卢瑟福α粒子散射实验

合集下载

a粒子散射实验

a粒子散射实验

a粒子散射实验揭示原子有核模型的实验。

为E.卢瑟福等人所做,又称卢瑟福a 粒子散射实验。

J.J.汤姆孙发现电子揭示了原子具有内部结构后,1903年提出原子的葡萄干圆面包模型,认为原子的正电荷和质量联系在一起均匀连续分布于原子范围,电子镶嵌在其中,可以在其平衡位置作微小振动。

1909年卢瑟福的助手H.盖革和E.马斯登在卢瑟福建议下做了a粒子散射实验,用准直的a 射线轰击厚度为微米的金箔,发现绝大多数的a粒子都照直穿过薄金箔,偏转很小,但有少数a 粒子发生角度比汤姆孙模型所预言的大得多的偏转,大约有1/8000 的a粒子偏转角大于90°,甚至观察到偏转角等于150°的散射,称大角散射,更无法用汤姆孙模型说明。

1911年卢瑟福提出原子的有核模型,与正电荷联系的质量集中在中心形成原子核,电子绕着核在核外运动,由此导出a粒子散射公式,说明了 a 粒子的大角散射。

卢瑟福的散射公式后来被盖革和马斯登改进了的实验系统地验证。

根据大角散射的数据可得出原子核的半径上限为10-14米。

此实验开创了原子结构研究的先河。

原子结构模型的演变原子结构模型是科学家根据自己的认识,对原子结构的形象描摹。

一种模型代表了人类对原子结构认识的一个阶段。

人类认识原子的历史是漫长的,也是无止境的。

下面介绍的几种原子结构模型简明形象地表示出了人类对原子结构认识逐步深化的演变过程。

道尔顿原子模型(1803 年):原子是组成物质的基本的粒子,它们是坚实的、不可再分的实心球。

汤姆生原子模型(1904 年):原子是一个平均分布着正电荷的粒子,其中镶嵌着许多电子,中和了正电荷,从而形成了中性原子。

卢瑟福原子模型(1911 年):在原子的中心有一个带正电荷的核,它的质量几乎等于原子的全部质量,电子在它的周围沿着不同的轨道运转,就像行星环绕太阳运转一样。

玻尔原子模型(1913 年):电子在原子核外空间的一定轨道上绕核做高速的圆周运动。

α粒子散射实验

α粒子散射实验

α粒子散射实验α粒子散射实验α粒子散射实验(a-particle scattering experiment)又称金箔实验、Geiger-Marsden 实验或卢瑟福α粒子散射实验引。

是1909年汉斯·盖革和恩斯特·马斯登在欧内斯特·卢瑟福指导下于英国曼彻斯特大学做的一个著名物理实验。

目录实验用准直的α射线轰击厚度为微米的金箔,发现绝大多数的α粒子都照直穿过薄金箔,偏转很小,但有少数α粒子发生角度比汤姆孙模型所预言的大得多的偏转,大约有1/8000 的α粒子偏转角大于90°,甚至观察到偏转角等于150°的散射,称大角散射,更无法用汤姆孙模型说明。

1911年卢瑟福提出原子的有核模型(又称原子的核式结构模型),与正电荷联系的质量集中在中心形成原子核,电子绕着核在核外运动,由此导出α粒子散射公式,说明了α粒子的大角散射。

卢瑟福的散射公式后来被盖革和马斯登改进了的实验系统地验证。

根据大角散射的数据可得出原子核的半径上限为10-14米,此实验开创了原子结构研究的先河。

这个实验推翻了J.J.汤姆孙在1903年提出的原子的葡萄干圆面包模型,认为原子的正电荷和质量联系在一起均匀连续分布于原子范围,电子镶嵌在其中,可以在其平衡位置作微小振动,为建立现代原子核理论打下了基础。

编辑本段实验目的与过程卢瑟福从1909年起做了著名的α粒子散射实验,实验的目的是想证实汤姆孙原子模型的正确性,实验结果却成了否定汤姆孙原子模型的有力证据。

在此基础上,卢瑟福提出了原子核式结构模型。

为了要考察原子内部的结构,必须寻找一种能射到原子内部的试探粒子,这种粒子就是从天然放射性物质中放射出的α粒子。

卢瑟福和他的助手用α粒子轰击金箔来进行实验,图14-1是这个实验装置的示意图。

在一个铅盒里放有少量的放射性元素钋(Po),它发出的α射线从铅盒的小孔射出,形成一束很细的射线射到金箔上。

当α粒子穿过金箔后,射到荧光屏上产生一个个的闪光点,这些闪光点可用显微镜来观察。

卢瑟福散射_实验报告

卢瑟福散射_实验报告

一、实验目的1. 验证卢瑟福散射理论,理解原子核式结构模型;2. 掌握实验装置的使用方法,学会数据处理和误差分析;3. 培养科学实验技能和团队协作能力。

二、实验原理卢瑟福散射实验是通过α粒子轰击金箔,观察α粒子在金箔后的散射情况,从而验证原子核式结构模型。

根据卢瑟福散射理论,当α粒子穿过原子时,只有当α粒子与原子核的距离小于某一特定值时,α粒子才会发生散射。

该特定值与原子核的半径有关,即r = (ke^2)/(p^2),其中k为库仑常数,e为电子电荷,p为α粒子的动量。

三、实验仪器与材料1. 实验仪器:卢瑟福散射实验装置、α粒子源、金箔、计数器、显微镜、计算机等;2. 实验材料:金箔、α粒子源、电源、真空泵等。

四、实验步骤1. 安装实验装置,确保所有仪器连接正确;2. 将金箔固定在实验装置上,调整显微镜位置,使其与金箔垂直;3. 打开α粒子源,调整电流,使α粒子流稳定;4. 打开计数器,记录α粒子在金箔后的散射情况;5. 调整显微镜位置,观察不同角度的散射情况,记录散射角度及计数;6. 重复步骤4和5,记录多组数据;7. 关闭α粒子源,关闭电源,整理实验器材。

五、实验数据与处理1. 记录实验数据,包括散射角度、计数等;2. 利用计算机软件处理数据,计算散射角度与计数的关系;3. 对比实验数据与理论计算值,分析误差来源。

六、实验结果与分析1. 实验结果显示,绝大多数α粒子穿过金箔后仍沿原来的方向前进,偏转角度很小;2. 少数α粒子发生了较大的偏转,偏转角度超过90度;3. 极少数α粒子的偏转角度超过180度,甚至被反弹回来。

根据实验结果,可以得出以下结论:1. 原子内部存在一个带正电的核,核的半径远小于原子半径;2. 原子核的质量远大于电子的质量;3. 原子核的正电荷集中在原子内部,电子围绕原子核运动。

七、误差分析1. α粒子源电流不稳定,导致α粒子流不稳定;2. 金箔厚度不均匀,导致α粒子散射角度不准确;3. 实验装置存在一定误差,如显微镜的读数误差等;4. 数据处理过程中存在舍入误差。

卢瑟福的α粒子散射实验观察和结论

卢瑟福的α粒子散射实验观察和结论

卢瑟福的α粒子散射实验观察和结论卢瑟福的α粒子散射实验观察和结论导言卢瑟福的α粒子散射实验是物理学史上具有里程碑意义的实验之一。

通过此实验,卢瑟福成功地证实了原子结构的基本概念,并揭示了原子核的存在。

本文将探讨卢瑟福的α粒子散射实验的观察结果和结论,并分享我对此实验的观点和理解。

1. 实验背景卢瑟福的α粒子散射实验于1911年进行,当时科学界对原子结构的理解还较为模糊。

卢瑟福希望通过实验来验证当时流行的“杜尔文模型”,即认为原子是由带正电的球体(原子核)和带负电的电子云组成的。

他选择使用α粒子(带有两个负电荷的氦离子)作为入射粒子,通过散射角度的观察来揭示原子的内部结构。

2. 实验过程卢瑟福将一束经过加速的α粒子照射到薄金属箔上,并在周围布置了一个荧光屏。

通过观察荧光屏上出现的散射点和角度,卢瑟福记录下了大量实验数据。

3. 实验观察结果卢瑟福的实验观察结果出人意料,与当时的预期相去甚远:(1) 大多数α粒子出射角度很小,接近与入射方向一致;(2) 一小部分α粒子发生明显的偏转,出射角度远离入射方向;(3) 极少数α粒子甚至发生180度的反向散射,返回入射方向。

4. 实验结论基于上述观察结果,卢瑟福得出了以下结论:(1) 原子具有较大的空隙,大部分α粒子可以直接穿过原子而不发生散射;(2) 原子中存在带正电的原子核,同时带负电的电子云位于其周围;(3) 发生明显偏转的α粒子与正电荷较大的原子核发生了相互作用;(4) 散射角度与入射粒子的能量和散射物质的原子核正电荷有关。

5. 对实验的观点和理解卢瑟福的α粒子散射实验提供了直接证据,证明了历史上首次提出的原子核模型。

此模型认为原子核位于原子的中心,其中带有正电荷,并且占据了大部分原子的质量。

这个实验打破了当时流行的汤姆孙模型,即认为原子是由均匀分布的正负电荷所组成。

对于实验的观察结果,我认为其中最令人震惊的是极少数α粒子的180度反向散射。

这意味着原子核的大小远远小于原子的整体大小,同时具有较大的正电荷。

α粒子散射实验 实验报告

α粒子散射实验 实验报告

α粒子散射实验实验报告一.实验目的1.初步了解近代物理中有关粒子探测技术和相关电子学系统的结构,熟悉半导体探测器的使用方法;2.实验验证卢瑟福散射的微分散射截面公式二.实验原理1.瞄准距离与散射角的关系视α粒子和电子均为点电荷,假设两者间作用力只有静电斥力,如图1,散射角θ,瞄准距离b ,α粒子质量为m ,入射速度为0v ,则:(1)(2)2.卢瑟福微分散射截面公式设有截面为S 的α粒子束射到厚度为t 的靶上,靶的原子数密度为n ,则α粒子散射到θ方向单位立体角内每个原子的有效散射截面为:2222244001121()() 1.296()4sin (/2)sin (/2)d Ze Z d mv E σπεθθ==Ω (3) 设实验中探测器的灵敏面积对靶所张的立体角为Δ,在某段时间内射2co t2b D θ=00πε到靶上的粒子总数为T ,则观察到的粒子数为:(4)三.实验仪器粒子源 真空室 探测器与计数系统 真空泵 四.实验数据及处理1.原始数据及处理表1 探测到的粒子数count 与散射角的关系Angle/° Angle /rad count1 count2 count3 count4 count5 N=count average count median -10-0.175 668 687 634 683 719 678 683 -9 -0.157 806 790 738 824 776 787 790 -8 -0.140 875 919 924 923 904 909 919 -7 -0.122 1020 1002 960 1032 999 1003 1002 -6 -0.105 1069 1092 1100 1075 1058 1079 1075 -5 -0.087 1149 1188 1201 1115 1149 1160 1149 -4 -0.070 1173 1148 1164 1196 1171 1170 1171 -3 -0.052 1190 1225 1225 1236 1237 1223 1225 -2 -0.035 1222 1256 1288 1283 1225 1255 1256 -1 -0.017 1295 1284 1292 1296 1278 1289 1292 0 0.000 1310 1290 1281 1264 1355 1300 1290 1 0.017 1275 1264 1299 1231 1253 1264 1264 2 0.035 1283 1188 1220 1274 1250 1243 1250 3 0.052 1248 1236 1211 1201 1257 1231 1236 4 0.070 1107 1134 1083 1116 1132 1114 1116 5 0.087 1184 1103 1150 1105 1132 1135 1132 6 0.105 939 919 932 894 934 924 932 7 0.122 811 882 757 853 837 828 837 8 0.140 723 697 729 715 715 716 715 9 0.157 612 622 627 615 610 617 615 10 0.175 514 501 541 517 501 515 514 11 0.192 382 381 412 381 405 392 382 12 0.209 277 279 310 335 294 299 294 13 0.227 250 225 227 228 163 219 227 14 0.244 164 176 160 168 179 169 168 15 0.262 148 108 127 116 135 127 127 16 0.279 85 82 65 72 78 76 78 17 0.297 40 43 33 34 45 39 40 18 0.314 40 43 33 34 45 39 40 19 0.332 31 29 28 29 22 28 29 200.349 20 25 20 14 24 21 2001()()4sin (/2)Ze nt N Tmv πεθ∆Ω=25 0.436 13 10 4 8 10 9 10 30 0.524 1 3 4 2 5 3 3 35 0.611 0 1 2 1 0 1 1 40 0.698 1 1 0 1 3 1 1 45 0.785 0 1 0 0 0 0 0 50 0.873 0 0 0 0 0 0 02.曲线拟合根据表1,做出探测器探测到的粒子数N 的平均值与散射角θ的关系; 再按照修正拟合公式(6)式进行曲线拟合,如图2所示。

卢瑟福α粒子散射实验说明

卢瑟福α粒子散射实验说明

卢瑟福α粒子散射实验说明卢瑟福α粒子散射实验是一项重要的实验,它为我们揭示了原子的结构和核心的组成。

在这篇文章中,我将详细介绍卢瑟福α粒子散射实验的原理和重要意义。

卢瑟福α粒子散射实验是由英国物理学家欧内斯特·卢瑟福于1911年提出并进行的。

这个实验是通过将高能的α粒子轰击金属箔来研究原子结构的。

实验装置包括一个放射性源,用于产生α粒子,以及一个金属箔片,用于散射α粒子。

通过观察散射α粒子的轨迹和偏转角度,可以推断出金属箔内部的原子结构。

卢瑟福α粒子散射实验的原理是基于电荷之间的相互作用。

在实验中,α粒子带有正电荷,而金属箔中的原子核也带有正电荷。

当α粒子与原子核相互作用时,它们之间会发生散射。

根据库仑定律,散射角度与电荷之间的相互作用力成正比。

因此,通过测量散射角度,我们可以推断出原子核的位置和电荷分布。

在卢瑟福实验中,观察到了两种不同的散射模式:散射角度较小的散射事件和散射角度较大的散射事件。

卢瑟福发现,大部分α粒子穿过金属箔而没有发生散射,只有极少部分α粒子发生大角度的散射。

这一现象无法用经典物理学解释,而需要引入新的理论。

卢瑟福根据实验结果提出了著名的卢瑟福模型,也称为太阳系模型。

根据这个模型,原子核位于原子的中心,而电子则围绕核心运动,类似于行星绕太阳运动。

这个模型解释了为什么大部分α粒子穿过金属箔而没有发生散射,因为原子核的体积非常小,而α粒子的运动轨迹离开原子核足够远。

卢瑟福α粒子散射实验对于我们理解原子结构和核物理有着重要的意义。

首先,它揭示了原子中存在着一个非常小而致密的原子核,以及围绕核心运动的电子。

其次,实验结果验证了电荷之间的库仑相互作用定律,并为后来的量子力学提供了重要的实验依据。

最后,这个实验也为核物理的发展奠定了基础,为后续的核反应和核能利用提供了重要的参考。

总结一下,卢瑟福α粒子散射实验是一项重要的实验,通过观察散射α粒子的轨迹和偏转角度,揭示了原子的结构和核心的组成。

卢瑟福的a粒子散射实验结论原理计算

卢瑟福的a粒子散射实验结论原理计算

卢瑟福的a粒子散射实验结论原理计算卢瑟福的α粒子散射实验是一个具有重要意义的物理实验。

该实验是由新西兰物理学家欧内斯特·卢瑟福于20世纪初进行的,实验中使用了α粒子(即氦离子或称α粒子)射向一个金属薄膜,并对散射角度和散射强度进行了观察和测量。

根据经典的电磁理论,当一个α粒子入射到坚硬物体上时,它会受到库仑力的相互作用。

根据库仑定律,这个作用力具有反比于距离的平方的关系,因此入射到金属薄膜的α粒子将会受到金属原子核的库仑力作用,与之发生散射。

卢瑟福实验的重要结论如下:1.大部分的α粒子直线穿过金属薄膜,只发生微小的散射。

这表明原子的大部分空间是由空隙构成的,因为α粒子直径比原子小得多。

2.少数的α粒子经过散射后,发现其散射角度很大。

这暗示了原子具有一个高度集中的、具有正电荷的中心区域,即原子核。

3.α粒子散射的散射角度与入射粒子的能量有关。

这表明散射的短距离库仑相互作用,与α粒子的能量相关。

根据以上结论,卢瑟福提出了最早的原子核模型,即卢瑟福散射模型。

根据该模型,原子由一个带正电荷的原子核和围绕核的负电荷电子云组成。

原子的大部分体积为空隙,几乎所有的质量都集中在原子核中。

卢瑟福散射实验结论的原理可以通过经典的库仑力和动量守恒定律来解释。

在实验中,当α粒子与金属原子核发生相互作用时,它们之间的库仑力导致了散射。

根据电磁力的方向,α粒子将会受到一个向外的力,从而发生向后的散射。

根据动量守恒定律,散射后的α粒子的动量也会改变,从而使其散射角度发生偏转。

根据电磁力的定性描述和动量守恒定律可以计算散射角度和散射强度。

实际上,卢瑟福通过对散射后α粒子的观察和测量,得出了散射角度与入射粒子能量之间的关系,并从而确定了原子核的存在。

总结起来,卢瑟福的α粒子散射实验结论揭示了原子内部结构的重要特征,尤其是原子核的存在。

这项实验在现代原子物理学的发展中具有深远意义,为原子核物理学的诞生奠定了基础,也为后来的量子力学的发展提供了重要线索。

卢瑟福的实验原理

卢瑟福的实验原理

卢瑟福的实验原理卢瑟福的实验原理是指通过对α粒子的散射实验,探索原子的内部结构和原子核特性的科学实验方法。

这个实验是由新西兰物理学家欧内斯特·卢瑟福于1910年提出并进行的,是研究原子核物理的重要突破之一,为原子模型的提出奠定了坚实的基础。

卢瑟福的实验装置主要由放射性物质(如氡气)发射的α粒子源、薄金属箔(如金箔)以及粒子探测器组成。

实验时,将α粒子源放在实验室中心,使其放射出的α粒子穿过一个狭缝,然后射向放置在一定距离处的金箔。

最后,通过粒子探测器记录和测量散射到不同角度上的α粒子的数量和位置。

在卢瑟福实验中,卢瑟福观察到了出乎意料的结果:大多数的α粒子直线穿透了金箔,但有一小部分α粒子却发生了大角度的散射甚至被完全反射回来。

这个结果与当时普遍的原子模型——普朗克的“杂色布埃理论”和汤姆逊的“杏仁布埃模型”完全不符。

根据这两个模型,如果原子是一个均匀分布的正电荷球体,那么α粒子通过金属箔时应该是无散射或轻微的散射,而不应该发生大角度的散射。

为了解释这个实验结果,卢瑟福提出了他著名的“卢瑟福散射原理”:原子由一个非常小而非常致密的正电荷核心(即原子核)组成,核心周围以较大距离分布着带负电的电子。

根据该原理,当α粒子与原子发生碰撞时,大角度散射或反射发生的原因是因为在极小的核心区域附近,存在着很强的正电荷,使得α粒子受到较大的库仑斥力。

而大部分α粒子直线穿透金箔的原因是因为正电荷核心的体积极小,与整个原子的体积相比非常小,所以大部分α粒子不会与核心发生碰撞。

通过卢瑟福实验的结果和解释,人们首次得到了有关原子结构的重要线索,这也为后来量子力学的发展提供了奠定基石。

在卢瑟福实验之后,尤金·格尔季斯等科学家对实验结果进行了进一步的研究和验证,确定了原子核的正电荷和质量的比例,提出了质子和中子的概念。

这为后来的波尔模型和量子力学模型的发展提供了重要的实验依据和理论支持。

总之,卢瑟福的实验原理是通过对α粒子的散射实验,揭示了原子的内部结构和核与电子的相互作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

卢瑟福α粒子散射实验
卢瑟福散射实验是近代物理科学发展史中最重要的实验之一。

在1897年汤姆逊(J.J.Thomson)测定电子的荷质比,提出了原子模型,他认为原子中的正电荷分布在整个原子空间,即在一个半径R≈10-10m区间,电子则嵌在布满正电荷的球内。

电子处在平衡位置上作简谐振动,从而发出特定频率的电磁波。

简单的估算可以给出辐射频率约在紫外和可见光区,因此能定性地解释原子的辐射特性。

但是很快卢瑟福(E.Rutherford)等人的实验否定这一模型。

1909年卢瑟福和他的助手盖革(H.Geiger)及学生马斯登(E.Marsden)在做α粒子和薄箔散射实验时观察到绝大部分α粒子几乎是直接穿过铂箔,但有大约1/8000个α粒子发生散射角大于900,甚至观察到偏转角等于150°的散射,称大角散射。

这一实验结果当时在英国被公认的汤姆逊原子模型根本无法解释。

在汤姆逊模型中正电荷分布于整个原子,根据对库仑力的分析,α粒子离球心越近,所受库仑力越小,而在原子外,原子是中性的,α粒子和原子间几乎没有相互作用力。

在球面上库仑力最大,也不可能发生大角度散射。

卢瑟福等人经过两年的分析,于1911年提出原子的核式模型,原子中的正电荷集中在原子中心很小的区域内,而且原子的全部质量也集中在这个区域内。

原子核的半径近似为10-15m,约为原子半径的千万分之一。

卢瑟福散射实验确立了原子的核式结构,为现代物理的发展奠定了基石。

相关文档
最新文档