体基因组(即DNA序列)出现的变异。

这种变异可以是在DNA序列上的一个小的改变,可以是一个DNA碱基的替换(碱基突变),一个DNA碱基的增多(插入突变),或者一个DNA碱基消失(缺失突变)。

它也可以是对原有的DNA序列的扩展或减少,可能会影响DNA 结构,改变RNA转录过程,最终影响蛋白质的表达。

基因突变可以破坏某种基因产物的功能或改变它,也可以增加基因功能。

基因突变可以由环境因素(例如辐射或化学物质)或遗传因素(例如父母的遗传基因)引起。

环境因素导致的基因突变被称为突变,而遗传因素造成的变异被称为变异。

突变可能极其罕见甚至独一无二,而变异在物种中是普遍存在的。

基因突变通常是随机发生的,但不是每种变异都会突出,只有那些有助于物种自身适应所在环境的变异,才会突出。

这就是所谓的“自然选择”,有助于物种演化和进化。

基因突变

基因突变
♀ susu × SuSu ♂ ↓
2/20000 为甜粒
③ 稻、麦等谷类作物有分蘖存在,经过种子处理后生长的植株,其体细胞突变往往只发 生于一个分蘖的幼芽或幼穗原始体,因而只影响一个穗子,甚至其中少数籽粒
应分株、分穗收获,应以单穗或籽粒作为估算单位
3、动物基因突变的筛选与鉴定 动物基因突变的鉴定应用交配的方法来鉴定。 人类基因突变的检出是比较复杂的,而且 不易鉴定,主要靠家系分析和出生调查
五、基因突变的分子机制
基因相当于染色体上的一点称为位点 (locus) 位点内每个核苷酸对所在位置称为座位 (site)
突变就是基因内不同座位的改变。这种由突变子的改变而引起的突变称为真正的点突变 一个基因内不同座位的改变可以形成许多等位基因,从而形成复等位基因
1、基因突变的方式 (1)碱基替换:DNA 分子单链(双链)中某个碱基(对)被另一种碱基(对)代替 DNA 链上一个嘌呤被另一种嘌呤替换,或一个嘧啶被另一种嘧啶替换称为转换。一个嘧 啶被一个嘌呤替换,或一个嘌呤被一个嘧啶替换称为颠换
(1)直接修复 直接将 DNA 分子中的损伤碱基恢复正常结构。由于没有切除碱基,因此不需要 DNA 聚合酶参与。如光修复
(2)切除修复 通过移除 DNA 分子中损伤部分来进行修复。与光修复相比,这类修复途径并不 依赖于光照,所以也称暗修复。如碱基切除修复
核苷酸切除修复
替代一个核苷酸片段 例如:切除一小段含胸腺嘧啶二聚体的寡核苷酸链,并修补之 –大肠杆菌 UvrABC 系统 修复 (3)复制后修复 发生在 DNA 复制失败,产生缺口之后的修复,称为复制后修复。由于所用的许多酶与 重组相同,过程也与重组相似,也被称为重组修复 如大肠杆菌复制后修复
基因突变通常是独立发生的,某一基因位点的这一等位基因发生突变时,不影响其它等位 基因:

基因突变定义

基因突变定义

基因突变定义基因突变定义基因突变是指基因序列发生永久性改变的现象,这种改变可以影响基因的功能、表达或调控。

基因突变通常是由DNA序列中的一些错误或损伤所引起的,这些错误或损伤可能是自然发生的,也可能是由环境因素引起的。

1. 基本概念1.1 基因基因是指位于染色体上、能够编码RNA或蛋白质的DNA序列。

一个基因可以包含多个外显子和内含子,其中外显子编码蛋白质,内含子则在转录过程中被剪切掉。

1.2 突变突变是指DNA序列发生永久性改变的现象。

突变可以影响一个或多个基因,也可以影响染色体结构和数量。

2.1 点突变点突变是指单个核苷酸(A、T、C、G)在DNA序列中发生改变。

点突变分为三种类型:错义突变、无义突变和同义突变。

2.1.1 错义突变错义突变是指一个核苷酸被另一个不同的核苷酸所取代,导致编码的氨基酸改变。

这种突变可以影响蛋白质的结构和功能。

2.1.2 无义突变无义突变是指一个核苷酸被另一个不同的核苷酸所取代,导致编码的氨基酸被终止密码子所取代。

这种突变会导致蛋白质合成提前终止,从而影响蛋白质的结构和功能。

2.1.3 同义突变同义突变是指一个核苷酸被另一个不同的核苷酸所取代,但不会改变编码的氨基酸。

这种突变一般不会影响蛋白质的结构和功能。

插入/缺失突变是指DNA序列中添加或删除了一些核苷酸,导致序列发生改变。

这种突变可以影响外显子和内含子之间的剪切位点,从而影响蛋白质合成过程。

2.3 倍体数目异常倍体数目异常是指染色体数目发生改变,包括染色体缺失、多余或重复等情况。

这种突变会影响基因组的稳定性和表达。

3. 基因突变的影响3.1 影响基因功能基因突变可以改变DNA序列,从而影响基因的表达、调控和功能。

这种改变可能导致蛋白质结构和功能发生改变,也可能导致蛋白质合成受到抑制或提前终止。

3.2 导致遗传疾病一些基因突变与遗传疾病有关。

例如,囊性纤维化是由CFTR基因突变引起的一种常见的遗传性疾病,该基因编码一种跨膜离子通道蛋白质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.移码突变及其产生
在基因的外显子中插入或缺失1, 2或4个核苷酸,使阅读 信息发生错位,从而使翻译的蛋白质序列与原来完全不 同. eg. E.coli中乳糖发酵的调节基因(lacⅠ): 野生型: 5‘-GTCTGGCTGGCTGGC-3’ 移码突变Ⅰ: 5‘-GTCTGGCTGGCTGGCTGGC-3’ 移码突变 Ⅱ: 5‘-GTCTGGCTGGC-3’
①氢键断裂:DNA双链之间 1.电离辐射效应 ②共价键断裂:DNA单链断裂、 双链断裂、碱基和糖基损伤 ③交联作用:DNA与DNA、DNA 与蛋白质之间发生
2.电离辐射的修复: 1、超快修复(0℃, 2min) (E. coli) 无O2、单链 (DNA连接酶) 2、快修复(几分钟) 其余90%断裂单链 (聚合酶Ⅰ) 3、慢修复(37 ℃,40-60min) 剩余单链 (重组修复酶系统)
2.碱基替换的遗传效应
(ⅰ) 同义突变(samesense mutation)不改变氨基 酸的密码子变化,与密码子的兼并性有关. 如 GAU/GAC—Asp. (ⅱ) 错义突变(missense mutation) 碱基替换的 结果引起氨基酸序列的改变. (ⅲ) 无义突变(nonsense mutation)编码区的单 碱基突变导致终止密码子(UAG/UGA/UAA)的形成, 使 mRNA的翻译提前终止, 形成不完全的肽链. 如镰刀型贫血症:血红蛋白B链(146Aa),6号氨基 酸的替换, 导致明显的表型症状。Glu→Val, 若Glu →Asp则影响较小。
二、基因突变发生的时期和部位
1. 生物个体发育的任何时期均可发生: • 性细胞(突变)突变配子后代个体; • 体细胞(突变)突变体细胞组织器官。 2. 性细胞的突变频率比体细胞高: • 性母细胞与性细胞对环境因素更为敏感。 3. (等位)基因突变常常独立发生: • 某一基因位点发生并不影响其等位基因,一 对等位基因同时发生的概率非常小(突变率的 平方)。 4. 突变时期不同,其表现也不相同:
ⅲ 嵌合剂的致突作用 eg. .吖啶类染料: 吖啶橙、吖啶黄素、原黄 素等碱基对的类似物,易造成移码突变。 ⅳ 辐射诱导效应 (1)紫外线UV:形成嘧啶二聚体,如T二聚体,① 同一条单链内,影响复制时与A的配对,中止复 制;②双链之间,影响双链变性,并影响复制。 (2)电离辐射:如X-ray、可引起碱基的降解或脱 落,A变成H;C变成T,出现转换。 ⅴ黄曲霉的作用 :使鸟嘌呤G脱落,SOS修复引 入A, 造成突变。
自然突变频率
自然条件下基因突变率一般较低,并随生物种类、 基因而异: 不同生物种类的基因突变率:
• 高等植物: • 低等生物,如细菌: • 人: ~1×10-5-1×10-8; ~1×10-4-1×10-10; ~1×10-4-1×10-6.
同一物种的不同基因的天然突变率也明显不同:
一、自发突变(spontaneous mutation)
4.特异性切除修复
E.coli 中明显的损伤,可在UvrA、 UvrB、 UvrC的 作用下得以修复,但不明显的损伤需要特异性修复。 (1)糖基化酶修复:如果碱基被共价修饰,糖基化酶可 作用于C-N糖苷键,使碱基释放,产生无碱基(AP)位点, 再由AP内切酶修复系统修复。 (2)AP内切酶修复系统修复:也由内切、外切、聚合和 连接四种酶活性来完成,以修复AP位点。 **以上两种修复过程都没有涉及到DNA的重组,属于无 误差的修复。
A
B C
F
E D
第四节、基因突变的检测
一、细菌培养缺陷型的检出 完全培养基或补充培养基(存活) 基本培养基(死亡)
完全培养基
药物处理
10-8~10-6
合成缺陷型ቤተ መጻሕፍቲ ባይዱ
基本培养基
化合物的分组编码 组别
A B C D E F 1 2 3 4 5 6 7 7 8 9 10 11
化合物的代号
8 12 12 13 14 15 9 13 16 16 17 18 10 14 17 19 19 20 11 15 18 20 21 21
四 SOS修复
1. 概念:是在DNA分子受损伤的范围较大而且复制受到 抑制时出现的一种应急修复作用。 2. 过程 ①当DNA损伤较大时(如产生很多的T=T),正常的 DNA多聚酶复制到损伤位点时,其活性受到抑制; ②短暂抑制后产生一种新的DNA多聚酶,催化损伤 部位DNA的复制,由于新的DNA多聚酶的修复校正功 能较低,新合成的碱基错配频率较高,易引起突变。 3.特点: ①修复系统需要在DNA分子受损伤的范围较大而且 复制受到抑制时才能够启动。 ②修复系统对错配碱基的修复校正功能低下,从而增 加突变的频率。
第三节生物体对突变的修复机制
一 光复活(photoreactivation)
1. 概念:在可见光存在的条件下,在光复活酶作用下将
UV引起嘧啶二聚体分解为单体的过程。
2. 条件:可见光(300~600nm)、PR酶、嘧啶二聚体 3. 作用过程: ①光复活酶与T=T结合形成复合物; ②复合物吸收可见光切断T=T之间的C-C共价键,使二聚 体变成单体; ③光复酶从DNA链解离. *光复活是原核生物中的一种主要修复形式。
二、诱发突变(induced mutaion) 1.诱变机制
ⅰ碱基类似物 eg. 5-BU 和5-BrdU是胸 腺嘧啶(T)的结构类似物,酮式结构易与A配对; 烯醇式结构易与G配对。另有2-氨基嘌呤(2-AP, A类似物)、5- 氟尿嘧啶、5-氯尿嘧啶等。 ⅱ 特异性错配 eg.烷化剂: 甲磺酸乙酯 (EMS)、亚硝基胍( NG)、芥子气等。通过改变 碱基结构使碱基错配。 如:G-C; 当G烷基化后可与T配对,导致碱基 转换。烷化剂使嘌呤脱落,造成转换、颠换、断 裂或其他突变
第九章 基因突变
学习要点: 1.基因突变的相关概念 2.基因突变的分子基础 3.突变的修复机制 4.突变的检测 5.突变的遗传学效应
第十一章 基因突变
突变:遗传物质的可遗传改变
染色体畸变:染色体水平 基因突变: DNA水平
第一节 基因突变的概说
一、基因突变的概念 突变:染色体上一个基因内部化学结构的改变, 一个基因变成它的等位基因。 范围:广泛的生物界 自发:家兔白化、貂的蓝皮毛、丝羽鸡 人工:Muller、Sradler等(X射线照射果蝇、 玉米) 二、基因突变发生的时期和部位 三、突变频率
三 重组修复
1.概念: 通过对DNA的复制和同源链的重组,来完成对损 伤部位的修复,又称复制后修复。 2.特点: ① 修复过程伴随DNA的复制和重组; ② 仅修复新合成的不完整的单链,原先的损伤单链仍 然保留; ③部分重组蛋白的精确性差,修复的出错率较高。 3.重组修复过程: (1)复制:以损伤单链为模板复制时,越过损伤部位,对 应位点留下缺口;未损伤单链复制成完整双链。 (2)重组:缺口单链与完整同源单链重组,缺口转移到完 整链,使损伤单链的互补链完整,损伤单链仍然保留。 (3)再合成:转移后的缺口以新互补链为模板聚合补齐。
第二节 基因突变的分子基础
1.DNA复制错误(errors of DNA replication) ⅰ转换:Purine→ Pu;或者 Pyrimidine→ Py ⅱ颠换:Pu →Py; 或者Py→Pu ⅲ移码突变:增加或减少几个碱基,导致蛋白质翻译 错位。 ⅳ缺失和重复:大片段碱基的缺失或重复,如 E.coli乳糖发酵调节基因lacⅠ中四碱基重复序列。 野生型: 5‘-GTCTGGCTGGCTGGC-3’ 突变型FS5: 5‘-GTCTGGCTGGCTGGCTGGC-3’ 突变型FS2: 5‘-GTCTGGCTGGC-3’
低 单 等 有性生殖 表现突变性状 倍生 体 物 无性生殖 表现突变性状
表现突变性状
表现突变性状
( )
三、突变频率
• 突变率(mutation mate)指生物在一个世代中在 特定条件下发生某一突变的概率。 也就是突变体占该世代个体的比例。 • 有性生殖生物:用突变配子占总配子比例(配 子发生突变的概率)表示; • (单细胞)无性繁殖生物:每一世代中细胞发生 突变的频率。
4.突变热点和增变基因
基因中 某些位点比其它位点突变率高,称突变热点。 Eg. 分析T4-Phage r Ⅱ基因1500个突变体: r ⅡA (1800bp)有200个位点; r ⅡB (850bp)有108个位点 。
形成原因: 1. 5-MeC的存在,5-甲基胞嘧啶(MeC)脱氨基后变成T, 使 G-C部位转变成A-T部位; 2. 短的重复序列的存在,容易配对错位,造成重复或缺 失 3. 与诱变剂类型有关,不同诱变剂出现不同的热点。 4. 增变基因(mutator gene):该基因的突变会使整个基 因组的突变频率增高,eg. A. DNA多聚酶基因,突变后使多聚酶的3’ → 5’校 正功能降低或丧失,使基因组突变频率增高; B. dam基因,突变后使碱基的错配修复功能降低或丧 失,使基因组突变频率增高。
高等生物基因突变时期与性状表现
突变时期 显性突变 突变当代表现突变性 状。 突变当代表现为嵌合 体,镶嵌范围取决于 突变发生的早晚。 隐性突变 (或下位性突变) 突变当代不表现突变性 状,其自交后代才可能 表现突变性状。 突变当代不表现突变性 状,往往不能被发现、 保留。
高 等 生 物
性细胞
体细胞
DNA碱基有互变异构体,造成DNA复制过程中的DNA错配。
返回
2.DNA损伤(lesions) ⅰ脱嘌呤 由于碱基和脱氧核糖间的糖苷键受到 破坏,从而引起一个鸟嘌呤或腺嘌呤从DNA分子 上脱落下来. ⅱ脱氨基 C脱氨基变成U;A脱氨基变成H,造成 转换 A A­T →→ → H-T→→→ H-C→→→ H-C ↘→A-T ↘→G-C B G- →→ → G-U→→→ A-U→→→A-U C ↘→G-C ↘→A-T ⅲ氧化损伤: O2- OH- H2O2, 对DNA造成损伤
三、诱变与肿瘤 肿瘤的形成与否取决于机体中癌基因和抑癌 基因的平衡,抑癌基因突变会致癌。一些诱变剂 可以特异性的诱导抑癌基因突变,导致肿瘤发生。 eg. 黄曲霉素可诱导P53基因G → T颠换,导 致肝癌的发生;UV可诱导P53基因5’ -TC-3’发生 C → T颠换,形成“T二聚体”,导致人类鳞状 细胞皮肤癌的发生。 四、定点诱变 定义:利用人工合成的寡核苷酸,在离体的 条件下,制造基因中任何部位的位点特异性突变 的技术。
相关文档
最新文档