(完整版)数列的概念与简单表示法练习题及答案解析

合集下载

数列的概念专题(有答案)

数列的概念专题(有答案)

一、数列的概念选择题1.若数列{}n a 满足:存在正整数T ,对于任意正整数n 都有1n n a a +=成立,则称数列{}n a 为周期数列,周期为T .已知数列{}n a 满足()111,10,{1,01n n n n na a a m m a a a +->=>=<≤ ,则下列结论错误的是( ) A .若34a =,则m 可以取3个不同的数; B.若m =,则数列{}n a 是周期为3的数列;C .存在m Q ∈,且2m ≥,数列{}n a 是周期数列;D .对任意T N *∈且2T ≥,存在1m >,使得{}n a 是周期为T 的数列. 2.已知数列{}n a 满足12a =,111n na a +=-,则2018a =( ). A .2B .12C .1-D .12-3.在数列{}n a 中,10a =,1n a +,则2020a =( ) A .0B .1C.D4.已知数列22333311313571351,,,,,,,...,,,,...2222222222n n n,则该数列第2019项是( ) A .1019892 B .1020192 C .1119892 D .1120192 5.对于实数,[]x x 表示不超过x 的最大整数.已知正项数列{}n a 满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,*n N ∈,其中n S 为数列{}n a 的前n 项和,则[][][]1240S S S +++=( )A .135B .141C .149D .1556.已知数列{}n a 的前n 项和为()*22nn S n =+∈N ,则3a=( )A .10B .8C .6D .47.数列{}n a 中,11a =,12n n a a n +=+,则n a =( ) A .2n n 1-+B .21n +C .2(1)1n -+D .2n8.数列1,3,6,10,…的一个通项公式是( )A .()21n a n n =-- B .21n a n =-C .()12n n n a +=D .()12n n n a -=9.已知数列{}n a 满足: 12a =,111n na a +=-,设数列{}n a 的前n 项和为n S ,则2017S =( ) A .1007B .1008C .1009.5D .101010.已知数列{}n a 中,11a =,122nn n a a a +=+,则5a 等于( ) A .25B .13 C .23D .1211.数列{}n a 前n 项和为n S ,若21n n S a =+,则72019a S +的值为( ) A .2B .1C .0D .1-12.已知数列{}n a 的首项为1,第2项为3,前n 项和为n S ,当整数1n >时,1112()nnn S S S S 恒成立,则15S 等于( )A .210B .211C .224D .22513.设n a 表示421167n n +的个位数字,则数列{}n a 的第38项至第69项之和383969a a a ++⋅⋅⋅+=( )A .180B .160C .150D .14014.已知数列{}n a 的前n 项和2n S n n =+,则4a 的值为( ) A .4B .6C .8D .1015.定义:在数列{}n a 中,若满足211n n n na a d a a +++-=( *,n N d ∈为常数),称{}n a 为“等差比数列”,已知在“等差比数列”{}n a 中,1231,3a a a ===,则20202018a a 等于( ) A .4×20162-1B .4×20172-1C .4×20182-1D .4×2018216.已知数列{}n b 满足12122n n b n λ-⎛⎫=-- ⎪⎝⎭,若数列{}n b 是单调递减数列,则实数λ的取值范围是( ) A .101,3B .110,23⎛⎫- ⎪⎝⎭C .(-1,1)D .1,12⎛⎫-⎪⎝⎭17.数列1111,,,57911--,…的通项公式可能是n a =( ) A .1(1)32n n --+B .(1)32n n -+C .1(1)23n n --+D .(1)23nn -+18.数列{}n a 满足:12a =,111nn na a a ++=-()*n N ∈其前n 项积为n T ,则2018T =( ) A .6-B .16-C .16D .619.在数列{}n a 中,11a =,()*122,21n n a n n N a -=≥∈-,则3a =( )A .6B .2C .23 D .21120.数列{}n a 中,12a =,121n n a a +=-,则10a =( ) A .511B .513C .1025D .1024二、多选题21.已知数列{}n a 满足0n a >,121n n n a na a n +=+-(N n *∈),数列{}n a 的前n 项和为n S ,则( )A .11a =B .121a a =C .201920202019S a =D .201920202019S a >22.若数列{}n a 满足112,02121,12n n n n n a a a a a +⎧≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,则数列{}n a 中的项的值可能为( ) A .15B .25C .45D .6523.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,….,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a =B .733S =C .135********a a a a a +++⋅⋅⋅+=D .22212201920202019a a a a a ++⋅⋅⋅⋅⋅⋅+= 24.在等差数列{}n a 中,公差0d ≠,前n 项和为n S ,则( ) A .4619a a a a >B .130S >,140S <,则78a a >C .若915S S =,则n S 中的最大值是12SD .若2n S n n a =-+,则0a =25.等差数列{}n a 是递增数列,公差为d ,前n 项和为n S ,满足753a a =,下列选项正确的是( ) A .0d <B .10a <C .当5n =时n S 最小D .0n S >时n 的最小值为826.已知递减的等差数列{}n a 的前n 项和为n S ,57S S =,则( )A .60a >B .6S 最大C .130S >D .110S >27.已知正项数列{}n a 的前n 项和为n S ,若对于任意的m ,*n N ∈,都有m n m n a a a +=+,则下列结论正确的是( )A .11285a a a a +=+B .56110a a a a <C .若该数列的前三项依次为x ,1x -,3x ,则10103a = D .数列n S n ⎧⎫⎨⎬⎩⎭为递减的等差数列 28.(多选题)在数列{}n a 中,若221n n a a p --=,(2n ≥,*n N ∈,p 为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( )A .若{}n a 是等差数列,则{}2n a 是等方差数列B .(){}1n-是等方差数列C .若{}n a 是等方差数列,则{}kn a (*k N ∈,k 为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列29.等差数列{}n a 的首项10a >,设其前n 项和为{}n S ,且611S S =,则( ) A .0d > B .0d <C .80a =D .n S 的最大值是8S 或者9S30.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310S S =D .当8n ≥时,0n a <31.记n S 为等差数列{}n a 的前n 项和.已知535S =,411a =,则( ) A .45n a n =-B .23n a n =+C .223n S n n =-D .24n S n n =+32.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,现有下列4个命题中正确的有( )A .若100S =,则280S S +=;B .若412S S =,则使0n S >的最大的n 为15C .若150S >,160S <,则{}n S 中8S 最大D .若78S S <,则89S S <33.公差为d 的等差数列{}n a ,其前n 项和为n S ,110S >,120S <,下列说法正确的有( ) A .0d <B .70a >C .{}n S 中5S 最大D .49a a <34.设等差数列{}n a 的前n 项和为n S ,公差为d ,且满足10a >,1118S S =,则对n S 描述正确的有( ) A .14S 是唯一最小值 B .15S 是最小值 C .290S =D .15S 是最大值35.等差数列{}n a 的前n 项和为n S ,若90a <,100a >,则下列结论正确的是( ) A .109S S >B .170S <C .1819S S >D .190S >【参考答案】***试卷处理标记,请不要删除一、数列的概念选择题 1.C 解析:C 【解析】试题分析:A:当01m <≤时,由34a =得1;125m m =<≤时,由34a =得54m =; 2m >时,()2311,,24a m a m =-∈+∞=-= 得6m = ;正确 .B:234111,11,1,m a a a =>∴====> 所以3T =,正确.C :命题较难证明,先考察命题D .D :命题的否定为“对任意的T N *∈,且2T ≥,不存在1m >,使得{}n a 是周期为T 的数列”,而由B 显然这个命题是错误的,因此D 正确,从而只有C 是错误. 考点:命题的真假判断与应用.【名师点睛】本题主要考查周期数列的推导和应用,考查学生的推理能力.此题首先要理解新定义“周期为T 的数列”,然后对A 、B 、C 、D 四个命题一一验证,A 、B 两个命题按照数列的递推公式进行计算即可,命题C 较难证明,但出现在选择题中,考虑到数学选择题中必有一个选项正确,因此我们先研究D 命题,并且在命题D 本身也很难的情况下,采取“正难则反”的方法,考虑命题D 的否定,命题D 的否定由命题B 很容易得出是错误的,从而命题D 是正确的.2.B解析:B 【分析】利用递推关系可得数列{}n a 是以3为周期的周期数列,从而可得2018a . 【详解】 在数列{}n a 中,111n na a +=-,且12a =, 211112a a ∴=-=, 3211121a a =-=-=- , ()41311112a a a =-=--== ∴数列{}n a 是以3为周期的周期数列,201867232=⨯+,2018212a a ∴==.故选:B 【点睛】本题考查了由数列的递推关系式研究数列的性质,考查了数列的周期性,属于基础题.3.A解析:A 【分析】写出数列的前几项,找寻规律,求出数列的周期,问题即可解. 【详解】10a =,1n a +1n =时,2a 2n =时,3a 3n =时,4a ; ∴ 数列{}n a 的周期是320206733110a a a ⨯+∴===故选:A. 【点睛】本题考查周期数列. 求解数列的周期问题时,周期数列的解题方法:根据给出的关系式求出数列的若干项,通过观察归纳出数列的周期,进而求有关项的值或者前n 项的和.4.C解析:C 【分析】 由观察可得()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭项数为21,1,2,4,8,...,2,...k -,注意到101110242201922048=<<=,第2019项是第12个括号里的第995项. 【详解】 由数列()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,可发现其项数为 21,1,2,4,8,...,2,...k -,则前11个括号里共有1024项,前12个括号里共有2048项,故原数列第2019项是第12个括号里的第995项,第12个括号里的数列通项为11212m -, 所以第12个括号里的第995项是1119892. 故选:C. 【点睛】本题考查数列的定义,考查学生观察找出已知数列的特征归纳出其项数、通项,是一道中档题.5.D解析:D 【分析】利用已知数列的前n 项和求其n S 得通项,再求[]n S 【详解】解:由于正项数列{}n a 满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,*n N ∈,所以当1n =时,得11a =,当2n ≥时,111111[()]22n n n n n n n S a S S a S S --⎛⎫=+=-+⎪-⎝⎭ 所以111n n n n S S S S ---=-,所以2=n S n ,因为各项为正项,所以=n S 因为[][][]1234851,1,[]1,[][]2S S S S S S =======,[]05911[][]3S S S ====,[]161724[][]4S S S ==== ,[]252635[][]5S S S ==== ,[]363740[][]6S S S ====.所以[][][]1240S S S +++=13+25+37+49+511+65=155⨯⨯⨯⨯⨯⨯,故选:D 【点睛】此题考查了数列的已知前n 项和求通项,考查了分析问题解决问题的能力,属于中档题.6.D解析:D 【分析】根据332a S S =-,代入即可得结果. 【详解】()()3233222224a S S =-=+-+=.故选:D. 【点睛】本题主要考查了由数列的前n 项和求数列中的项,属于基础题.7.A解析:A 【分析】由题意,根据累加法,即可求出结果. 【详解】因为12n n a a n +=+,所以12n n a a n +-=,因此212a a -=,324a a -=,436a a -=,…,()121n n a a n --=-, 以上各式相加得:()()()21246.1221..212n n n a a n n n ⎡⎤-+-⎣⎦-=+++==+--,又11a =,所以21n a n n =-+.故选:A. 【点睛】本题主要考查累加法求数列的通项,属于基础题型.8.C解析:C 【分析】首先根据已知条件得到410a =,再依次判断选项即可得到答案. 【详解】由题知:410a =,对选项A ,()2444113a =--=,故A 错误;对选项B ,244115a =-=,故B 错误;对选项C ,()4441102a ⨯+==,C 正确; 对选项D ,()444162a ⨯-==,故D 错误. 故选:C 【点睛】本题主要考查数列的通项公式,属于简单题.9.D解析:D 【分析】根据题设条件,可得数列{}n a 是以3为周期的数列,且3132122S =+-=,从而求得2017S 的值,得到答案. 【详解】由题意,数列{}n a 满足: 12a =,111n na a +=-, 可得234111,121,1(1)2,22a a a =-==-=-=--=,可得数列{}n a 是以3为周期的数列,且3132122S =+-= 所以20173672210102S =⨯+=. 故选:D. 【点睛】本题主要考查了数列的递推公式的应用,其中解答中得出数列{}n a 是以3为周期的数列,是解答的关键,着重考查了推理与运算能力,属于中档试题.10.B解析:B 【分析】根据数列{}n a 的递推公式逐项可计算出5a 的值. 【详解】在数列{}n a 中,11a =,122n n n a a a +=+,则12122122123a a a ⨯===++,2322221322223a a a ⨯===++,3431222212522a a a ⨯===++,4542221522325a a a ⨯===++. 故选:B. 【点睛】本题考查利用递推公式写出数列中的项,考查计算能力,属于基础题.11.A解析:A 【分析】根据21n n S a =+,求出1a ,2a ,3a ,4a ,⋯⋯,寻找规律,即可求得答案. 【详解】21n n S a =+当1n =,1121a a =+,解得:11a = 当2n =,122221a a a +=+,解得:21a =- 当3n =,32132221a a a a ++=+,解得:31a = 当4n =,4321422221a a a a a +++=+,解得:41a =-⋯⋯当n 奇数时,1n a = 当n 偶数时,1n a =-∴71a =,20191S =故720192a S += 故选:A. 【点睛】本题主要考查了根据递推公式求数列值,解题关键是掌握数列的基础知识,考查了分析能力和计算能力,属于中档题.12.D解析:D 【分析】利用已知条件转化推出1122n n a a a +-==,说明数列是等差数列,然后求解数列的和即可. 【详解】 解:结合1112()nnn S S S S 可知,11122n n n S S S a +-+-=,得到1122n n a a a +-==,故数列{}n a 为首项为1,公差为2的等差数列,则12(1)21n a n n =+-=-,所以1529a =,所以11515()15(291)1522522a a S ++===, 故选:D . 【点睛】本题考查数列的递推关系式的应用,考查数列求和,是基本知识的考查.13.B解析:B 【分析】根据题意可得n a 为421167n n +的个位数为27n n +的个位数,而2n 的个位是以2,4,8,6为周期,7n 的个位数是以7,9,3,1为周期,即可求和. 【详解】由n a 为421167n n +的个位数, 可得n a 为27n n +的个位数, 而2n 的个位是以2,4,8,6为周期,7n 的个位数是以7,9,3,1为周期,所以27n n +的个位数是以9,3,1,7为周期, 即421167n n +的个位数是以9,3,1,7为周期, 第38项至第69项共32项,共8个周期, 所以383969a a a ++⋅⋅⋅+=8(9317)160⨯+++=. 故选:B14.C解析:C 【分析】利用443a S S =-计算. 【详解】由已知22443(44)(33)8a S S =-=+-+=.故选:C .15.C解析:C 【分析】根据“等差比”数列的定义,得到数列1n n a a +⎧⎫⎨⎬⎩⎭的通项公式,再利用202020202019201820192019a a a a a a =⨯求解. 【详解】由题意可得:323a a =,211a a = ,32211a a a a -=,根据“等差比数列”的定义可知数列1n n a a +⎧⎫⎨⎬⎩⎭是首先为1,公差为2的等差数列, 则()111221n na n n a +=+-⨯=-, 所以20202019220191220181a a =⨯-=⨯+,20192018220181aa =⨯-, 所以()()2202020202019201820192019220181220181420181a a a a a a =⨯=⨯+⨯-=⨯-. 故选:C 【点睛】本题考查数列新定义,等差数列,重点考查理解题意,转化思想,计算能力,属于中档题型.16.A解析:A 【分析】由题1n n b b +>在n *∈N 恒成立,即16212nn λ⎛⎫-<+ ⎪⎝⎭,讨论n 为奇数和偶数时,再利用数列单调性即可求出. 【详解】数列{}n b 是单调递减数列,1n n b b +∴>在n *∈N 恒成立,即()122112+1222nn n n λλ-⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭恒成立,即16212nn λ⎛⎫-<+ ⎪⎝⎭, 当n 为奇数时,则()6212nn λ>-+⋅恒成立,()212n n -+⋅单调递减,1n ∴=时,()212n n -+⋅取得最大值为6-,66λ∴>-,解得1λ>-;当n 为偶数时,则()6212nn λ<+⋅恒成立,()212n n +⋅单调递增,2n ∴=时,()212n n +⋅取得最小值为20,620λ∴<,解得103λ<, 综上,1013λ-<<. 故选:A. 【点睛】关键点睛:本题考查已知数列单调性求参数,解题的关键由数列单调性得出16212nn λ⎛⎫-<+ ⎪⎝⎭恒成立,需要讨论n 为奇数和偶数时的情况,这也是容易出错的地方. 17.D解析:D 【分析】根据观察法,即可得出数列的通项公式. 【详解】因为数列1111,,,, (57911)--可写成 ()()()()2342322311111,1,1,12,..24.333-⨯-⨯-⨯+⨯+⨯+⨯+-⨯, 所以其通项公式为(1)(1)23213nnn a n n -=-=++⨯. 故选:D.18.A解析:A 【分析】根据递推公式推导出()4n n a a n N *+=∈,且有12341a a a a=,再利用数列的周期性可计算出2018T 的值. 【详解】12a =,()*111++=∈-nn n a a n N a ,212312a +∴==--,3131132a -==-+,411121312a -==+,51132113a +==-,()4n n a a n N *+∴=∈,且()12341123123a a a a ⎛⎫=⨯-⨯-⨯= ⎪⎝⎭,201845042=⨯+,因此,()5042018450421211236T T a a ⨯+==⨯=⨯⨯-=-.故选:A. 【点睛】本题考查数列递推公式的应用,涉及数列周期性的应用,考查计算能力,属于中等题.19.C解析:C 【分析】利用数列的递推公式逐项计算可得3a 的值. 【详解】()*122,21n n a n n N a -=≥∈-,11a =,212221a a ∴==-,3222213a a ==-. 故选:C. 【点睛】本题考查利用数列的递推公式写出数列中的项,考查计算能力,属于基础题.20.B解析:B 【分析】根据递推公式构造等比数列{}1n a -,求解出{}n a 的通项公式即可求解出10a 的值. 【详解】因为121n n a a +=-,所以121n n a a +=-,所以()1121n n a a +-=-,所以1121n n a a +-=-且1110a -=≠, 所以{}1n a -是首项为1,公比为2的等比数列,所以112n n a --=,所以121n n a -=+,所以91021513a =+=,故选:B. 【点睛】本题考查利用递推公式求解数列通项公式,难度一般.对于求解满足()11,0,0n n a pa q p p q +=+≠≠≠的数列{}n a 的通项公式,可以采用构造等比数列的方法进行求解.二、多选题 21.BC 【分析】根据递推公式,得到,令,得到,可判断A 错,B 正确;根据求和公式,得到,求出,可得C 正确,D 错. 【详解】 由可知,即,当时,则,即得到,故选项B 正确;无法计算,故A 错; ,所以,则解析:BC 【分析】根据递推公式,得到11n n nn n a a a +-=-,令1n =,得到121a a =,可判断A 错,B 正确;根据求和公式,得到1n n nS a +=,求出201920202019S a =,可得C 正确,D 错.【详解】由121n n n a n a a n +=+-可知2111n n n n n a n n n a a a a ++--==+,即11n n nn n a a a +-=-, 当1n =时,则121a a =,即得到121a a =,故选项B 正确;1a 无法计算,故A 错; 1221321111102110n n n n n n n n n n S a a a a a a a a a a a a +++⎛⎫⎛⎫⎛⎫-=+++=-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以1n n S a n +=,则201920202019S a =,故选项C 正确,选项D 错误. 故选:BC. 【点睛】 方法点睛:由递推公式求通项公式的常用方法:(1)累加法,形如()1n n a a f n +=+的数列,求通项时,常用累加法求解;(2)累乘法,形如()1n na f n a +=的数列,求通项时,常用累乘法求解; (3)构造法,形如1n n a pa q +=+(0p ≠且1p ≠,0q ≠,n ∈+N )的数列,求通项时,常需要构造成等比数列求解;(4)已知n a 与n S 的关系求通项时,一般可根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解.22.ABC 【分析】利用数列满足的递推关系及,依次取代入计算,能得到数列是周期为4的周期数列,得项的所有可能值,判断选项即得结果. 【详解】数列满足,,依次取代入计算得, ,,,,因此继续下去会循环解析:ABC 【分析】利用数列{}n a 满足的递推关系及135a =,依次取1,2,3,4n =代入计算2345,,,a a a a ,能得到数列{}n a 是周期为4的周期数列,得项的所有可能值,判断选项即得结果. 【详解】数列{}n a 满足112,02121,12n n n n n a a a a a +⎧≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,依次取1,2,3,4,...n =代入计算得,211215a a =-=,32225a a ==,43425a a ==,5413215a a a =-==,因此继续下去会循环,数列{}n a 是周期为4的周期数列,所有可能取值为:1234,,,5555. 故选:ABC. 【点睛】本题考查了数列的递推公式的应用和周期数列,属于基础题.23.ABCD 【分析】由题意可得数列满足递推关系,对照四个选项可得正确答案. 【详解】对A ,写出数列的前6项为,故A 正确; 对B ,,故B 正确; 对C ,由,,,……,,可得:.故是斐波那契数列中的第解析:ABCD 【分析】由题意可得数列{}n a 满足递推关系12211,1,(3)n n n a a a a a n --===+≥,对照四个选项可得正确答案. 【详解】对A ,写出数列的前6项为1,1,2,3,5,8,故A 正确; 对B ,71123581333S =++++++=,故B 正确;对C ,由12a a =,342a a a =-,564a a a =-,……,201920202018a a a =-, 可得:135********a a a a a +++⋅⋅⋅+=.故1352019a a a a +++⋅⋅⋅+是斐波那契数列中的第2020项.对D ,斐波那契数列总有21n n n a a a ++=+,则2121a a a =,()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,……,()220182018201920172018201920172018a a a a a a a a =-=-,220192019202020192018a a a a a =-2222123201920192020a a a a a a +++⋅⋅⋅⋅⋅⋅+=,故D 正确;故选:ABCD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,考查方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意递推关系的灵活转换.24.AD 【分析】对于,作差后利用等差数列的通项公式运算可得答案;对于,根据等差数列的前项和公式得到和, 进而可得,由此可知,故不正确; 对于,由得到,,然后分类讨论的符号可得答案; 对于,由求出及解析:AD 【分析】对于A ,作差后利用等差数列的通项公式运算可得答案;对于B ,根据等差数列的前n 项和公式得到70a >和780a a +<, 进而可得80a <,由此可知78||||a a <,故B 不正确;对于C ,由915S S =得到,12130a a +=,然后分类讨论d 的符号可得答案; 对于D ,由n S 求出n a 及1a ,根据数列{}n a 为等差数列可求得0a =. 【详解】对于A ,因为46191111(3)(5)(8)a a a a a d a d a a d -=++-+215d =,且0d ≠,所以24619150a a a a d -=>,所以4619a a a a >,故A 正确;对于B ,因为130S >,140S <,所以77713()1302a a a +=>,即70a >,787814()7()02a a a a +=+<,即780a a +<,因为70a >,所以80a <,所以7878||||0a a a a -=+<,即78||||a a <,故B 不正确;对于C ,因为915S S =,所以101114150a a a a ++++=,所以12133()0a a +=,即12130a a +=,当0d >时,等差数列{}n a 递增,则12130,0a a <>,所以n S 中的最小值是12S ,无最大值;当0d <时,等差数列{}n a 递减,则12130,0a a ><,所以n S 中的最大值是12S ,无最小值,故C 不正确;对于D ,若2n S n n a =-+,则11a S a ==,2n ≥时,221(1)(1)n n n a S S n n a n n a -=-=-+--+--22n =-,因为数列{}n a 为等差数列,所以12120a a =⨯-==,故D 正确. 故选:AD 【点睛】关键点点睛:熟练掌握等差数列的通项公式、前n 项和公式是解题关键.25.BD 【分析】由题意可知,由已知条件可得出,可判断出AB 选项的正误,求出关于的表达式,利用二次函数的基本性质以及二次不等式可判断出CD 选项的正误. 【详解】由于等差数列是递增数列,则,A 选项错误【分析】由题意可知0d >,由已知条件753a a =可得出13a d =-,可判断出AB 选项的正误,求出n S 关于d 的表达式,利用二次函数的基本性质以及二次不等式可判断出CD 选项的正误. 【详解】由于等差数列{}n a 是递增数列,则0d >,A 选项错误;753a a =,则()11634a d a d +=+,可得130a d =-<,B 选项正确;()()()22171117493222224n n n d n n d n n d S na nd n d -⎡⎤--⎛⎫=+=-+==--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当3n =或4时,n S 最小,C 选项错误; 令0n S >,可得270n n ->,解得0n <或7n >.n N *∈,所以,满足0n S >时n 的最小值为8,D 选项正确.故选:BD.26.ABD 【分析】转化条件为,进而可得,,再结合等差数列的性质及前n 项和公式逐项判断即可得解. 【详解】 因为,所以,即,因为数列递减,所以,则,,故A 正确; 所以最大,故B 正确; 所以,故C 错误解析:ABD 【分析】转化条件为670a a +=,进而可得60a >,70a <,再结合等差数列的性质及前n 项和公式逐项判断即可得解. 【详解】因为57S S =,所以750S S -=,即670a a +=,因为数列{}n a 递减,所以67a a >,则60a >,70a <,故A 正确; 所以6S 最大,故B 正确; 所以()113137131302a a S a+⨯==<,故C 错误; 所以()111116111102a a S a+⨯==>,故D 正确.故选:ABD.【分析】令,则,根据,可判定A 正确;由,可判定B 错误;根据等差数列的性质,可判定C 正确;,根据,可判定D 错误. 【详解】令,则,因为,所以为等差数列且公差,故A 正确; 由,所以,故B 错误;解析:AC 【分析】令1m =,则11n n a a a +-=,根据10a >,可判定A 正确;由256110200a a a a d -=>,可判定B 错误;根据等差数列的性质,可判定C 正确;122n d d n a n S ⎛⎫=+- ⎪⎝⎭,根据02>d ,可判定D 错误. 【详解】令1m =,则11n n a a a +-=,因为10a >,所以{}n a 为等差数列且公差0d >,故A 正确;由()()22225611011119209200a a a a a a d daa d d -=++-+=>,所以56110a a a a >,故B错误;根据等差数列的性质,可得()213x x x -=+,所以13x =,213x -=, 故1011109333a =+⨯=,故C 正确; 由()111222nn n na dS d d n a nn -+⎛⎫==+- ⎪⎝⎭,因为02>d ,所以n S n ⎧⎫⎨⎬⎩⎭是递增的等差数列,故D 错误. 故选:AC . 【点睛】解决数列的单调性问题的三种方法;1、作差比较法:根据1n n a a +-的符号,判断数列{}n a 是递增数列、递减数列或是常数列;2、作商比较法:根据1(0n n na a a +>或0)n a <与1的大小关系,进行判定; 3、数形结合法:结合相应的函数的图象直观判断.28.BCD 【分析】根据定义以及举特殊数列来判断各选项中结论的正误. 【详解】对于A 选项,取,则不是常数,则不是等方差数列,A 选项中的结论错误; 对于B 选项,为常数,则是等方差数列,B 选项中的结论正解析:BCD 【分析】根据定义以及举特殊数列来判断各选项中结论的正误. 【详解】对于A 选项,取n a n =,则()()()422444221111n n a a n n n n n n +⎡⎤⎡⎤-=+-=+-⋅++⎣⎦⎣⎦()()221221n n n =+++不是常数,则{}2n a 不是等方差数列,A 选项中的结论错误; 对于B 选项,()()22111110n n +⎡⎤⎡⎤---=-=⎣⎦⎣⎦为常数,则(){}1n-是等方差数列,B 选项中的结论正确;对于C 选项,若{}n a 是等方差数列,则存在常数p R ∈,使得221n n a a p +-=,则数列{}2na 为等差数列,所以()221kn k n a a kp +-=,则数列{}kn a (*k N ∈,k 为常数)也是等方差数列,C 选项中的结论正确;对于D 选项,若数列{}n a 为等差数列,设其公差为d ,则存在m R ∈,使得n a dn m =+,则()()()()2221112222n n n n n n a a a a a a d dn m d d n m d d +++-=-+=++=++,由于数列{}n a 也为等方差数列,所以,存在实数p ,使得221n n a a p +-=,则()222d n m d d p ++=对任意的n *∈N 恒成立,则()2202d m d d p ⎧=⎪⎨+=⎪⎩,得0p d ==,此时,数列{}n a 为常数列,D 选项正确.故选BCD. 【点睛】本题考查数列中的新定义,解题时要充分利用题中的定义进行判断,也可以结合特殊数列来判断命题不成立,考查逻辑推理能力,属于中等题.29.BD 【分析】由,即,进而可得答案. 【详解】 解:, 因为所以,,最大, 故选:. 【点睛】本题考查等差数列的性质,解题关键是等差数列性质的应用,属于中档题. 解析:BD【分析】由6111160S S S S =⇒-=,即950a =,进而可得答案.【详解】解:1167891011950S S a a a a a a -=++++==,因为10a >所以90a =,0d <,89S S =最大,故选:BD .【点睛】本题考查等差数列的性质,解题关键是等差数列性质的应用,属于中档题.30.AD【分析】由已知得到,进而得到,从而对ABD 作出判定.对于C,利用等差数列的和与项的关系可等价转化为,可知不一定成立,从而判定C 错误.【详解】由已知得:,结合等差数列的性质可知,,该等差解析:AD【分析】由已知得到780,0a a ><,进而得到0d <,从而对ABD 作出判定.对于C,利用等差数列的和与项的关系可等价转化为160a d +=,可知不一定成立,从而判定C 错误.【详解】由已知得:780,0a a ><,结合等差数列的性质可知,0d <,该等差数列是单调递减的数列,∴A 正确,B 错误,D 正确,310S S =,等价于1030S S -=,即45100a a a ++⋯+=,等价于4100a a +=,即160a d +=, 这在已知条件中是没有的,故C 错误.故选:AD.【点睛】本题考查等差数列的性质和前n 项和,属基础题,关键在于掌握和与项的关系.31.AC【分析】由求出,再由可得公差为,从而可求得其通项公式和前项和公式【详解】由题可知,,即,所以等差数列的公差,所以,.故选:AC.【点睛】本题考查等差数列,考查运算求解能力.解析:AC【分析】由535S =求出37a =,再由411a =可得公差为434d a a =-=,从而可求得其通项公式和前n 项和公式【详解】由题可知,53535S a ==,即37a =,所以等差数列{}n a 的公差434d a a =-=, 所以()4445n a a n d n =+-=-,()2451232n n n S n n --==-. 故选:AC.【点睛】本题考查等差数列,考查运算求解能力. 32.BC【分析】根据等差数列的性质,以及等差数列的求和公式,逐项判断,即可得答案.【详解】A 选项,若,则,那么.故A 不正确;B 选项,若,则,又因为,所以前8项为正,从第9项开始为负,因为解析:BC【分析】根据等差数列的性质,以及等差数列的求和公式,逐项判断,即可得答案.【详解】A 选项,若1011091002S a d ⨯=+=,则1290a d +=, 那么()()2811128281029160S S a d a d a d d +=+++=+=-≠.故A 不正确; B 选项,若412S S =,则()5611128940a a a a a a ++++=+=,又因为10a >,所以前8项为正,从第9项开始为负,因为()()116168916802a a S a a +==+=, 所以使0n S >的最大的n 为15.故B 正确;C 选项,若()115158151502a a S a +==>,()()116168916802a a S a a +==+<, 则80a >,90a <,则{}n S 中8S 最大.故C 正确;D 选项,若78S S <,则80a >,而989S S a -=,不能判断9a 正负情况.故D 不正确. 故选:BC .【点睛】本题考查等差数列性质的应用,涉及等差数列的求和公式,属于常考题型.33.AD【分析】先根据题意得,,再结合等差数列的性质得,,,中最大,,即:.进而得答案.【详解】解:根据等差数列前项和公式得:,所以,,由于,,所以,,所以,中最大,由于,所以,即:解析:AD【分析】先根据题意得1110a a +>,1120a a +<,再结合等差数列的性质得60a >,70a <,0d <,{}n S 中6S 最大,49a a <-,即:49a a <.进而得答案.【详解】解:根据等差数列前n 项和公式得:()111111102a a S +=>,()112121202a a S +=< 所以1110a a +>,1120a a +<,由于11162a a a +=,11267a a a a +=+,所以60a >,760a a <-<,所以0d <,{}n S 中6S 最大,由于11267490a a a a a a +=+=+<,所以49a a <-,即:49a a <.故AD 正确,BC 错误.故选:AD.【点睛】本题考查等差数列的前n 项和公式与等差数列的性质,是中档题.34.CD【分析】根据等差数列中可得数列的公差,再根据二次函数的性质可知是最大值,同时可得,进而得到,即可得答案;【详解】,,设,则点在抛物线上,抛物线的开口向下,对称轴为,且为的最大值,解析:CD【分析】根据等差数列中1118S S =可得数列的公差0d <,再根据二次函数的性质可知15S 是最大值,同时可得150a =,进而得到290S =,即可得答案;【详解】1118S S =,∴0d <,设2n S An Bn =+,则点(,)n n S 在抛物线2y Ax Bx =+上,抛物线的开口向下,对称轴为14.5x =,∴1514S S =且为n S 的最大值,1118S S =12131815070a a a a ⇒+++=⇒=, ∴129291529()2902a a S a +===, 故选:CD.【点睛】本题考查利用二次函数的性质研究等差数列的前n 项和的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.35.ABD【分析】先根据题意可知前9项的和最小,判断出正确;根据题意可知数列为递减数列,则,又,进而可知,判断出不正确;利用等差中项的性质和求和公式可知,,故正确.【详解】根据题意可知数列为递增解析:ABD【分析】先根据题意可知前9项的和最小,判断出A 正确;根据题意可知数列为递减数列,则190a >,又181919S S a =-,进而可知1516S S >,判断出C 不正确;利用等差中项的性质和求和公式可知()01179179172171722a a a S a <+⨯⨯===,()1191019101921919022a a a S a +⨯⨯===>,故BD 正确. 【详解】根据题意可知数列为递增数列,90a <,100a >, ∴前9项的和最小,故A 正确; ()11791791721717022a a a S a +⨯⨯===<,故B 正确; ()1191019101921919022a a a S a +⨯⨯===>,故D 正确; 190a >,181919S S a ∴=-,1819S S ∴<,故C 不正确.故选:ABD .【点睛】本题考查等差数列的综合应用,考查逻辑思维能力和运算能力,属于常考题.。

高考数学---数列的概念与简单表示法课后作业练习(含答案解析)

高考数学---数列的概念与简单表示法课后作业练习(含答案解析)

高考数学---数列的概念与简单表示法课后作业练习(含答案解析)建议用时:45分钟一、选择题1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式a n等于()A.(-1)n+12B.cosnπ2C.cos n+12πD.cosn+22πD[令n=1,2,3,…,逐一验证四个选项,易得D正确.]2.若S n为数列{a n}的前n项和,且S n=nn+1,则1a5等于()A.56 B.65C.130D.30D[当n≥2时,a n=S n-S n-1=nn+1-n-1n=1n(n+1),所以1a5=5×6=30.]3.记S n为数列{a n}的前n项和.“任意正整数n,均有a n>0”是“{S n}是递增数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件A[∵“a n>0”⇒“数列{S n}是递增数列”,∴“a n>0”是“数列{S n}是递增数列”的充分条件.如数列{a n}为-1,1,3,5,7,9,…,显然数列{S n}是递增数列,但是a n 不一定大于零,还有可能小于零,∴“数列{S n}是递增数列”不能推出“a n>0”,∴“a n>0”是“数列{S n}是递增数列”的不必要条件.∴“a n>0”是“数列{S n}是递增数列”的充分不必要条件.] 4.(2019·武汉5月模拟)数列{a n}中,a n+1=2a n+1,a1=1,则a6=() A.32 B.62C.63 D.64C[数列{a n}中,a n+1=2a n+1,故a n+1+1=2(a n+1),因为a1=1,故a1+1=2≠0,故a n+1≠0,所以a n+1+1a n+1=2,所以{a n+1}为等比数列,首项为2,公比为2.所以a n+1=2n即a n=2n-1,故a6=63,故选C.]5.若数列{a n}的前n项和S n=n2-10n(n∈N*),则数列{na n}中数值最小的项是()A.第2项B.第3项C.第4项D.第5项B[∵S n=n2-10n,∴当n≥2时,a n=S n-S n-1=2n-11;当n=1时,a1=S1=-9也适合上式.∴a n=2n-11(n∈N+).记f(n)=na n=n(2n-11)=2n2-11n,此函数图像的对称轴为直线n=114,但n∈N+,∴当n=3时,f(n)取最小值.∴数列{na n}中数值最小的项是第3项.]二、填空题6.已知数列5,11,17,23,29,…,则55是它的第________项.21[数列5,11,17,23,29,…中的各项可变形为5,5+6,5+2×6,5+3×6,5+4×6,…,所以通项公式为a n=5+6(n-1)=6n-1,令6n-1=55,得n=21.]7.若数列{a n}满足a1=1,a2=3,a n+1=(2n-λ)a n(n=1,2,…),则a3等于________.15[令n=1,则3=2-λ,即λ=-1,由a n+1=(2n+1)a n,得a3=5a2=5×3=15.]8.在一个数列中,如果∀n∈N*,都有a n a n+1a n+2=k(k为常数),那么这个数列叫做等积数列,k叫做这个数列的公积.已知数列{a n}是等积数列,且a1=1,a2=2,公积为8,则a1+a2+a3+…+a12=________.28[∵a1a2a3=8,且a1=1,a2=2.∴a3=4,同理可求a4=1,a5=2.a6=4,∴{a n}是以3为周期的数列,∴a1+a2+a3+…+a12=(1+2+4)×4=28.]三、解答题9.(2019·洛阳模拟)已知数列{a n}满足a1=50,a n+1=a n+2n(n∈N*),(1)求{a n}的通项公式;(2)已知数列{b n}的前n项和为a n,若b m=50,求正整数m的值.[解](1)当n≥2时,a n=(a n-a n-1)+(a n-1-a n-2)+…+(a3-a2)+(a2-a1)+a1=2(n-1)+2(n-2)+…+2×2+2×1+50=2×(n-1)n2+50=n 2-n +50.又a 1=50=12-1+50,∴{a n }的通项公式为a n =n 2-n +50,n ∈N *. (2)b 1=a 1=50, 当n ≥2时,b n =a n -a n -1=n 2-n +50-[(n -1)2-(n -1)+50]=2n -2, 即b n =⎩⎪⎨⎪⎧50,n =12n -2,n ≥2.当m ≥2时,令b m =50,得2m -2=50,解得m =26. 又b 1=50,∴正整数m 的值为1或26.10.设数列{a n }的前n 项和为S n .已知a 1=a (a ≠3),a n +1=S n +3n ,n ∈N *,设b n =S n -3n ,(1)求数列{b n }的通项公式;(2)若a n +1≥a n ,n ∈N *,求a 的取值范围. [解] (1)依题意,S n +1-S n =a n +1=S n +3n , 即S n +1=2S n +3n ,由此得S n +1-3n +1=2(S n -3n ), 即b n +1=2b n , 又b 1=S 1-3=a -3,所以数列{b n }的通项公式为b n =(a -3)2n -1,n ∈N *. (2)由(1)知S n =3n +(a -3)2n -1,n ∈N *,于是,当n ≥2时,a n =S n -S n -1=3n +(a -3)2n -1-3n -1-(a -3)2n -2=2×3n-1+(a -3)2n -2,a n +1-a n =4×3n -1+(a -3)2n -2 =2n -2⎣⎢⎡⎦⎥⎤12×⎝ ⎛⎭⎪⎫32n -2+a -3,当n ≥2时,a n +1≥a n ⇒12×⎝ ⎛⎭⎪⎫32n -2+a -3≥0⇒a ≥-9,又a 2=a 1+3>a 1(a ≠3).综上,a 的取值范围是[-9,3)∪(3,+∞).1.已知数列{a n }满足:a 1=1,a n +1=a n a n +2(n ∈N *),若b n +1=(n -λ)⎝ ⎛⎭⎪⎫1a n +1,b 1=-λ,且数列{b n }是递增数列,则实数λ的取值范围是( )A .(2,+∞)B .(3,+∞)C .(-∞,2)D .(-∞,3)C [由a n +1=a n a n +2,知1a n +1=2a n +1,即1a n +1+1=2⎝ ⎛⎭⎪⎫1a n +1,所以数列⎩⎨⎧⎭⎬⎫1a n +1是首项为1a 1+1=2,公比为2的等比数列,所以1a n +1=2n ,所以b n +1=(n -λ)·2n ,因为数列{b n }是递增数列,所以b n +1-b n =(n -λ)2n -(n -1-λ)2n -1=(n +1-λ)2n-1>0对一切正整数n 恒成立,所以λ<n +1,因为n ∈N *,所以λ<2,故选C.]2.(2019·临沂三模)意大利数学家列昂那多·斐波那契以兔子繁殖为例,引入“兔子数列”: 1,1,2,3,5,8,13,21,34,55,…即F (1)=F (2)=1,F (n )=F (n -1)+F (n -2)(n ≥3,n ∈N *),此数列在现代物理“准晶体结构”、化学等都有着广泛的应用.若此数列被2整除后的余数构成一个新数列{a n },则数列{a n }的前2 019项的和为( )A .672B .673C .1 346D .2 019C [由数列1,1,2,3,5,8,13,21,34,55,…各项除以2的余数,可得{a n }为1,1,0,1,1,0,1,1,0,1,1,0,…,所以{a n }是周期为3的周期数列,一个周期中三项和为1+1+0=2, 因为2 019=673×3,所以数列{a n }的前2 019项的和为673×2=1 346,故选C.]3.(2019·晋城三模)记数列{a n }的前n 项和为S n ,若S n =3a n +2n -3,则数列{a n }的通项公式为a n =________.a n =2-⎝ ⎛⎭⎪⎫32n[当n =1时,S 1=a 1=3a 1-1,解得a 1=12;当n ≥2时,S n =3a n +2n -3,S n -1=3a n -1+2n -5,两式相减可得,a n =3a n -3a n -1+2,故a n =32a n -1-1,设a n +λ=32(a n -1+λ),故λ=-2,即a n -2=32(a n -1-2),故a n -2a n -1-2=32.故数列{a n -2}是以-32为首项,32为公比的等比数列,故a n -2=-32·⎝ ⎛⎭⎪⎫32n -1,故a n =2-⎝ ⎛⎭⎪⎫32n .] 4.已知数列{a n }中,a 1=1,其前n 项和为S n ,且满足2S n =(n +1)a n (n ∈N *). (1)求数列{a n }的通项公式;(2)记b n =3n -λa 2n ,若数列{b n }为递增数列,求λ的取值范围. [解] (1)∵2S n =(n +1)a n , ∴2S n +1=(n +2)a n +1,∴2a n +1=(n +2)a n +1-(n +1)a n , 即na n +1=(n +1)a n ,∴a n +1n +1=a nn ,∴a n n =a n -1n -1=…=a 11=1,∴a n =n (n ∈N +). (2)由(1)知b n =3n -λn 2.b n +1-b n =3n +1-λ(n +1)2-(3n -λn 2) =2·3n -λ(2n +1). ∵数列{b n }为递增数列, ∴2·3n -λ(2n +1)>0, 即λ<2·3n2n +1.令c n =2·3n2n +1,即c n +1c n =2·3n +12n +3·2n +12·3n =6n +32n +3>1. ∴{c n }为递增数列, ∴λ<c 1=2,即λ的取值范围为(-∞,2).1.(2019·烟台、菏泽高考适应性练习一)已知数列:1k ,2k -1,…,k 1(k ∈N *),按照k 从小到大的顺序排列在一起,构成一个新的数列{a n }:1,12,21,13,22,31,…,则89首次出现时为数列{a n }的( )A .第44项B .第76项C .第128项D .第144项C [观察分子分母的和出现的规律:2,3,4,5,…,把数列重新分组:⎝ ⎛⎭⎪⎫11,⎝ ⎛⎭⎪⎫12,21,⎝ ⎛⎭⎪⎫13,22,31,…,⎝ ⎛⎭⎪⎫1k ,2k -1,…,k 1,可看出89第一次出现在第16组,因为1+2+3+…+15=120,所以前15组一共有120项;第16组的项为⎝ ⎛⎭⎪⎫116,215,…,710,89…,所以89是这一组中的第8项,故89第一次出现在数列的第128项,故选C.]2.已知二次函数f (x )=x 2-ax +a (a >0,x ∈R )有且只有一个零点,数列{a n }的前n 项和S n =f (n )(n ∈N *).(1)求数列{a n }的通项公式;(2)设c n =1-4a n(n ∈N *),定义所有满足c m ·c m +1<0的正整数m 的个数,称为这个数列{c n }的变号数,求数列{c n }的变号数.[解] (1)依题意,Δ=a 2-4a =0, 所以a =0或a =4. 又由a >0得a =4, 所以f (x )=x 2-4x +4. 所以S n =n 2-4n +4.当n =1时,a 1=S 1=1-4+4=1; 当n ≥2时,a n =S n -S n -1=2n -5. 所以a n =⎩⎪⎨⎪⎧1,n =1,2n -5,n ≥2.(2)由题意得c n =⎩⎪⎨⎪⎧-3,n =1,1-42n -5,n ≥2. 由c n =1-42n -5可知,当n ≥5时,恒有c n >0.又c 1=-3,c 2=5,c 3=-3,c 4=-13,c 5=15,c 6=37, 即c 1·c 2<0,c 2·c 3<0,c 4·c 5<0,所以数列{c n}的变号数为3.。

2024年高考数学总复习第六章数列真题分类22数列的概念与简单表示法

2024年高考数学总复习第六章数列真题分类22数列的概念与简单表示法

= an an-1
=9-9a2n
,所以 an+1=an.又 a1=3≠a2,所以数列
{an}不为等比数列,所以②不正确.由题知 an·Sn=an+1·Sn+1,所以 an an+1
Sn+1 = Sn
>1,所以
an>an+1>0,所以数列{an}为递减数列,所以③正确.若数列{an}的所有项均大于等于1100 ,
真题分类22 数列的概念与简单表示法
高考·数学
第六章 数列
§6.1 数列的概念及其表示 真题分类22 数列的概念与简单表示法
C1.数列的概念及通项公式 C2.由an与Sn的关系求通项an C3.由递推关系式求数列的通项公式 C4.数列的单调性、周期性和最值 C5.数列求和问题
第1页
返回总目录
真题分类22 数列的概念与简单表示法
∴Sn=a1(11--qqn) =-1(1-1-22n) =1-2n,
∴S6=1-26=-63.
第7页
返回层目录 返回目录
真题分类22 数列的概念与简单表示法
高考·数学
4.(2021·全国乙卷(理),1
n
项和,bn
为数列 S n
的前 n
项积,已知S2n +b1n =2. (1)证明:数列{bn}是等差数列; (2)求{an}的通项公式.

1 an≥100
,取 n>90 000,则 Sn>900,于是 an·Sn>9,与已知矛盾,所以{an}中存在小于1100
的项,所以④正确.
第5页
返回层目录 返回目录
真题分类22 数列的概念与简单表示法
高考·数学
2.(2020·江苏,11,5 分)设{an}是公差为 d 的等差数列,{bn}是公比为 q 的等比数列.已 知数列{an+bn}的前 n 项和 Sn=n2-n+2n-1(n∈N*),则 d+q 的值是________.

数列的概念练习题(有答案)doc

数列的概念练习题(有答案)doc

一、数列的概念选择题1.已知数列{}n a 的首项为2,且数列{}n a 满足111n n n a a a +-=+,数列{}n a 的前n 项的和为n S ,则1008S 等于( )A .504B .294C .294-D .504-2.在数列{}n a 中,11a =,11n n a a n +=++,设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,若n S m <对一切正整数n 恒成立,则实数m 的取值范围为( ) A .()3,+∞ B .[)3,+∞C .()2,+∞D .[)2,+∞3.对于实数,[]x x 表示不超过x 的最大整数.已知正项数列{}n a 满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,*n N ∈,其中n S 为数列{}n a 的前n 项和,则[][][]1240S S S +++=( )A .135B .141C .149D .1554.已知数列{}n a 满足1n n n a a +-=,则20201a a -=( ) A .20201010⨯B .20191010⨯C .20202020⨯D .20192019⨯5.已知数列{}n a 前n 项和为n S ,且满足*112(N 3)33n n n n S S S S n n --+≤+∈≥+,,则( )A .63243a a a ≤-B .2736+a a a a ≤+C .7662)4(a a a a ≥--D .2367a a a a +≥+6.已知数列{}n a ,{}n b ,其中11a =,且n a ,1n a +是方程220nn x b x -+=的实数根,则10b 等于( ) A .24B .32C .48D .647.数列1,3,5,7,9,--的一个通项公式为( )A .21n a n =-B .()1(21)nn a n =--C .()11(21)n n a n +=--D .()11(21)n n a n +=-+8.已知数列{}n a 的通项公式为()()211nn a n=--,则6a =( )A .35B .11-C .35-D .119.已知数列{}n a 中,11a =,23a =且对*n N ∈,总有21n n n a a a ++=-,则2019a =( ) A .1B .3C .2D .3-10.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .174B .184C .188D .16011.已知数列{}n a 的前5项为:12a =,232a =,343a =,454a =,565a =,可归纳得数列{}n a 的通项公式可能为( ) A .1+=n n a nB .21n n a n +=+ C .3132n n a n -=-D .221n na n =- 12.已知数列{a n }满足112,0,2121, 1.2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩若a 1=35,则a 2019 = ( )A .15B .25C .35D .4513.数列{}n a 满足1111,(2)2n n n a a a n a --==≥+,则5a 的值为( )A .18B .17 C .131D .1614.已知lg3≈0.477,[x ]表示不大于x 的最大整数.设S n 为数列{a n }的前n 项和,a 1=2且S n +1=3S n -2n +2,则[lg(a 100-1)]=( ) A .45B .46C .47D .4815.已知定义在R 上的函数()f x 是奇函数,且满足3()(),(1)32f x f x f -=-=,数列{}n a 满足11a =,且21n nS a n n=-,(n S 为{}n a 的前n 项和,*)n N ∈,则56()()f a f a +=( )A .1B .3C .-3D .016.正整数的排列规则如图所示,其中排在第i 行第j 列的数记为,i j a ,例如4,39a =,则645a ,等于( )12345678910A .2019B .2020C .2021D .202217.已知数列{}n a满足112n a +=+112a =,则该数列前2016项的和为( ) A .2015B .2016C .1512D .3025218.历史上数列的发展,折射出很多有价值的数学思想方法,对时代的进步起了重要的作用,比如意大利数学家列昂纳多·斐波那契以兔子繁殖为例,引入“兔子数列”:即1,1,2,3,5,8,13,21,34,55,89,144,233……即F (1)=F (2)=1,F (n )=F (n -1)+F (n -2),()*3n n N≥∈,,此数列在现代物理及化学等领域有着广泛的应用,若此数列被4整除后的余数构成一个新数列{}n b ,则b 2020=( ) A .3B .2C .1D .019.已知数列{}n a 的前n 项和为n S ,已知13n n S +=,则34a a +=( )A .81B .243C .324D .21620.若数列{}n a 满足:存在正整数T ,对于任意正整数n 都有1n n a a +=成立,则称数列{}n a 为周期数列,周期为T .已知数列{}n a 满足()111,10,{1,01n n n n na a a m m a a a +->=>=<≤ ,则下列结论错误的是( ) A .若34a =,则m 可以取3个不同的数; B.若m =,则数列{}n a 是周期为3的数列;C .存在m Q ∈,且2m ≥,数列{}n a 是周期数列;D .对任意T N *∈且2T ≥,存在1m >,使得{}n a 是周期为T 的数列.二、多选题21.已知数列{}n a :1,1,2,3,5,…其中从第三项起,每个数等于它前面两个数的和,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68S a = B .733S =C .135********a a a a a ++++= D .2222123202020202021a a a a a a ++++=22.意大利人斐波那契于1202年从兔子繁殖问题中发现了这样的一列数:1,1,2,3,5,8,13,….即从第三项开始,每一项都是它前两项的和.后人为了纪念他,就把这列数称为斐波那契数列.下面关于斐波那契数列{}n a 说法正确的是( ) A .1055a = B .2020a 是偶数C .2020201820223a a a =+D .123a a a +++…20202022a a +=23.已知数列0,2,0,2,0,2,,则前六项适合的通项公式为( )A .1(1)nn a =+-B .2cos2n n a π= C .(1)2sin2n n a π+= D .1cos(1)(1)(2)n a n n n π=--+--24.已知数列{}n a 中,11a =,1111n n a a n n +⎛⎫-=+ ⎪⎝⎭,*n N ∈.若对于任意的[]1,2t ∈,不等式()22212na t a t a a n<--++-+恒成立,则实数a 可能为( ) A .-4B .-2C .0D .225.已知数列{}n a 的前4项为2,0,2,0,则该数列的通项公式可能为( ) A .0,2,n n a n ⎧=⎨⎩为奇数为偶数B .1(1)1n n a -=-+C .2sin2n n a π= D .cos(1)1n a n π=-+26.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,….,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a =B .733S =C .135********a a a a a +++⋅⋅⋅+=D .22212201920202019a a a a a ++⋅⋅⋅⋅⋅⋅+= 27.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足11140(2),4n n n a S S n a -+=≥=,则下列说法正确的是( ) A .数列{}n a 的前n 项和为1S 4n n= B .数列{}n a 的通项公式为14(1)n a n n =+C .数列{}n a 为递增数列D .数列1{}nS 为递增数列 28.设等差数列{}n a 的前n 项和为n S .若30S =,46a =,则( ) A .23n S n n =- B .2392-=n n nSC .36n a n =-D .2n a n =29.已知等差数列{}n a 的前n 项和为n S ,公差为d ,且35a =,73a =,则( ) A .12d =B .12d =-C .918S =D .936S =30.公差不为零的等差数列{}n a 满足38a a =,n S 为{}n a 前n 项和,则下列结论正确的是( ) A .110S =B .10n n S S -=(110n ≤≤)C .当110S >时,5n S S ≥D .当110S <时,5n S S ≥31.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310S S =D .当8n ≥时,0n a <32.已知数列{}n a 的前n 项和为,n S 25,n S n n =-则下列说法正确的是( )A .{}n a 为等差数列B .0n a >C .n S 最小值为214-D .{}n a 为单调递增数列33.设等差数列{}n a 的前n 项和为n S ,公差为d .已知312a =,120S >,70a <则( ) A .60a > B .数列1n a ⎧⎫⎨⎬⎩⎭是递增数列 C .0nS <时,n 的最小值为13D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项 34.公差为d 的等差数列{}n a ,其前n 项和为n S ,110S >,120S <,下列说法正确的有( ) A .0d <B .70a >C .{}n S 中5S 最大D .49a a <35.等差数列{}n a 的前n 项和为n S ,若90a <,100a >,则下列结论正确的是( ) A .109S S >B .170S <C .1819S S >D .190S >【参考答案】***试卷处理标记,请不要删除一、数列的概念选择题 1.C 解析:C 【分析】根据递推公式,算出数列前4项,确定数列周期,即可求出结果. 【详解】∵12a =,111n n n a a a +-=+,∴213a =,311131213a -==-+,41123112a --==--+, 又121111111111n n n n n n nn a a a a a a a a +++---+===--+++,所以421n n n a a a ++=-=, ∴数列{}n a 的周期为4,且123476a a a a +++=-, ∵10084252÷=,∴100872522946S ⎛⎫=⨯-=- ⎪⎝⎭. 故选:C. 【点睛】本题主要考查数列周期性的应用,属于常考题型.2.D解析:D 【分析】利用累加法求出数列{}n a 的通项公式,并利用裂项相消法求出n S ,求出n S 的取值范围,进而可得出实数m 的取值范围. 【详解】11n n a a n +=++,11n n a a n +∴-=+且11a =,由累加法可得()()()()12132111232n n n n n a a a a a a a a n -+=+-+-++-=++++=,()122211n a n n n n ∴==-++,22222222222311n S n n n ⎛⎫⎛⎫⎛⎫∴=-+-++-=-< ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭, 由于n S m <对一切正整数n 恒成立,2m ∴≥,因此,实数m 的取值范围是[)2,+∞.故选:D. 【点睛】本题考查数列不等式恒成立问题的求解,同时也考查了累加法求通项以及裂项求和法,考查计算能力,属于中等题.3.D解析:D 【分析】利用已知数列的前n 项和求其n S 得通项,再求[]n S 【详解】解:由于正项数列{}n a 满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,*n N ∈,所以当1n =时,得11a =,当2n ≥时,111111[()]22n n n n n n n S a S S a S S --⎛⎫=+=-+ ⎪-⎝⎭ 所以111n n n n S S S S ---=-,所以2=n S n ,因为各项为正项,所以=n S 因为[][][]1234851,1,[]1,[][]2S S S S S S =======,[]05911[][]3S S S ====,[]161724[][]4S S S ==== ,[]252635[][]5S S S ==== ,[]363740[][]6S S S ====.所以[][][]1240S S S +++=13+25+37+49+511+65=155⨯⨯⨯⨯⨯⨯,故选:D 【点睛】此题考查了数列的已知前n 项和求通项,考查了分析问题解决问题的能力,属于中档题.4.B解析:B 【分析】由题意可得211a a -=,322a a -=,433a a -=,……202020192019a a -=,再将这2019个式子相加得到结论. 【详解】由题意可知211a a -=,322a a -=,433a a -=,……202020192019a a -=, 这2019个式子相加可得()20201201912019123 (2019201910102)a a +-=++++==⨯.故选:B. 【点睛】本题考查累加法,重点考查计算能力,属于基础题型.5.C解析:C 【分析】由条件可得出11n n n n a a a a -+-≤-,然后可得3243546576a a a a a a a a a a -≤-≤-≤-≤-,即可推出选项C 正确.【详解】因为*112(N 3)33n n n n S S S S n n --+≤+∈≥+,,所以12133n n n n S S S S -+-≤--,所以113n n n n a a a a +-≤++ 所以11n n n n a a a a -+-≤-,所以3243546576a a a a a a a a a a -≤-≤-≤-≤-所以()6232435465764a a a a a a a a a a a a -=-+-+-+-≤- 故选:C 【点睛】本题主要考查的是数列的前n 项和n S 与n a 的关系,解答的关键是由条件得到11n n n n a a a a -+-≤-,属于中档题.6.D解析:D 【分析】根据题意,得到1n n n a a b ++=,12nn n a a +=,求得22a =,推出112n n a a +-=,进而可求出10a ,11a ,从而可求出结果.【详解】因为n a ,1n a +是方程220nn x b x -+=的实数根, 所以1n n n a a b ++=,12nn n a a +=,又11a =,所以22a =; 当2n ≥时,112n n n a a --=,所以11112n n n n n na a a a a a ++--==, 因此4102232a a =⋅=,5111232a a =⋅=所以101011323264b a a =+=+=. 故选:D. 【点睛】本题主要考查由数列的递推关系求数列中的项,属于常考题型.7.C解析:C 【分析】分别观察各项的符号、绝对值即可得出. 【详解】数列1,-3,5,-7,9,…的一个通项公式()()112nn a n =--.故选C . 【点睛】本题考查了球数列的通项公式的方法,属于基础题.8.A解析:A 【分析】直接将6n =代入通项公式可得结果. 【详解】 因为()()211nn a n=--,所以626(1)(61)35a =--=.故选:A 【点睛】本题考查了根据通项公式求数列的项,属于基础题.9.C解析:C 【分析】根据数列{}n a 的前两项及递推公式,可求得数列的前几项,判断出数列为周期数列,即可求得2019a 的值.【详解】数列{}n a 中,11a =,23a =且对*n N ∈,总有21n n n a a a ++=- 当1n =时,321322a a a =-=-= 当2n =时,432231a a a =-=-=- 当3n =时,543123a a a =-=--=- 当4n =时,()654312a a a =-=---=- 当5n =时,()765231a a a =-=---= 当6n =时,()876123a a a =-=--= 由以上可知,数列{}n a 为周期数列,周期为6T = 而201933663=⨯+ 所以201932a a == 故选:C 【点睛】本题考查了数列递推公式的简单应用,周期数列的简单应用,属于基础题.10.A解析:A 【分析】根据已知条件求得11n n n a a -=--,利用累加法求得19a . 【详解】 依题意:3,4,6,9,13,18,24,1,2,3,4,5,6,所以11n n n a a -=--(2n ≥),且13a =,所以()()()112211n n n n n a a a a a a a a ---=-+-++-+()()12213n n =-+-++++()()()11113322n n n n -+--=+=+.所以19191831742a ⨯=+=. 故选:A 【点睛】本小题主要考查累加法,属于中档题.11.A解析:A 【分析】将前五项的分母整理为1,2,3,4,5,则其分子为2,3,4,5,6,据此归纳即可. 【详解】因为12a =,232a =,343a =,454a =,565a =,故可得1223,12a a ==, 343a =,454a =,565a =,故可归纳得1+=n n a n. 故选:A. 【点睛】本题考查简单数列通项公式的归纳总结,属基础题.12.B解析:B 【分析】根据数列的递推公式,得到数列的取值具备周期性,即可得到结论. 【详解】∵112,02121,12n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩,又∵a 135=,∴a 2=2a 1﹣1=235⨯-115=,a 3=2a 225=, a 4=2a 3=22455⨯=, a 5=2a 4﹣1=245⨯-135=, 故数列的取值具备周期性,周期数是4, 则2019a =50443a ⨯+=325a =, 故选B . 【点睛】本题主要考查数列项的计算,根据数列的递推关系是解决本题的关键.根据递推关系求出数列的取值具备周期性是解决本题的突破口.13.C解析:C 【分析】根据条件依次算出2a 、3a 、4a 、5a 即可. 【详解】 因为1111,(2)2n n n a a a n a --==≥+,所以211123a ==+,31131723a ==+,411711527a ==+,51115131215a ==+ 故选:C 14.C解析:C 【分析】利用数列的递推式,得到a n +1=3a n -2,进而得到a n =3n -1+1,然后代入[lg(a 100-1)]可求解 【详解】当n ≥2时,S n =3S n -1-2n +4,则a n +1=3a n -2,于是a n +1-1=3(a n -1),当n =1时,S 2=3S 1-2+2=6,所以a 2=S 2-S 1=4.此时a 2-1=3(a 1-1),则数列{a n -1}是首项为1,公比为3的等比数列.所以a n -1=3n -1,即a n =3n -1+1,则a 100=399+1,则lg(a 100-1)=99lg3≈99×0.477=47.223,故[lg(a 100-1)]=47. 故选C15.C解析:C 【分析】判断出()f x 的周期,求得{}n a 的通项公式,由此求得56()()f a f a +. 【详解】依题意定义在R 上的函数()f x 是奇函数,且满足3()()2f x f x -=, 所以()333332222f x f x f x fx ⎛⎫⎛⎫⎛⎫⎛⎫+=---=--=-+ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭ ()()()32f x f x f x ⎛⎫=---=--= ⎪⎝⎭,所以()f x 是周期为3的周期函数.由21n n S a n n=-得2n n S a n =-①, 当1n =时,11a =,当2n ≥时,()1121n n S a n --=--②,①-②得11221,21n n n n n a a a a a --=--=+(2n ≥),所以21324354213,217,2115,2131a a a a a a a a =+==+==+==+=,652163a a =+=.所以56()()f a f a +=()()()()()()()316331013211013f f f f f f f +=⨯++⨯=+=--=-故选:C 【点睛】如果一个函数既是奇函数,图象又关于()0x a a =≠对称,则这个函数是周期函数,且周期为4a .16.C解析:C 【分析】根据题目中已知数据,进行归总结,得到一般性结论,即可求得结果. 【详解】根据题意,第1行第1列的数为1,此时111(11)112a ⨯-=+=,, 第2行第1列的数为2,此时212(21)122a ⨯-=+=,, 第3行第1列的数为4 ,此时313(31)142a ⨯-=+=,,据此分析可得:第64行第1列的数为64164(641)120172a ⨯-=+=,,则6452021a =,, 故选:C.17.C解析:C 【分析】通过计算出数列的前几项确定数列{}n a 是以2为周期的周期数列,进而计算可得结论. 【详解】 依题意,112a =,211122a =,3111222a =+=, ⋯从而数列{}n a 是以2为周期的周期数列, 于是所求值为20161(1)151222⨯+=, 故选:C 【点睛】关键点睛:解答本题的关键是联想到数列的周期性并找到数列的周期.18.A解析:A 【分析】根据条件得出数列{}n b 的周期即可. 【详解】由题意可知“兔子数列”被4整除后的余数构成一个新数列为:1,1,2,3,1,0,1,1,2,3,1,0,……则可得到周期为6,所以b 2020=b 4=3, 故选:A19.D解析:D 【分析】利用项和关系,1n n n a S S -=-代入即得解. 【详解】利用项和关系,1332443=54=162n n n a S S a S S a S S -=-∴=-=-,34216a a ∴+=故选:D【点睛】本题考查了数列的项和关系,考查了学生转化与划归,数学运算能力,属于基础题.20.C解析:C 【解析】试题分析:A:当01m <≤时,由34a =得1;125m m =<≤时,由34a =得54m =; 2m >时,()2311,,24a m a m =-∈+∞=-= 得6m = ;正确 .B:234111,11,1,m a a a =>∴====> 所以3T =,正确.C :命题较难证明,先考察命题D .D :命题的否定为“对任意的T N *∈,且2T ≥,不存在1m >,使得{}n a 是周期为T 的数列”,而由B 显然这个命题是错误的,因此D 正确,从而只有C 是错误. 考点:命题的真假判断与应用.【名师点睛】本题主要考查周期数列的推导和应用,考查学生的推理能力.此题首先要理解新定义“周期为T 的数列”,然后对A 、B 、C 、D 四个命题一一验证,A 、B 两个命题按照数列的递推公式进行计算即可,命题C 较难证明,但出现在选择题中,考虑到数学选择题中必有一个选项正确,因此我们先研究D 命题,并且在命题D 本身也很难的情况下,采取“正难则反”的方法,考虑命题D 的否定,命题D 的否定由命题B 很容易得出是错误的,从而命题D 是正确的.二、多选题 21.BCD 【分析】根据题意写出,,,从而判断A ,B 的正误;写出递推关系,对递推关系进行适当的变形,利用累加法即可判断C ,D 的正误. 【详解】对A ,,,故A 不正确; 对B ,,故B 正确; 对C ,由,,解析:BCD 【分析】根据题意写出8a ,6S ,7S ,从而判断A ,B 的正误;写出递推关系,对递推关系进行适当的变形,利用累加法即可判断C ,D 的正误. 【详解】对A ,821a =,620S =,故A 不正确; 对B ,761333S S =+=,故B 正确;对C ,由12a a =,342a a a =-,564a a a =-,…,202120222020a a a =-,可得135********a a a a a +++⋅⋅⋅+=,故C 正确;对D ,该数列总有21n n n a a a ++=+,2121a a a =,则()222312321a a a a a a a a =-=-, ()233423423a a a a a a a a =-=-,…,()220182018201920172018201920172018a a a a a a a a =-=-, 22019a =2019202020192018a a a a -,220202020202120202019a a a a a =-, 故2222123202*********a a a a a a +++⋅⋅⋅+=,故D 正确.故选:BCD 【点睛】关键点睛:解答本题的关键是对CD 的判断,即要善于利用21n n n a a a ++=+对所给式子进行变形.22.AC 【分析】由该数列的性质,逐项判断即可得解. 【详解】对于A ,,,,故A 正确;对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误; 对于C ,,故C 正确; 对于D ,,,, , 各式相加解析:AC 【分析】由该数列的性质,逐项判断即可得解. 【详解】对于A ,821a =,9211334a =+=,10213455a =+=,故A 正确; 对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误;对于C ,20182022201820212020201820192020202020203a a a a a a a a a a +=++=+++=,故C 正确; 对于D ,202220212020a a a =+,202120202019a a a =+,202020192018a a a =+,32121,a a a a a ⋅⋅⋅=+=,各式相加得()2022202120202021202020192012182a a a a a a a a a ++⋅⋅⋅+=+++⋅⋅⋅++, 所以202220202019201811a a a a a a =++⋅⋅⋅+++,故D 错误. 故选:AC.关键点点睛:解决本题的关键是合理利用该数列的性质去证明选项.23.AC 【分析】对四个选项中的数列通项公式分别取前六项,看是否满足题意,得出答案. 【详解】对于选项A ,取前六项得:,满足条件; 对于选项B ,取前六项得:,不满足条件; 对于选项C ,取前六项得:,解析:AC 【分析】对四个选项中的数列通项公式分别取前六项,看是否满足题意,得出答案. 【详解】对于选项A ,1(1)nn a =+-取前六项得:0,2,0,2,0,2,满足条件;对于选项B ,2cos 2n n a π=取前六项得:0,2,0,2,0,2--,不满足条件; 对于选项C ,(1)2sin2n n a π+=取前六项得:0,2,0,2,0,2,满足条件; 对于选项D ,1cos(1)(1)(2)n a n n n π=--+--取前六项得:0,2,2,8,12,22,不满足条件; 故选:AC24.AB 【分析】由题意可得,利用裂项相相消法求和求出,只需对于任意的恒成立,转化为对于任意的恒成立,然后将选项逐一验证即可求解. 【详解】 ,, 则,,,,上述式子累加可得:,, 对于任意的恒成立解析:AB 【分析】 由题意可得11111n n a a n n n n +-=-++,利用裂项相相消法求和求出122n a n n=-<,只需()222122t a t a a --++-+≥对于任意的[]1,2t ∈恒成立,转化为()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,然后将选项逐一验证即可求解.111n n n a a n n++-=,11111(1)1n n a a n n n n n n +∴-==-+++, 则11111n n a a n n n n --=---,12111221n n a a n n n n ---=-----,,2111122a a -=-, 上述式子累加可得:111n a a n n -=-,122n a n n∴=-<,()222122t a t a a ∴--++-+≥对于任意的[]1,2t ∈恒成立,整理得()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,对A ,当4a =-时,不等式()()2540t t +-≤,解集5,42⎡⎤-⎢⎥⎣⎦,包含[]1,2,故A 正确;对B ,当2a =-时,不等式()()2320t t +-≤,解集3,22⎡⎤-⎢⎥⎣⎦,包含[]1,2,故B 正确;对C ,当0a =时,不等式()210t t +≤,解集1,02⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故C 错误; 对D ,当2a =时,不等式()()2120t t -+≤,解集12,2⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故D 错误,故选:AB. 【点睛】本题考查了裂项相消法、由递推关系式求通项公式、一元二次不等式在某区间上恒成立,考查了转化与划归的思想,属于中档题.25.BD 【分析】根据选项求出数列的前项,逐一判断即可. 【详解】解:因为数列的前4项为2,0,2,0, 选项A :不符合题设; 选项B : ,符合题设; 选项C :, 不符合题设; 选项D : ,符合题设解析:BD 【分析】根据选项求出数列的前4项,逐一判断即可. 【详解】解:因为数列{}n a 的前4项为2,0,2,0, 选项A :不符合题设;选项B :01(1)12,a =-+=12(1)10,a =-+=23(1)12,a =-+=34(1)10a =-+=,符合题设;选项C :,12sin2,2a π==22sin 0,a π==332sin22a π==-不符合题设; 选项D :1cos 012,a =+=2cos 10,a π=+=3cos 212,a π=+=4cos310a π=+=,符合题设.故选:BD. 【点睛】本题考查数列的通项公式的问题,考查了基本运算求解能力,属于基础题.26.ABCD 【分析】由题意可得数列满足递推关系,对照四个选项可得正确答案. 【详解】对A ,写出数列的前6项为,故A 正确; 对B ,,故B 正确; 对C ,由,,,……,,可得:.故是斐波那契数列中的第解析:ABCD 【分析】由题意可得数列{}n a 满足递推关系12211,1,(3)n n n a a a a a n --===+≥,对照四个选项可得正确答案. 【详解】对A ,写出数列的前6项为1,1,2,3,5,8,故A 正确; 对B ,71123581333S =++++++=,故B 正确;对C ,由12a a =,342a a a =-,564a a a =-,……,201920202018a a a =-, 可得:135********a a a a a +++⋅⋅⋅+=.故1352019a a a a +++⋅⋅⋅+是斐波那契数列中的第2020项.对D ,斐波那契数列总有21n n n a a a ++=+,则2121a a a =,()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,……,()220182018201920172018201920172018a a a a a a a a =-=-,220192019202020192018a a a a a =-2222123201920192020a a a a a a +++⋅⋅⋅⋅⋅⋅+=,故D 正确;故选:ABCD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,考查方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意递推关系的灵活转换.27.AD 【分析】先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求,最后根据和项与通项关系得. 【详解】因此数列为以为首项,为公差的等差数列,也是递增数列,即D 正确;解析:AD 【分析】先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求S n ,最后根据和项与通项关系得n a . 【详解】11140(2),40n n n n n n n a S S n S S S S ---+=≥∴-+= 11104n n n S S S -≠∴-= 因此数列1{}n S 为以114S =为首项,4为公差的等差数列,也是递增数列,即D 正确; 所以1144(1)44n n n n S S n=+-=∴=,即A 正确; 当2n ≥时111144(1)4(1)n n n a S S n n n n -=-=-=--- 所以1,141,24(1)n n a n n n ⎧=⎪⎪=⎨⎪-≥-⎪⎩,即B ,C 不正确;故选:AD 【点睛】本题考查由和项求通项、等差数列定义与通项公式以及数列单调性,考查基本分析论证与求解能力,属中档题.28.BC 【分析】由已知条件列方程组,求出公差和首项,从而可求出通项公式和前项和公式 【详解】解:设等差数列的公差为, 因为,, 所以,解得, 所以, , 故选:BC解析:BC 【分析】由已知条件列方程组,求出公差和首项,从而可求出通项公式和前n 项和公式 【详解】解:设等差数列{}n a 的公差为d , 因为30S =,46a =,所以113230236a d a d ⨯⎧+=⎪⎨⎪+=⎩,解得133a d =-⎧⎨=⎩, 所以1(1)33(1)36n a a n d n n =+-=-+-=-,21(1)3(1)393222n n n n n n nS na d n ---=+=-+=, 故选:BC29.BD 【分析】由等差数列下标和性质结合前项和公式,求出,可判断C ,D ,由等差数列基本量运算,可得公差,判断出A ,B . 【详解】 因为, 所以.因为,,所以公差. 故选:BD解析:BD 【分析】由等差数列下标和性质结合前n 项和公式,求出9S ,可判断C ,D ,由等差数列基本量运算,可得公差,判断出A ,B . 【详解】因为1937538a a a a +=+=+=,所以()1999983622a a S +⨯===. 因为35a =,73a =,所以公差731732a a d -==--. 故选:BD30.BC【分析】设公差d 不为零,由,解得,然后逐项判断.【详解】设公差d 不为零,因为,所以,即,解得,,故A 错误;,故B 正确;若,解得,,故C 正确;D 错误;故选:BC解析:BC【分析】设公差d 不为零,由38a a =,解得192a d =-,然后逐项判断. 【详解】设公差d 不为零, 因为38a a =, 所以1127a d a d +=+,即1127a d a d +=--, 解得192a d =-, 11191111551155022S a d d d d ⎛⎫=+=⨯-+=≠ ⎪⎝⎭,故A 错误; ()()()()()()221101110910,10102222n n n n n n d d na d n n n a n n S S d ----=+=-=-+=-,故B 正确; 若11191111551155022S a d d d d ⎛⎫=+=⨯-+=> ⎪⎝⎭,解得0d >,()()22510525222n d d d n n S n S =-=--≥,故C 正确;D 错误; 故选:BC 31.AD【分析】利用等差数列的通项公式可以求,,即可求公差,然后根据等差数列的性质判断四个选项是否正确.【详解】因为,所以 ,因为,所以,所以等差数列公差,所以是递减数列,故最大,选项A解析:AD【分析】利用等差数列的通项公式可以求70a >,80a <,即可求公差0d <,然后根据等差数列的性质判断四个选项是否正确.【详解】因为67S S <,所以7670S S a -=> ,因为78S S >,所以8780S S a -=<,所以等差数列{}n a 公差870d a a =-<,所以{}n a 是递减数列,故1a 最大,选项A 正确;选项B 不正确;10345678910770S S a a a a a a a a -=++++++=>,所以310S S ≠,故选项C 不正确;当8n ≥时,80n a a ≤<,即0n a <,故选项D 正确;故选:AD【点睛】本题主要考查了等差数列的性质和前n 项和n S ,属于基础题.32.AD【分析】利用求出数列的通项公式,可对A ,B ,D 进行判断,对进行配方可对C 进行判断【详解】解:当时,,当时,,当时,满足上式,所以,由于,所以数列为首项为,公差为2的等差数列,因解析:AD【分析】利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求出数列的通项公式,可对A ,B ,D 进行判断,对25,n S n n =-进行配方可对C 进行判断【详解】解:当1n =时,11154a S ==-=-,当2n ≥时,2215[(1)5(1)]26n n n a S S n n n n n -=-=-----=-,当1n =时,14a =-满足上式,所以26n a n =-,由于()122n n a a n --=≥,所以数列{}n a 为首项为4-,公差为2的等差数列, 因为公差大于零,所以{}n a 为单调递增数列,所以A ,D 正确,B 错误, 由于225255()24n S n n n =-=--,而n ∈+N ,所以当2n =或3n =时,n S 取最小值,且最小值为6-,所以C 错误,故选:AD【点睛】此题考查,n n a S 的关系,考查由递推式求通项并判断等差数列,考查等差数列的单调性和前n 项和的最值问题,属于基础题33.ACD【分析】由已知得,又,所以,可判断A ;由已知得出,且,得出时,,时,,又,可得出在上单调递增,在上单调递增,可判断B ;由,可判断C ;判断 ,的符号, 的单调性可判断D ;【详解】由已知解析:ACD【分析】由已知得()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,可判断A ;由已知得出2437d -<<-,且()12+3n a n d =-,得出[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d =-,可得出1na 在1,6n n N 上单调递增,1n a 在7n n N ,上单调递增,可判断B ;由()313117713+12203213a a a S a ⨯==<=,可判断C ;判断 n a ,n S 的符号, n a 的单调性可判断D ;【详解】由已知得311+212,122d a a a d ===-,()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,故A 正确;由7161671+612+40+512+3>0+2+1124+7>0a a d d a a d d a a a d d ==<⎧⎪==⎨⎪==⎩,解得2437d -<<-,又()()3+312+3n a n d n d a =-=-,当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d=-,所以[]1,6n ∈时,1>0na ,7n ≥时,10n a <, 所以1n a 在1,6n n N 上单调递增,1n a 在7n n N ,上单调递增,所以数列1n a ⎧⎫⎨⎬⎩⎭不是递增数列,故B 不正确; 由于()313117713+12203213a a a S a ⨯==<=,而120S >,所以0n S <时,n 的最小值为13,故C 选项正确 ;当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,当[]1,12n ∈时,>0n S ,13n ≥时,0n S <,所以当[]7,12n ∈时,0n a <,>0n S ,0n nS a <,[]712n ∈,时,n a 为递增数列,n S 为正数且为递减数列,所以数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项,故D 正确; 【点睛】本题考查等差数列的公差,项的符号,数列的单调性,数列的最值项,属于较难题.34.AD先根据题意得,,再结合等差数列的性质得,,,中最大,,即:.进而得答案.【详解】解:根据等差数列前项和公式得:,所以,,由于,,所以,,所以,中最大,由于,所以,即:解析:AD【分析】先根据题意得1110a a +>,1120a a +<,再结合等差数列的性质得60a >,70a <,0d <,{}n S 中6S 最大,49a a <-,即:49a a <.进而得答案.【详解】解:根据等差数列前n 项和公式得:()111111102a a S +=>,()112121202a a S +=< 所以1110a a +>,1120a a +<,由于11162a a a +=,11267a a a a +=+,所以60a >,760a a <-<,所以0d <,{}n S 中6S 最大,由于11267490a a a a a a +=+=+<,所以49a a <-,即:49a a <.故AD 正确,BC 错误.故选:AD.【点睛】本题考查等差数列的前n 项和公式与等差数列的性质,是中档题. 35.ABD【分析】先根据题意可知前9项的和最小,判断出正确;根据题意可知数列为递减数列,则,又,进而可知,判断出不正确;利用等差中项的性质和求和公式可知,,故正确.【详解】根据题意可知数列为递增解析:ABD先根据题意可知前9项的和最小,判断出A 正确;根据题意可知数列为递减数列,则190a >,又181919S S a =-,进而可知1516S S >,判断出C 不正确;利用等差中项的性质和求和公式可知()01179179172171722a a a S a <+⨯⨯===,()1191019101921919022a a a S a +⨯⨯===>,故BD 正确. 【详解】根据题意可知数列为递增数列,90a <,100a >,∴前9项的和最小,故A 正确;()11791791721717022a a a S a +⨯⨯===<,故B 正确; ()1191019101921919022a a a S a +⨯⨯===>,故D 正确; 190a >,181919S S a ∴=-,1819S S ∴<,故C 不正确.故选:ABD .【点睛】本题考查等差数列的综合应用,考查逻辑思维能力和运算能力,属于常考题.。

高三一轮复习第五章 第一节数列的概念与简单表示法

高三一轮复习第五章 第一节数列的概念与简单表示法

课时作业1.在数列{a n }中,a n =n 2-9n -100,则最小的项是( ) A .第4项 B .第5项C .第6项D .第4项或第5项【解析】 ∵a n =(n -92)2-814-100,∴n =4或5时,a n 最小.【答案】 D2.数列{a n }:1,-58,715,-924,…的一个通项公式是( )A .a n =(-1)n +12n -1n 2+n (n ∈N +)B .a n =(-1)n -12n +1n 3+3n (n ∈N +)C .a n =(-1)n +12n -1n 2+2n (n ∈N +)D .a n =(-1)n -12n +1n 2+2n(n ∈N +)【解析】 观察数列{a n }各项,可写成:31×3,-52×4,73×5,-94×6,故选D .【答案】 D3.(2022·福建福州质检)已知数列{a n }满足a 1=1,a n +1=a 2n -2a n +1(n ∈N *),则a 2 019=( )A .1B .0C .2 019D .-2 019【解析】 ∵a 1=1,∴a 2=(a 1-1)2=0,a 3=(a 2-1)2=1,a 4=(a 3-1)2=0,…,可知数列{a n }是以2为周期的数列,∴a 2 019=a 1=1.【答案】 A4.(2022·大庆二模)已知数列{a n }满足:a n ={(3-a )n -3,n ≤7a n -6,n >7(n ∈N *),且数列{a n }是递增数列,则实数a 的取值范围是( )A .(94,3)B .[94,3)C .(1,3)D .(2,3)【解析】 根据题意,a n=f(n)={(3-a)n-3,n≤7a n-6,n>7,n∈N*,要使{a n}是递增数列,必有{3-a>0a>1(3-a)×7-3<a8-6,据此有:{a<3a>1a>2或a<-9,综上可得2<a<3.【答案】 D5.(2022·黄冈模拟)已知数列{a n}的前n项和为S n=n2-2n+2,则数列{a n}的通项公式为( )A.a n=2n-3 B.a n=2n+3C.a n={1,n=12n-3,n≥2D.a n={1,n=12n+3,n≥2【解析】 当n=1时,a1=S1=1,当n≥2时,a n=S n-S n-1=2n-3,由于a1的值不适合上式,故选C.【答案】 C6.(多选)(2022·常州期末)已知数列{a n}中,a1=2,a n+1=1+a n1-a n,使a n=-12的n可以是( )A.2 019 B.2 021C.2 022 D.2 023【解析】 由题意可知,a1=2,a2=-3,a3=-12,a4=13,a5=2,a6=-3,a7=-12,a8=13,可得数列{a n}的周期为4,所以a2 019=a3=-12,a2 021=a1=2,a2 022=a2=-3,a2 023=a3=-12,所以使a n=-12的n可以是2 019,2 023,故答案选AD.【答案】 AD7.(2022·石家庄二模)在数列{a n}中,已知a1=2,a2=7,a n+2等于a n a n+1(n∈N*)的个位数,则a2 015=( )A.8 B.6C.4 D.2【解析】 由题意得a3=4,a4=8,a5=2,a6=6,a7=2,a8=2,a9=4,a10=8.所以数列中的项从第3项开始呈周期性出现,周期为6,故a2 015=a335×6+5=a5=2.【答案】 D8.(多选)已知数列{a n}满足a1=-12,a n+1=11-a n,则下列各数是{a n}的项的有( )A.-2 B.2 3C.32D.3【解析】 ∵数列{a n}满足a1=-12,a n+1=11-a n,∴a2=11-(-12)=23,a3=11-a2=3,a4=11-a3=-12=a1,∴数列{a n}是周期为3的数列,且前3项为-12,23,3,故选BD.【答案】 BD9.(多选)下列四个命题中,正确的有( )A.数列{n+1n}的第k项为1+1kB.已知数列{a n}的通项公式为a n=n2-n-50,n∈N*,则-8是该数列的第7项C.数列3,5,9,17,33,…的一个通项公式为a n=2n-1D.数列{a n}的通项公式为a n=nn+1,n∈N*,则数列{a n}是递增数列【解析】 对于A,数列{n+1n}的第k项为1+1k,A正确;对于B,令n2-n-50=-8,得n=7或n=-6(舍去),B正确;对于C,将3,5,9,17,33,…的各项减去1,得2,4,8,16,32,…,设该数列为{b n},则其通项公式为b n=2n(n∈N*),因此数列3,5,9,17,33,…的一个通项公式为a n=b n+1=2n+1(n∈N*),C错误;对于D,a n=nn+1=1-1n+1,则a n+1-a n=1n+1-1n+2=1(n+1)(n+2)>0,因此数列{a n}是递增数列,D正确.故选ABD.【答案】 ABD10.(2022·太原二模)已知数列{a n}满足a1=1,a n-a n+1=na n a n+1(n∈N*),则a n=________.【解析】 由已知得1a n+1-1a n=n,∴1a n-1a n-1=n-1,1a n-1-1a n-2=n-2,…,1a2-1a1=1,∴1a n -1a1=n (n -1)2,∴1an =n 2-n +22,∴a n =2n 2-n +2.【答案】 2n 2-n +211.在数列{a n }中,a 1=1,对于所有的n ≥2,n ∈N *,都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5=________.【解析】 由题意知a 1·a 2·a 3·…·a n -1=(n -1)2,∴a n =(nn -1)2(n ≥2),∴a 3+a 5=(32)2+(54)2=6116. 【答案】 611612.数列{a n }满足12a 1+122a 2+…+12n a n =2n +5,n ∈N *,则a n =________.【解析】 在12a 1+122a 2+…+12n a n =2n +5中,用n -1代换n 得12a 1+122a 2+…+12n -1a n -1=2(n -1)+5 (n ≥2),两式相减得12n a n =2,a n =2n +1,又12a 1=7,即a 1=14,故a n={14,n =1,2n +1,n ≥2.【答案】 {14,n =1,2n +1,n ≥213.根据下列条件,确定数列{a n }的通项公式. (1)a 1=1,a n +1=3a n +2; (2)a 1=1,a n +1=(n +1)a n ; (3)a 1=2,a n +1=a n +ln (1+1n).【解】 (1)∵a n +1=3a n +2, ∴a n +1+1=3(a n +1), ∴a n +1+1a n +1=3,∴数列{a n +1}为等比数列,公比q =3,又a 1+1=2, ∴a n +1=2·3n -1,∴a n =2·3n -1-1.(2)∵a n +1=(n +1)a n ,∴a n +1an =n +1.∴a nan -1=n ,a n -1a n -2=n -1,…a 3a 2=3,a 2a1=2,a 1=1. 累乘可得,a n =n ×(n -1)×(n -2)×…×3×2×1=n! 故a n =n!(3)∵a n +1=a n +ln (1+1n ),∴a n +1-a n =ln (1+1n )=ln n +1n.∴a n -a n -1=ln nn -1,a n -1-a n -2=ln n -1n -2,…a 2-a 1=ln 21,∴a n -a 1=ln n n -1+ln n -1n -2+…+ln 21=ln n .又a 1=2,∴a n =ln n +2.14.设数列{a n }的前n 项和为S n .已知a 1=a (a ∈R 且a ≠3),a n +1=S n +3n ,n ∈N *. (1)设b n =S n -3n ,求数列{b n }的通项公式; (2)若a n +1≥a n ,n ∈N *,求a 的取值范围. 【解】 (1)依题意,S n +1-S n =a n +1=S n +3n , 即S n +1=2S n +3n ,由此得S n +1-3n +1=2(S n -3n ), 又S 1-31=a -3(a ≠3),故数列{S n -3n }是首项为a -3,公比为2的等比数列, 因此,所求通项公式为b n =S n -3n =(a -3)2n -1,n ∈N *. (2)由(1)知S n =3n +(a -3)2n -1,n ∈N *, 于是,当n ≥2时,a n =S n -S n -1=3n +(a -3)2n -1-3n -1-(a -3)2n -2=2×3n -1+(a -3)2n -2, a n +1-a n =4×3n -1+(a -3)2n -2 =2n -2[12·(32)n -2+a -3],当n≥2时,a n+1≥a n 12·(32)n-2+a-3≥0 a≥-9.又a2=a1+3>a1.综上,所求a的取值范围是[-9,3)∪(3,+∞).。

高一数列的概念及简单表示方法知识点+例题+练习 含答案

高一数列的概念及简单表示方法知识点+例题+练习 含答案

1.数列的定义按照一定次序排列的一列数称为数列,数列中的每个数都叫做这个数列的项. 2.数列的分类 分类原则 类型 满足条件 按项数分类 有穷数列 项数有限 无穷数列 项数无限按项与项间的大小关系分类 递增数列 a n +1__>__a n 其中n ∈N *递减数列 a n +1__<__a n 常数列 a n +1=a n按其他标准分类有界数列 存在正数M ,使|a n |≤M 摆动数列从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列数列有三种表示法,它们分别是列表法、图象法和解析法. 4.数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个公式来表示,那么这个公式叫做这个数列的通项公式.5.已知数列{a n }的前n 项和S n ,则a n =⎩⎪⎨⎪⎧S 1 , n =1,S n -S n -1, n ≥2.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)所有数列的第n 项都能使用公式表达.( × )(2)根据数列的前几项归纳出数列的通项公式可能不止一个.( √ )(3)1,1,1,1,…,不能构成一个数列.( × )(4)任何一个数列不是递增数列,就是递减数列.( × )(5)如果数列{a n }的前n 项和为S n ,则对∀n ∈N *,都有a n +1=S n +1-S n .( √ ) (6)在数列{a n }中,对于任意正整数m ,n ,a m +n =a mn +1,若a 1=1,则a 2=2.( √ )1.已知数列{a n }中,a 1=1,1a n +1=1a n +3 (n ∈N *),则a 10=________. 答案128解析 由题意得1a n +1-1a n=3.∴1a 2-1a 1=3,1a 3-1a 2=3,1a 4-1a 3=3,1a 5-1a 4=3,…,1a 10-1a 9=3,对递推式叠加得1a 10-1a 1=27,故a 10=128.2.把1,3,6,10,15,21,…这些数叫做三角形数,这是因为用这些数目的点可以排成一个正三角形(如图).则第7个三角形数是________. 答案 28解析 根据三角形数的增长规律可知第七个三角形数是1+2+3+4+5+6+7=28. 3.数列{a n }的前n 项和记为S n ,a 1=1,a n +1=2S n +1 (n ≥1,n ∈N *),则数列{a n }的通项公式是__________. 答案 a n =3n -1解析 由a n +1=2S n +1可得a n =2S n -1+1 (n ≥2),两式相减得a n +1-a n =2a n ,即a n +1=3a n (n ≥2).又a 2=2S 1+1=3,a 3=3·a 2=32·a 1=32, a 4=3a 3=33… a n =3a n -1=3n -1.4.(教材改编)根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n =________.答案 5n -45.已知数列{a n }的前n 项和S n =n 2+1,则a n =________.答案 ⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2解析 当n =1时,a 1=S 1=2,当n ≥2时, a n =S n -S n -1=n 2+1-[(n -1)2+1]=2n -1,故a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2.题型一 由数列的前几项求数列的通项公式例1 (1)数列0,23,45,67,…的一个通项公式为________.①a n =n -1n +1(n ∈N *) ②a n =n -12n +1(n ∈N *)③a n =2(n -1)2n -1(n ∈N *) ④a n =2n 2n +1(n ∈N *)(2)数列{a n }的前4项是32,1,710,917,则这个数列的一个通项公式是a n =________.答案 (1)③ (2)2n +1n 2+1解析 (1)注意到分母0,2,4,6都是偶数,对照所给项排除即可.(2)数列{a n }的前4项可变形为2×1+112+1,2×2+122+1,2×3+132+1,2×4+142+1,故a n =2n +1n 2+1.思维升华 根据所给数列的前几项求其通项时,需仔细观察分析,抓住其几方面的特征:分式中分子、分母的各自特征;相邻项的联系特征;拆项后的各部分特征;符号特征.应多进行对比、分析,从整体到局部多角度观察、归纳、联想.根据数列的前几项,写出下列各数列的一个通项公式.(1)-1,7,-13,19,…; (2)0.8,0.88,0.888,…;(3)12,14,-58,1316,-2932,6164,…. 解 (1)数列中各项的符号可通过(-1)n 表示,从第2项起,每一项的绝对值总比它的前一项的绝对值大6,故通项公式为a n =(-1)n (6n -5). (2)数列变为89⎝⎛⎭⎫1-110,89⎝⎛⎭⎫1-1102,89⎝⎛⎭⎫1-1103,…, 故a n =89⎝⎛⎭⎫1-110n . (3)各项的分母分别为21,22,23,24,…,易看出第2,3,4项的分子分别比分母小3. 因此把第1项变为-2-32,原数列化为-21-321,22-322,-23-323,24-324,…,故a n =(-1)n 2n -32n .题型二 由数列的前n 项和求数列的通项公式例2 设数列{a n }的前n 项和为S n ,数列{S n }的前n 项和为T n ,满足T n =2S n -n 2,n ∈N *. (1)求a 1的值;(2)求数列{a n }的通项公式. 解 (1)令n =1时,T 1=2S 1-1,因为T 1=S 1=a 1,所以a 1=2a 1-1,所以a 1=1. (2)n ≥2时,T n -1=2S n -1-(n -1)2, 则S n =T n -T n -1=2S n -n 2-[2S n -1-(n -1)2] =2(S n -S n -1)-2n +1=2a n -2n +1. 因为当n =1时,a 1=S 1=1也满足上式, 所以S n =2a n -2n +1(n ≥1),当n ≥2时,S n -1=2a n -1-2(n -1)+1, 两式相减得a n =2a n -2a n -1-2,所以a n =2a n -1+2(n ≥2),所以a n +2=2(a n -1+2), 因为a 1+2=3≠0,所以数列{a n +2}是以3为首项,公比为2的等比数列. 所以a n +2=3×2n -1,所以a n =3×2n -1-2, 当n =1时也成立, 所以a n =3×2n -1-2.思维升华 数列的通项a n 与前n 项和S n 的关系是a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.当n =1时,a 1若适合S n -S n -1,则n =1的情况可并入n ≥2时的通项a n ;当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示.(1)已知数列{a n }的前n 项和S n =n +1n +2,则a 4=________.(2)已知数列{a n }的前n 项和S n =3n 2-2n +1,则其通项公式为________________.答案 (1)130 (2)a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2解析 (1)a 4=S 4-S 3 =56-45=130. (2)当n =1时,a 1=S 1=3×12-2×1+1=2; 当n ≥2时,a n =S n -S n -1=3n 2-2n +1-[3(n -1)2-2(n -1)+1] =6n -5,显然当n =1时,不满足上式.故数列的通项公式为a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2.题型三 由数列的递推关系求通项公式例3 (1)设数列{a n }中,a 1=2,a n +1=a n +n +1,则通项a n =________. (2)数列{a n }中,a 1=1,a n +1=3a n +2,则它的一个通项公式为a n =________. 答案 (1)n (n +1)2+1 (2)2×3n -1-1解析 (1)由题意得,当n ≥2时, a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =2+(2+3+…+n )=2+(n -1)(2+n )2=n (n +1)2+1.又a 1=2=1×(1+1)2+1,符合上式,因此a n =n (n +1)2+1.(2)方法一 (累乘法)a n +1=3a n +2,即a n +1+1=3(a n +1), 即a n +1+1a n +1=3, 所以a 2+1a 1+1=3,a 3+1a 2+1=3,a 4+1a 3+1=3,…,a n +1+1a n +1=3.将这些等式两边分别相乘得a n +1+1a 1+1=3n .因为a 1=1,所以a n +1+11+1=3n ,即a n +1=2×3n -1(n ≥1), 所以a n =2×3n -1-1(n ≥2), 又a 1=1也满足上式,故数列{a n }的一个通项公式为a n =2×3n -1-1. 方法二 (迭代法) a n +1=3a n +2,即a n +1+1=3(a n +1)=32(a n -1+1)=33(a n -2+1) =…=3n (a 1+1)=2×3n (n ≥1), 所以a n =2×3n -1-1(n ≥2), 又a 1=1也满足上式,故数列{a n }的一个通项公式为a n =2×3n -1-1.思维升华 已知数列的递推关系,求数列的通项时,通常用累加、累乘、构造法求解. 当出现a n =a n -1+m 时,构造等差数列;当出现a n =xa n -1+y 时,构造等比数列;当出现a n =a n -1+f (n )时,用累加法求解;当出现a na n -1=f (n )时,用累乘法求解.(1)已知数列{a n }满足a 1=1,a n =n -1n·a n -1(n ≥2),则a n =________.(2)已知数列{a n }的前n 项和为S n ,且S n =2a n -1(n ∈N *),则a 5=________. 答案 (1)1n(2)16解析 (1)∵a n =n -1n a n -1 (n ≥2),∴a n -1=n -2n -1a n -2,…,a 2=12a 1.以上(n -1)个式子相乘得 a n =a 1·12·23·…·n -1n =a 1n =1n .当n =1时也满足此等式,∴a n =1n .(2)当n =1时,S 1=2a 1-1,∴a 1=1. 当n ≥2时,S n -1=2a n -1-1, ∴a n =2a n -2a n -1,∴a n =2a n -1. ∴{a n }是等比数列且a 1=1,q =2, 故a 5=a 1×q 4=24=16.题型四 数列的性质命题点1 数列的单调性例4 已知数列{a n }的前n 项和S n =n 2+1,数列{b n }满足b n =2a n +1,且前n 项和为T n ,设c n =T 2n +1-T n .(1)求数列{b n }的通项公式; (2)判断数列{c n }的增减性.解 (1)a 1=2,a n =S n -S n -1=2n -1(n ≥2).∵b n =2a n +1,∴b n =⎩⎨⎧23,n =1,1n , n ≥2,n ∈N *.(2)∵c n =b n +1+b n +2+…+b 2n +1 =1n +1+1n +2+…+12n +1, ∴c n +1-c n =12n +2+12n +3-1n +1=12n +3-12n +2=-1(2n +3)(2n +2)<0, ∴c n +1<c n .∴数列{c n }为递减数列. 命题点2 数列的周期性例5 数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=_____________________________________.答案 12解析 ∵a n +1=11-a n,∴a n +1=11-a n =11-11-a n -1=1-a n -11-a n -1-1=1-a n -1-a n -1=1-1a n -1=1-111-a n -2=1-(1-a n -2)=a n -2, ∴周期T =(n +1)-(n -2)=3. ∴a 8=a 3×2+2=a 2=2. 而a 2=11-a 1,∴a 1=12.命题点3 数列的最值例6 数列{a n }的通项a n =nn 2+90,则数列{a n }中的最大项的值是________.答案119解析 令f (x )=x +90x (x >0),运用基本不等式得,f (x )≥290当且仅当x =310时等号成立.因为a n =1n +90n ,所以1n +90n ≤1290,由于n ∈N *,不难发现当n =9或10时,a n =119最大.思维升华 1.解决数列的单调性问题可用以下三种方法(1)用作差比较法,根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列或是常数列. (2)用作商比较法,根据a n +1a n (a n >0或a n <0)与1的大小关系进行判断.(3)结合相应函数的图象直观判断. 2.解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值. 3.数列的最值可以利用数列的单调性或求函数最值的思想求解.(1)数列{a n }满足a n +1=⎩⎨⎧2a n ,0≤a n ≤12,2a n-1,12<a n<1,a 1=35,则数列的第2 015项为________.(2)设a n =-3n 2+15n -18,则数列{a n }中的最大项的值是________. 答案 (1)25(2)0解析 (1)由已知可得,a 2=2×35-1=15,a 3=2×15=25,a 4=2×25=45,a 5=2×45-1=35,∴{a n }为周期数列且T =4, ∴a 2 015=a 3=25.(2)∵a n =-3⎝⎛⎭⎫n -522+34,由二次函数性质,得当n =2或3时,a n 最大,最大值为0.5.数列中的新定义问题典例 (1)将石子摆成如图所示的梯形形状,称数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列的第2 014项与5的差,即a 2 014-5=__________.(用式子表示)(2)对于数列{x n },若对任意n ∈N *,都有x n +x n +22<x n +1成立,则称数列{x n }为“减差数列”.设b n =2t -tn -12n -1,若数列b 3,b 4,b 5,…是“减差数列”,则实数t 的取值范围是____________.思维点拨 (1)观察图形,易得a n -a n -1=n +2(n ≥2)可利用累加法求解.(2)由“减差数列”的定义,可得关于b n 的不等式,把b n 的通项公式代入,化归为不等式恒成立问题求解.解析 (1)因为a n -a n -1=n +2(n ≥2),a 1=5,所以a 2 014=(a 2 014-a 2 013)+(a 2 013-a 2 012)+…+(a 2-a 1)+a 1=2 016+2 015+…+4+5 =(2 016+4)×2 0132+5=1 010×2 013+5,所以a 2 014-5=1 010×2 013.(2)由数列b 3,b 4,b 5,…是“减差数列”, 得b n +b n +22<b n +1(n ≥3), 即t -tn -12n +t -t (n +2)-12n +2<2t -t (n +1)-12n ,即tn -12n +t (n +2)-12n +2>t (n +1)-12n ,化简得t (n -2)>1. 当n ≥3时,若t (n -2)>1恒成立,则t >1n -2恒成立,又当n ≥3时,1n -2的最大值为1,则t 的取值范围是(1,+∞).答案 (1)1 010×2 013 (2)(1,+∞)温馨提醒 解决数列的新定义问题要做到:(1)准确转化:解决数列新定义问题时,一定要读懂新定义的本质含义,将题目所给定义转化成题目要求的形式,切忌同已有概念或定义相混淆.(2)方法选取:对于数列新定义问题,搞清定义是关键,仔细认真地从前几项(特殊处、简单处)体会题意,从而找到恰当的解决方法.[方法与技巧]1.求数列通项或指定项.通常用观察法(对于交错数列一般用(-1)n 或(-1)n +1来区分奇偶项的符号);已知数列中的递推关系,一般只要求写出数列的前几项,若求通项可用归纳、猜想和转化的方法.2.强调a n 与S n 的关系:a n =⎩⎪⎨⎪⎧S 1, n =1,S n -S n -1, n ≥2. 3.已知递推关系求通项:对这类问题的要求不高,但试题难度较难把握.一般有两种常见思路:(1)算出前几项,再归纳、猜想;(2)利用累加法或累乘法可求数列的通项公式.4.数列的性质可利用函数思想进行研究.[失误与防范]1.数列a n =f (n )和函数y =f (x )定义域不同,其单调性也有区别:y =f (x )是增函数是a n =f (n )是递增数列的充分不必要条件.2.数列的通项公式可能不存在,也可能有多个.3.由a n =S n -S n -1求得的a n 是从n =2开始的,要对n =1时的情况进行验证.A 组 专项基础训练(时间:40分钟)1.数列23,-45,67,-89,…的第10项是________. 答案 -2021解析 所给数列呈现分数形式,且正负相间,求通项公式时,我们可以把每一部分进行分解:符号、分母、分子.很容易归纳出数列{a n }的通项公式a n =(-1)n +1·2n 2n +1,故a 10=-2021. 2.数列{a n }的前n 项积为n 2,那么当n ≥2时,a n =__________.答案 n 2(n -1)2解析 设数列{a n }的前n 项积为T n ,则T n =n 2,当n ≥2时,a n =T n T n -1=n 2(n -1)2. 3.若S n 为数列{a n }的前n 项和,且S n =n n +1,则1a 5=________. 答案 30解析 当n ≥2时,a n =S n -S n -1=n n +1-n -1n =1n (n +1),所以1a 5=5×6=30. 4.若数列{a n }满足:a 1=19,a n +1=a n -3(n ∈N *),则数列{a n }的前n 项和数值最大时,n 的值为________.答案 7解析 ∵a n +1-a n =-3,∴数列{a n }是以19为首项,-3为公差的等差数列,∴a n =19+(n -1)×(-3)=22-3n .∵a 7=22-21=1>0,a 8=22-24=-2<0,∴n =7时,数列{a n }的前n 项和最大.5.已知数列{a n }的通项公式为a n =n 2-2λn (n ∈N *),则“λ<1”是“数列{a n }为递增数列”的______________条件.答案 充分不必要解析 若数列{a n }为递增数列,则有a n +1-a n >0,即2n +1>2λ对任意的n ∈N *都成立,于是有3>2λ,λ<32.由λ<1可推得λ<32,但反过来,由λ<32不能得到λ<1,因此“λ<1”是“数列{a n }为递增数列”的充分不必要条件.6.(2015·大连双基测试)已知数列{a n }的前n 项和S n =n 2+2n +1(n ∈N *),则a n =________.答案 ⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2 解析 当n ≥2时,a n =S n -S n -1=2n +1,当n =1时,a 1=S 1=4≠2×1+1,因此a n =⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2. 7.数列{a n }中,已知a 1=1,a 2=2,a n +1=a n +a n +2(n ∈N *),则a 7=________. 答案 1解析 由已知a n +1=a n +a n +2,a 1=1,a 2=2,能够计算出a 3=1,a 4=-1,a 5=-2,a 6=-1,a 7=1.8.已知数列{a n }的前n 项和为S n ,S n =2a n -n ,则a n =________. 答案 2n -1解析 当n =1时,S 1=a 1=2a 1-1,得a 1=1,当n ≥2时,a n =S n -S n -1=2a n -n -2a n -1+(n -1),即a n =2a n -1+1,∴a n +1=2(a n -1+1),∴数列{a n +1}是首项为a 1+1=2,公比为2的等比数列,∴a n +1=2·2n -1=2n ,∴a n =2n -1.9.数列{a n }的通项公式是a n =n 2-7n +6.(1)这个数列的第4项是多少?(2)150是不是这个数列的项?若是这个数列的项,它是第几项?(3)该数列从第几项开始各项都是正数?解 (1)当n =4时,a 4=42-4×7+6=-6.(2)令a n =150,即n 2-7n +6=150,解得n =16或n =-9(舍去),即150是这个数列的第16项.(3)令a n =n 2-7n +6>0,解得n >6或n <1(舍去).所以从第7项起各项都是正数.10.已知数列{a n }中,a 1=1,前n 项和S n =n +23a n. (1)求a 2,a 3;(2)求{a n }的通项公式.解 (1)由S 2=43a 2得3(a 1+a 2)=4a 2, 解得a 2=3a 1=3.由S 3=53a 3得3(a 1+a 2+a 3)=5a 3, 解得a 3=32(a 1+a 2)=6. (2)由题设知a 1=1.当n ≥2时,有a n =S n -S n -1=n +23a n -n +13a n -1, 整理得a n =n +1n -1a n -1. 于是a 1=1,a 2=31a 1, a 3=42a 2, ……a n -1=n n -2a n -2, a n =n +1n -1a n -1. 将以上n 个等式两端分别相乘,整理得a n =n (n +1)2. 显然,当n =1时也满足上式.综上可知,{a n }的通项公式a n =n (n +1)2. B 组 专项能力提升(时间:20分钟)11.已知数列{a n }满足a 1=33,a n +1-a n n =2,则a n n的最小值为________. 答案 10.5解析 由题意可知a n +1=a n +2n ,由迭代法可得a n =a 1+2[1+2+3+4+…+(n -1)]=n 2-n+33,从而a n n =n +33n -1.当n =6时,a n n取得最小值10.5. 12.数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21=________. 答案 72解析 ∵a n +a n +1=12,a 2=2, ∴a n =⎩⎪⎨⎪⎧-32,n 为奇数,2,n 为偶数.∴S 21=11×⎝⎛⎭⎫-32+10×2=72. 13.定义:称n P 1+P 2+…+P n为n 个正数P 1,P 2,…,P n 的“均倒数”.若数列{a n }的前n 项的“均倒数”为12n -1,则数列{a n }的通项公式为____________. 答案 a n =4n -3解析 ∵n a 1+a 2+…+a n =12n -1, ∴a 1+a 2+…+a n n =2n -1, ∴a 1+a 2+…+a n =(2n -1)n ,a 1+a 2+…+a n -1=(2n -3)(n -1)(n ≥2),当n ≥2时,a n =(2n -1)n -(2n -3)(n -1)=4n -3;a 1=1也适合此等式,∴a n =4n -3.14.若数列{n (n +4)(23)n }中的最大项是第k 项,则k =________. 答案 4解析 由题意得⎩⎨⎧ k (k +4)(23)k ≥(k +1)(k +5)(23)k +1,k (k +4)(23)k ≥(k -1)(k +3)(23)k -1,所以⎩⎪⎨⎪⎧k 2≥10,k 2-2k -9≤0,由k ∈N *可得k =4. 15.(2015·开封模拟)已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R 且a ≠0). (1)若a =-7,求数列{a n }中的最大项和最小项的值;(2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围.解 (1)∵a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0), 又a =-7,∴a n =1+12n -9(n ∈N *).结合函数f (x )=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *).∴数列{a n }中的最大项为a 5=2,最小项为a 4=0.(2)a n =1+1a +2(n -1)=1+12n -2-a 2, 已知对任意的n ∈N *,都有a n ≤a 6成立,结合函数f (x )=1+12x -2-a 2的单调性, 可知5<2-a 2<6,即-10<a <-8.。

数列概念与简单表示法(全面知识点+精选例题+习题附答案)精编材料pdf版

数列概念与简单表示法(全面知识点+精选例题+习题附答案)精编材料pdf版

一、数列的概念与简单表示法1.数列的相关概念定义:按照一定顺序排列的一列数叫数列.(例如:1,3,5,7,9…).项与项数:数列中每一个数叫做数列的项,排在第一位的叫做第一项(通常叫首项),以此类推,排在第n 位的叫做数列的第n 项. 表示:数列一般形式可以写成:123,,,,,,n a a a a 简记为{}n a .2.数列的分类按照数列中项数有限和无限分为:有穷数列,无穷数列. 按照数列的项的变化趋势分类:递增数列(1n n a a +>);递减数列(1n n a a +<);常数列(1n n a a +=);摆动数列(1n a +与n a 随着n 的变化大小关系不确定).例如:1,3,5,7,9…(无穷递增数列),10,7,4,1,-2,…,-14(有穷递减数列),2,2,2,2,…(常数列),1,-1,1,-1,1…(摆动数列). 3.数列与函数的关系数列可以看成以正整数*N (或它的有限子集{1,2,,}n )为定义域的函数()n a f n =,当自变量从小到大依次取值时,所对应的一列函数值. 4.数列的表示方法通项公式:如果数列{}n a 的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.例如:1,3,5,7,9…可表示为21n a n =-,n ∈*N .注意:①不是所有的数列都能写出它的通项公式;②对于一个确定的数列,通项公式不一定唯一.直接列出:123,,,,,.n a a a a图像表示:在平面直角坐标系中,数列可以用一群孤立的点(,)n n a 表示.递推公式:给出数列的第一项(或前几项),再给出后面的项用前面的项来表示的式子,这种表示数列的方法叫递推公式法. 例如:数列{}n a 中,有11a =,111n n a a -=+,根据此递推公式,我们就可以依次写出数列中的每一项. 5.n a 与n S 的关系数列前n 项和记为n S ,则1231n n n S a a a a a -=+++++,11231n n S a a a a --=++++,两式相减,得1n n n a S S -=-,由于n 只能取正整数,当1n =时1n S -不存在,不能使用上式,但当1n =时很明显有11a S =,故我们得到通项n a 与前n 项和n S 的关系:11(1)(2)n nn S n a S S n -=⎧=⎨-≥⎩ .3练习题:21n-1(2)=+,则220是这个数列的(n n2n答案解析:,n,99,999,再把这个数列的每一项乘以5,得到令11n na a +≥,解得6n ≤ 即6n ≤时,1n n a a +≥,6n >时,1n n a a +< 故6a 或7a 最大. 答案:6或7 15解析:函数对称轴为297.254-=-,n ∈*N ,故7n =时最大,带入得7108a =. 答案:B16解析:由题意可知1n n a a +>,即22(1)(1)n n n n λλ+++>+ 解得21n λ>--恒成立,21n --在1n =时取得最大值3- 故3λ>-. 答案:D17解析:54554(21)(21)321616a S S =-=---=-=. 答案:16 18解析:1n n S n =+,则443431413120a S S =-=-=++,420a ∴=. 答案:C19解析:1n =时,113214a S ==+-=2n ≥时,221321[3(1)2(1)1]61n n n a S S n n n n n -=-=+---+--=-此式不适合1n =时取值.答案:4(1)61(2)n n a n n =⎧=⎨-≥⎩.数学浪子整理制作,侵权必究。

数列的概念与简单表示法专题练习(含参考答案)

数列的概念与简单表示法专题练习(含参考答案)

数学 数列的概念与简单表示法一、选择题1.数列{a n }为12,3,112,8,212,…,则此数列的通项公式可能是( )A .a n =5n -42B .a n =3n -22C .a n =6n -52D .a n =10n -922.数列23,-45,67,-89,…的第10项是( )A .-1617B .-1819C .-2021D .-22233.已知数列2,5,22,11,…,则25是这个数列的( ) A .第6项 B .第7项 C .第19项D .第11项4.已知数列{a n }中,a 1=1,若a n =2a n -1+1(n ≥2),则a 5的值是( ) A .7 B .5 C .30D .315.若S n 为数列{a n }的前n 项和,且S n =nn +1,则1a 5等于( ) A .56 B .65 C .130D .306.若数列{a n }满足a 1=12,a n =1-1a n -1(n ≥2且n ∈N *),则a 2 019等于( )A .-1B .12 C .1D .27.已知数列{a n }的前n 项和S n =n 2-2n +2,则数列{a n }的通项公式为( ) A .a n =2n -3B .a n =2n +3C .a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n ≥2D .a n =⎩⎪⎨⎪⎧1,n =1,2n +3,n ≥28.设数列{a n }的前n 项和为S n ,且S n =2(a n -1),则a n =( ) A .2n B .2n -1 C .2nD .2n-1二、填空题9.已知数列{a n }的前n 项和S n =3n+1,则数列的通项公式a n =. 10.在数列{a n }中,a 1=2,a n +1=a n +1nn +1,则数列a n =. 11.设数列{a n }的前n 项和为S n ,若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=____,S 5=_____. 12.已知数列{a n }是递减数列,且对任意的正整数n ,a n =-n 2+2λn 恒成立,则实数λ的取值围为.三、解答题13. 已知数列{a n }中,a 1=1,前n 项和S n =n +23a n .(1)求a 2,a 3;(2)求数列{a n }的通项公式.14.已知S n 为数列{a n }的前n 项和,且2S n =3a n -2(n ∈N *). (1)求a n 和S n .(2)若b n =log 3(S n +1),求数列{b 2n }的前n 项和T n .1.已知数列{a n }中,a 1=1,a 2=2,a n +1=a n +a n +2(n ∈N *),则a 5的值为( ) A .-2 B .-1 C .1D .22.若数列{a n }的前n 项和S n 满足:S n +S m =S n +m ,且a 1=1,则a 10=( ) A .55 B .10 C .9D .13.数列{a n }满足a n +1=⎩⎪⎨⎪⎧2a n ,0≤a n <12,2a n-1,12≤a n<1,若a 1=25,则a2019等于( )A .15 B .25 C .35D .454.已知数列{a n }满足a n +1=a n +2n ,且a 1=33,则a n n的最小值为( ) A .21 B .10 C .172D .2125.已知函数f (x )=2x-2-x,数列{a n }满足f (log 2a n )=-2n . (1)求数列{a n }的通项公式; (2)求证:数列{a n }是递减数列.【参考答案】一、选择题1.数列{a n }为12,3,112,8,212,…,则此数列的通项公式可能是( A )A .a n =5n -42B .a n =3n -22C .a n =6n -52D .a n =10n -92[解析] 解法一:数列{a n }为12,62,112,162,212,…,其分母为2,分子是首项为1,公差为5的等差数列,故其通项公式为a n =5n -42.解法二:当n =2时,a 2=3,而选项B 、C 、D ,都不符合题意,故选A . 2.数列23,-45,67,-89,…的第10项是( C )A .-1617B .-1819C .-2021D .-2223[解析]a n =(-1)n +12n 2n +1,∴a 10=-2021,选C 项. 3.已知数列2,5,22,11,…,则25是这个数列的( B ) A .第6项 B .第7项 C .第19项D .第11项[解析] 数列即:2,5,8,11,…,据此可得数列的通项公式为:a n =3n -1,由3n -1=25,解得:n =7,即25是这个数列的第7项.4.已知数列{a n }中,a 1=1,若a n =2a n -1+1(n ≥2),则a 5的值是( D )A .7B .5C .30D .31[解析] 由题意得a 2=2a 1+1=3,a 3=2×3+1=7,a 4=2×7+1=15,a 5=2×15+1=31. 5.若S n 为数列{a n }的前n 项和,且S n =nn +1,则1a 5等于( D ) A .56 B .65 C .130D .30[解析]∵当n ≥2时,a n =S n -S n -1=nn +1-n -1n =1nn +1,∴1a 5=5×(5+1)=30. 6.若数列{a n }满足a 1=12,a n =1-1a n -1(n ≥2且n ∈N *),则a 2 019等于( D )A .-1B .12 C .1D .2[解析]∵a 1=12,a n =1-1a n -1(n ≥2且n ∈N *),∴a 2=1-1a 1=1-112=-1,∴a 3=1-1a 2=1-1-1=2,∴a 4=1-1a 3=1-12=12,…,依此类推,可得a n +3=a n ,∴a 2019=a 672×3+3=a 3=2,故选D .7.已知数列{a n }的前n 项和S n =n 2-2n +2,则数列{a n }的通项公式为( C ) A .a n =2n -3B .a n =2n +3C .a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n ≥2D .a n =⎩⎪⎨⎪⎧1,n =1,2n +3,n ≥2[解析] 解法一:当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=2n -3,由于n =1时a 1的值不适合n ≥2的解析式,故通项公式为a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n ≥2.解法二:当n =1时,a 1=S 1=1,A 、B 选项不合题意.又a 2=S 2-a 1=1,所以D 选项不合题意.8.设数列{a n }的前n 项和为S n ,且S n =2(a n -1),则a n =( C ) A .2n B .2n -1 C .2nD .2n-1[解析] 当n =1时,a 1=S 1=2(a 1-1),可得a 1=2;当n ≥2时,a n =S n -S n -1=2a n -2a n-1,∴a n =2a n -1,∴数列{a n }为等比数列,公比为2,首项为2,∴通项公式为a n =2n.故选C .二、填空题9.已知数列{a n }的前n 项和S n =3n+1,则数列的通项公式a n =⎩⎪⎨⎪⎧4,n =12·3n -1,n ≥2.[解析] 当n =1时,a 1=S 1=3+1=4, 当n ≥2时,a n =S n -S n -1=3n+1-3n -1-1=2·3n -1,显然n =1时,a 1不满足上式,∴a n =⎩⎪⎨⎪⎧4,n =12·3n -1,n ≥2.10.在数列{a n }中,a 1=2,a n +1=a n +1nn +1,则数列a n = 3-1n. [解析] 由题意,得a n +1-a n =1nn +1=1n -1n +1,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=(1n -1-1n )+(1n -2-1n -1)+…+(12-13)+(1-12)+2=3-1n. 11.设数列{a n }的前n 项和为S n ,若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=__1___,S 5=__121___.[解析] 解法一:由⎩⎪⎨⎪⎧a 1+a 2=4,a 2=2a 1+1,解得a 1=1.由a n +1=S n +1-S n =2S n +1,得S n +1=3S n +1,所以S n +1+12=3(S n +12),所以{S n +12}是以32为首项,3为公比的等比数列,所以S n +12=32×3n-1,即S n =3n-12,所以S 5=121.解法二:由⎩⎪⎨⎪⎧a 1+a 2=4a 2=2a 1+1解得⎩⎪⎨⎪⎧a 1=1a 2=3,又a n +1=2S n +1,a n +2=2S n +1+1,两式相减得a n +2-a n +1=2a n +1,即a n +2a n +1=3,又a 2a 1=3,∴{a n }是首项为1,公比为3的等比数列,∴a n +1=3n ,∴S n =3n-12,∴S 5=121.12.已知数列{a n }是递减数列,且对任意的正整数n ,a n =-n 2+2λn 恒成立,则实数λ的取值围为 (-∞,32) .[解析]∵数列{a n }是递减数列,∴a n +1<a n 恒成立.又a n =-n 2+2λn ,∴-(n +1)2+2λ(n +1)<-n 2+2λn 恒成立,即2λ<2n +1恒成立,又n ∈N *,∴λ<32.三、解答题13. 已知数列{a n }中,a 1=1,前n 项和S n =n +23a n .(1)求a 2,a 3;(2)求数列{a n }的通项公式. [解析] (1)因为S n =n +23a n ,且a 1=1,所以S 2=43a 2,即a 1+a 2=43a 2,得a 2=3.由S 3=53a 3,得3(a 1+a 2+a 3)=5a 3,得a 3=6.(2)由题意知a 1=1. 当n ≥2时,有a n =S n -S n -1=n +23a n -n +13a n -1,整理,得a n =n +1n -1a n -1,即a n a n -1=n +1n -1. 所以a 2a 1=3,a 3a 2=42,a 4a 3=53,…,a n a n -1=n +1n -1,将以上n -1个式子的两端分别相乘,得a n a 1=n n +12.所以a n =n n +12(n ≥2).又a 1=1适合上式,故a n =n n +12(n ∈N *).14.已知S n 为数列{a n }的前n 项和,且2S n =3a n -2(n ∈N *). (1)求a n 和S n .(2)若b n =log 3(S n +1),求数列{b 2n }的前n 项和T n . [解析] (1)因为2S n =3a n -2,所以当n =1时,2S 1=3a 1-2,解得a 1=2; 当n ≥2时,2S n -1=3a n -1-2, 所以2S n -2S n -1=3a n -3a n -1, 所以2a n =3a n -3a n -1,即a n =3a n -1,因此数列{a n }是首项为2,公比为3的等比数列, 所以a n =2·3n -1,S n =21-3n1-3=3n-1.(2)因为S n =3n-1,所以b n =log 3(S n +1)=log 33n=n ,b 2n =2n , 所以T n =2+4+6+…+2n =n 2+2n2=n 2+n .1.已知数列{a n }中,a 1=1,a 2=2,a n +1=a n +a n +2(n ∈N *),则a 5的值为( A )A .-2B .-1C .1D .2[解析] 由题意可得,a n +2=a n +1-a n ,则a 3=a 2-a 1=2-1=1,a 4=a 3-a 2=1-2=-1,a 5=a 4-a 3=-1-1=-2.故选A .2.若数列{a n }的前n 项和S n 满足:S n +S m =S n +m ,且a 1=1,则a 10=( D ) A .55 B .10 C .9D .1[解析]∵S n +S m =S n +m ,∴令m =1,n =9,得S 9+S 1=S 10,即S 10-S 9=S 1=a 1=1,∴a 10=S 10-S 9=1.故选D .3.数列{a n }满足a n +1=⎩⎪⎨⎪⎧2a n ,0≤a n <12,2a n-1,12≤a n<1,若a 1=25,则a2019等于( C )A .15B .25C .35D .45[解析] 因为a 1=25<12,所以a 2=45,a 3=35,a 4=15,a 5=25,所以数列具有周期性,周期为4,所以a 2019=a 3=25.故选C .4.已知数列{a n }满足a n +1=a n +2n ,且a 1=33,则a n n的最小值为( D ) A .21 B .10 C .172D .212[解析] 由已知条件可知,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=33+2+4+…+2(n -1)=n 2-n +33. 又n =1时,a 1=33满足此式.所以a n n=n +33n-1.令f (n )=n +33n-1,则f (n )在[1,5]上为减函数,在[6,+∞)上为增函数,又f (5)=535,f (6)=212,则f (5)>f (6),故f (n )=a n n 的最小值为212.故选D .5.已知函数f (x )=2x-2-x,数列{a n }满足f (log 2a n )=-2n . (1)求数列{a n }的通项公式; (2)求证:数列{a n }是递减数列.[解析] (1)f (log 2a n )=2log 2a n -2-log 2a n =a n -1a n所以a n -1a n=-2n ,所以a 2n +2na n -1=0,解得a n =-n ±n 2+1, 因为a n >0,所以a n =n 2+1-n ,n ∈N *.(2)a n +1a n=n +12+1-n +1n 2+1-n=n 2+1+nn +12+1+n +1<1,因为a n >0,所以a n +1<a n ,所以数列{a n }是递减数列.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习一
1.数列1,12,14,…,1
2n ,…是( )
A .递增数列
B .递减数列
C .常数列
D .摆动数列
2.已知数列{an}的通项公式an =1
2[1+(-1)n +1],则该数列的前4项依次是
( )
A .1,0,1,0
B .0,1,0,1 C.12,0,1
2
,0 D .2,0,2,0
3.数列{an}的通项公式an =cn +d
n ,又知a2=3
2,a4=154,则a10=__________.
4.已知数列{an}的通项公式an =2
n2+n . (1)求a8、a10. (2)问:1
10是不是它的项?若是,为第几项?
练习二
一、选择题
1.已知数列{an}中,an=n2+n,则a3等于( ) A.3 B.9
C.12 D.20
2.下列数列中,既是递增数列又是无穷数列的是( )
A.1,1
2

1
3

1
4
,…
B.-1,-2,-3,-4,…
C.-1,-1
2
,-
1
4
,-
1
8
,…新课标第一网
D .1,2,3,…,n
3.下列说法不正确的是( )
A .根据通项公式可以求出数列的任何一项
B .任何数列都有通项公式
C .一个数列可能有几个不同形式的通项公式
D .有些数列可能不存在最大项 .
4.数列23,45,67,8
9,…的第10项是( )
A.1617
B.1819
C.2021
D.2223
5.已知非零数列{an}的递推公式为an =n
n -1
·an -1(n >1),则a4=( ) A .3a1 B .2a1 C .4a1 D .1
6.(2011年浙江乐嘉调研)已知数列{an}满足a1>0,且an +1=12an ,则数列{an}
是( )
A .递增数列
B .递减数列
C .常数列
D .摆动数列
二、填空题
7.已知数列{an}的通项公式an =19-2n ,则使an>0成立的最大正整数n 的值为__________.
8.已知数列{an}满足a1=2,a2=5,a3=23,且an +1=αan +β,则α、β的值分别为________、________.
9.已知{an}满足an =-1
n an -1+1(n ≥2),a7=4
7,则a5=________.
三、解答题
10.写出数列1,23,35,4
7,…的一个通项公式,并判断它的增减性.
11.在数列{an}中,a1=3,a17=67,通项公式是关于n 的一次函数. (1)求数列{an}的通项公式; (2)求a2011;
(3)2011是否为数列{an}中的项?若是,为第几项?
12.数列{an}的通项公式为an=30+n-n2.
(1)问-60是否是{an}中的一项?
(2)当n分别取何值时,an=0,an>0,an<0?
答案一
B
A
9910
解:(1)a8=
2
82+8=1
36,a10=2
102+10=1
55. (2)令an =
2
n2+n =110
,∴n2+n =20. 解得n =4.∴1
10是数列的第4项. 答案二 1.C
2. 解析:选C.对于A ,an =1
n ,n ∈N*,它是无穷递减数列;对于B ,an =-n ,
n ∈N*,它
也是无穷递减数列;D 是有穷数列;对于C ,an =-(1
2)n -1,它是无穷递增数
列.
3. 解析:选B.不是所有的数列都有通项公式,如0,1,2,1,0,…
4. 解析:选C.由题意知数列的通项公式是an =2n 2n +1,∴a10=2×10
2×10+1=20
21.
故选C.
5. 解析:选C.依次对递推公式中的n 赋值,当n =2时,a2=2a1;当n =3时,a3=32a2=3a1;当n =4时,a4=4
3
a3=4a1.
6. 解析:选B.由a1>0,且an +1=12an ,则an>0.又an +1an =1
2<1,∴an +1<an.
因此数列{an}为递减数列.
7. 解析:由an =19-2n>0,得n<19
2,∵n ∈N*,∴n ≤9. 答案:9
8. 解析:由题意an +1=αan +β, 得⎩⎪⎨⎪⎧
a2=αa1+βa3=αa2+β⇒⎩⎪⎨⎪⎧
5=2α+β23=5α+β
⇒⎩⎪⎨⎪⎧
α=6,
β=-7.
答案:6 -7
9.解析:a7=-1
a6+1,a6=1
a5+1,∴a5=34.
答案:3
4
10. 解:数列的一个通项公式an =
n
2n -1
. 又∵an +1-an =n +1
2n +1-n
2n -1

-12n +1
2n -1
<0,
∴an +1<an.
∴{an}是递减数列.
11. 解:(1)设an =kn +b(k ≠0),则有⎩⎪⎨
⎪⎧
k +b =3,
17k +b =67,
解得k =4,b =-1.∴an =4n -1. (2)a2011=4×2011-1=8043.
(3)令2011=4n -1,解得n =503∈N*, ∴2011是数列{an}的第503项.
12. 解:(1)假设-60是{an}中的一项,则-60=30+n -n2.
解得n=10或n=-9(舍去).
∴-60是{an}的第10项.
(2)分别令30+n-n2=0;>0;<0,解得n=6;0<n<6;n>6,
即n=6时,an=0;
0<n<6时,an>0;
n>6时,an<0.。

相关文档
最新文档